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The pounding tuned mass damper (PTMD) is a novel passive damper that absorbs and
dissipates energy by an auxiliary tuned spring-mass system. Viscoelastic materials are
attached to the interface of the limitation collar in the PTMD so that the energy dissipation
capacity can be enhanced. Previous studies have successfully demonstrated the
effectiveness of PTMD at room temperature. However, in practice, the PTMD may face
a broad temperature range, which can affect the mechanical properties of the viscoelastic
materials. Thus, the study of vibration control effectiveness of PTMD at different
temperatures is of great significance for its practical engineering application. In this
paper, a series of experiments were conducted to investigate the performance of a
PTMD in a temperature-controlled environment. A PTMD device was designed to
suppress the vibration of a portal frame structure and tested across environmental
temperatures ranging from –20°C to 45°C. The displacement reduction ratios
demonstrated the temperature robustness of the PTMD. Additionally, the numerical
results validated the accuracy of the pounding force model and the performance of PTMD.

Keywords: pounding tuned mass damper, viscoelastic material, temperature variation, structural damping,
structural vibration control

INTRODUCTION

It is nearly impossible for the engineers to fully predict the excitations of structures throughout their
entire service lives (Shirai et al., 2019; Cai et al., 2020). Overdesigning the structure against all possible
disturbances is often impractical and prohibitively expensive (Li et al., 2007; Ou et al., 2007; Zhang
and Ou, 2008). Structural vibration control is a safe and economical approach to protect structures
against severe disturbances such as expected in natural disasters (Xu et al., 2011; Teng et al., 2016;
Wang et al., 2017a; Zhang et al., 2017; Tan et al., 2020). Such control can be accomplished through
passive devices such as the pounding tuned mass damper (PTMD).

The PTMD is a novel and effective structure control technique, which can dissipate energy
through an internal collision mechanism. The PTMD was first reported by Zhang et al. (Zhang et al.,
2013) in 2013. The configuration and schematic of the typical PTMD proposed by Zhang et al. is
illustrated in Figure 1A. In the PTMD, a mass is connected to the host structure by a spring, and the
natural frequency of the spring-mass system is tuned closely to that of the host structure by changing
the stiffness of the spring. The displacement of the tuned mass is restricted by two delimiters. The
spring-mass system consumes energy similar to a tunedmass damper (TMD) when the displacement
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is small; however, when the displacement is large enough to
induce collision between the mass and the delimiter, the PTMD
effectively dissipates energy beyond the capacity of a TMD. In
order to improve the vibration suppression capacity during the
impact, an energy-dissipation material is bonded to the
delimiters.

Since then, researchers have demonstrated a wide range of
applications for the PTMD and its remarkable effectiveness. Li
et al. (Li et al., 2015) employed a PTMD to suppress the wind-
induced vertical buffeting response of a traffic signal pole. The
PTMD caused the damping ratios of the vertical vibration to
increase to 4% from 1%. Allen et al. (Allen et al., 2016) employed
PTMDs to control the vibrations of a submerged jumper. The
seismic control performance of the PTMD was investigated by
Xue et al. (Xue et al., 2016; Xue et al., 2017). A parameter study
and impact fatigue of double-sided PTMD was performed by
Zhang et al. (Zhang et al., 2015; Zhang et al., 2018). They found
that the response is influenced by the mass ratio, the exciting
force, and the gap between mass and the delimiters. These studies
all showed the effective vibration control performance and
robustness of the PTMD.

Based on the original double-sided PTMD,Wang et al. (Wang
et al., 2017C) proposed a novel single-sided PTMD as shown in
Figure 1B. In the single-sided PTMD, the tuned mass is set at the
equilibrium position and is contact with energy-dissipation
material. When the main mass begins to move due to external
excitation, the tuned mass will impact the delimiter and dissipate
kinetic energy during the collision. As shown by Zhang et al.
(Zhang et al., 2015), the reduction ratio of the PTMD is related to
many parameters including the mass ratio, the gap between the
delimiter, and the pounding stiffness. The design of the single-
sided PTMD does not require careful tuning of the gap between
the mass the delimiter, thus affording it several significant
advantages, such as a simple structure and ease of design. In
addition, pounding in a single-sided PTMD occurs at the location
where collisions occur at the highest velocity, which translates to
high effectiveness and efficiency in the pounding mechanism.
Furthermore, the tuned mass only moves toward one side,
thereby opening up half of the working space, and improving
the range of its applications.

The single-sided PTMD has been investigated through many
theoretical and experimental studies. Wang et al. (Wang et al.,
2017b; Wang et al., 2017c; Wang et al., 2018a; Wang et al., 2018b;

Wang et al., 2019) studied single-sided the optimum PTMD
design, including its control performance and impact force
modelling through experiments and simulations. Tan et al.
(Tan et al., 2019a; Tan et al., 2019b) designed a novel single-
sided PTMD to control the vibration of a suspended piping
system, and compared the control performances between
PTMDs using viscoelastic materials versus shape memory alloy
(SMA) sponges as the energy dissipating material.

Viscoelastic materials are extensively utilized as energy
dissipating components due to their excellent combination of
high energy dissipation capacity, low cost, and ease of
manufacturing (Feng et al., 2018; Feng et al., 2020). However,
a drawback of viscoelastic materials is that their mechanical
properties are strongly influenced by temperature (Bergman
and Hanson, 1993; Guo et al., 2009; Bhatti, 2013). In recent
decades, extensive experimental and theoretical investigations on
the mechanical properties of viscoelastic materials have been
conducted (Zhong et al., 2017). Zhang et al. (Zhang et al., 2019)
compared pounding stiffness and pounding damper ratio of
viscoelastic materials between room temperature and 2°C,
found that the pounding mechanical properties of viscoelastic
materials changed considerably under different temperature
conditions. At low temperatures, viscoelastic materials are in a
glassy state, which is characterized by having a high modulus, a
small loss factor and brittleness. In the glassy state, the viscoelastic
material is typically destroyed when strain rate exceeds 5%. With
the increase of temperature, materials return to the viscoelastic
region, where the loss factor is the highest. As the temperature
continues to rise, viscoelastic materials will be transformed into a
highly elastic state, whereupon the shear modulus and loss factor
begin to decrease.

When considering the effects of temperature, the shear
modulus and loss factor are used to describe the properties of
viscoelastic dampers. However, the pounding process has a high
strain rate, which is different from the shear process. Therefore, to
describe the properties of PTMD and analyze the structural
dynamic responses with when the structure is equipped with
the added PTMD, experiments are required. The parameters to
demonstrate the mechanical properties of the pounding process
are the pounding stiffness and the pounding damping, both of
which are mostly neglected in prior literature.

Consequently, this paper presents an experimental study on
the control performance for a PTMD over a wide range of

FIGURE 1 | Typical configuration of the pounding tuned mass damper (PTMD): (A) Double-sided PTMD; (B) Single-sided PTMD.
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temperatures. First, a single-sided PTMD is designed to control a
single degree of freedom structure. The movement of the
structure during free vibration and forced vibration are used
to validate the effectiveness. Then, control tests are conducted
repeatedly from –20°C to 45°C in temperature-controlled
environment. The experimental results demonstrate the PTMD
has a good temperature robustness and show that the control
performance of PTMD can be gauged into three stages when the
temperature increases. The originality of this work is that the
vibration reduction performance of viscoelastic materials PTMD
is experimentally studied within a wide temperature range. The
results are significant for design and application of viscoelastic
materials PTMD.

THEORETICAL FOUNDATION

In this section, the related theoretical foundations of PTMD are
briefly introduced, including structure-PTMD coupled equation
of motion and the pounding force model. In addition, the effect of
temperature on viscoelastic materials is described subsequently.

Structure-PTMD Coupled Equation of
Motion
A structure with PTMD is modelled in Figure 1B. The mass,
stiffness, damping coefficient of structure are respectively
denoted by m1, k1, cs. The mass and stiffness of the PTMD
are represented by a spring of stiffness m2 , k2, respectively. The
displacement of the main structure and tuned mass are x1, x2,
respectively. Considering the coupling between the single-
degree-of-freedom structure and the PTMD, the equations of
motion for the whole, integrated system can be written as in
Eq (1):

M€x + C _x + Kx � P + ΓF (1)

where €x, _x, x, represent acceleration, velocity, displacement,
respectively. M, C, K are mass matrix, damping matrix,
stiffness matrix, respectively, P is the load matrix applied to
the structure, F is the pounding force, and Γ is the pounding force
position. The parameters are expanded in Eq (2) to Eq (4):

€x � [ €x1
€x2
], _x � [ _x1

_x2
], x � [ x1

x2
], P � [ p

0
] (2)

M � [m1 0
0 m2

],C � [ cs 0
0 0

], x � [ k1 + k2 −k2
−k2 k2

] (3)

Γ � [−c
c
], c � { 1, x2 − x1 > 0

0, x2 − x1 ≤ 0
(4)

Pounding Force Model
A linear viscoelastic model has been proposed to describe the
contacting force F of viscoelastic impacts (Goldsmith, 1960;
Anagnostopoulos, 1988; Jankowski et al., 1998;
Anagnostopoulos, 2004), and is given by Eqs (5,6):

F � βδ + c _δ (5)

δ � x1 − x2, _δ � _x1 − _x2 (6)

where δ, _δ, β represent the relative displacement of the colliding
body, the relative velocity, the pounding stiffness, and the
pounding damping, respectively. The pounding stiffness can
be obtained using the displacement and the pounding force
recorded in the impact test. The pounding damping c can be
computed by Eq (7):

c � 2ξ
��������
β

m1m2

m1 +m2

√
(7)

where m1 and m2are the masses of two colliding bodies, ξ is
impact damping ratio, which is related to the coefficient of
restitution e in Eq (8):

ξ � −ln e����������
π2 + (ln e)2

√ (8)

However, the linear viscoelastic model may produce a
negative force at the end of impact, which is not consistent
with experimental observation (Jankowski, 2005).
Subsequently, a modified linear viscoelastic model
(Mahmoud and Jankowski, 2011), divides the pounding
into two individuals periods and assumes that energy loss
only happens when the material experiences compression, is
given by Eq (9):

F � { βδ + c _δ, _δ > 0
βδ, _δ ≤ 0

(9)

where c has same form as in Eq (7), and the pounding damping
ratio ξ can be calculated in Eq (10):

ξ � ( 1 − e2

e[e(π − 2) + 2]) (10)

Given its simplicity, the modified linear viscoelastic model can
be easily implemented for numerical simulations. However, at
the beginning of impact, a sudden rise of impact force may
occur as a result of nonzero relative velocity. In order to
overcome disadvantages of the modified linear viscoelastic
model, a nonlinear viscoelastic model was introduced by
Jankowski (Jankowski, 2005;2006). And it is expressed in
Eq (11):

F � { βδ3/2 + c _δ, _δ > 0
βδ3/2, _δ ≤ 0

(11)

where c has the form in Eq (12):

c � 2ξ
������������
β

�
δ

√ m1m2

m1 +m2

√
(12)

where the pounding damping ratio ξ can be calculated by Eq (13):

ξ � 9
�
5

√
2

1 − e2

e[e(9π − 16) + 16] (13)
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Temperature Effect of Viscoelastic
Materials
The influence of temperature on the behavior of viscoelastic
layers, viscoelastic dampers and structures with viscoelastic
dampers were analyzed by many researchers (Chang et al.,
1992; Park and Min, 2010; Guo et al., 2016). In one of their
works, Chang et al. (Chang et al., 1992) tested a simple solid
viscoelastic damper at different ambient temperatures and
established empirical formulas that described the
temperature dependence of the damper and loss factor.
Previous studies(Tsai, 1994; Park and Min, 2010; Guo et al.,
2016) have shown that different kinds of viscoelastic materials
have similar dependencies on temperature, but differ in the
specifics. Figure 2 shows the typical changes of shear modulus
and loss factor of viscoelastic materials to changes in
temperature. Note that Tg is the transition temperature of
viscoelastic materials.

The figure indicates that the shear modulus and loss factor of
viscoelastic materials change with temperature, and viscoelastic
materials have high damping in the characteristic temperature
range. Additionally, the changes can be divided into three
phases:

(1) At low temperature, the viscoelastic materials are in the
glassy state. The material molecules undergo ordinary
elastic deformation under the action of external force, and
the material possesses high rigidity, high modulus and small
loss factor;

(2) With the increase of the temperature, the materials return to
viscoelastic state. The modulus of materials decreases sharply
by several orders of magnitude. The loss factor also changes
greatly and passes through a peak value (i.e. damping peak),
which is equivalent to the maximum loss factor at the glass
transition temperature. This transition zone is usually the
temperature at which most viscoelastic materials are used.

(3) At high temperature, the viscoelastic materials are in the
highly elastic rubber state. The modulus value is small, the
loss factor is moderate. Both the modulus and loss factor of
materials change slowly as the temperature increases.

Despite the known features described above, the relationship
between the pounding stiffness β, pounding, damping ratio ξ and
temperature, impact velocity, impact materials are rarely studied
and need to be investigated.

EXPERIMENTAL SETUP

The experimental system consists of three parts: the experimental
device and equipment, a portal frame, and a specially designed
single-sided PTMD.

In the experiment, a portal frame with a single degree of
freedom served as the primary structure, a PTMD was designed
to control the displacements of the frame. The forced vibration
experiments were conducted at temperature conditions ranging
from –20°C to 45°C. The detail of temperatures in the experiment
are listed in Table 1.

Experimental Device and Equipment
Figure 3A shows the experimental device and equipment. A
noncontact laser displacement senor (HG-C1400, Panasonic
Industrial Devices, China) measured the displacements of the
frame. A data acquisition board (NI USB-6363, National
Instruments, USA) recorded sensor signals at a sampling
frequency of 1 kHz. An eccentric motor (JGB37-3650,
Xytmotor, China) fixed to the frame provided the exciting force.

As shown in Figure 3B, the temperature experiment is carried
out in the temperature-controlled room (MW-BD1824,
Ziweiheng testing equipment, China). The temperature of the
room can be adjusted from –20°C to 50°C.

Portal Frame
As shown in Figure 4, the portal frame is composed of an
aluminum block, two spring steel columns, and an aluminum
plate base. The detailed parameters of the portal frame are listed
in Table 2. The aluminum block is served as the main structural
mass. Spring steels served as structural columns because of its
high fatigue performance and high elasticity. The base fixes the
portal frame to the ground. The free vibration experiment was
conducted by applying an initial displacement to the portal frame
and releasing. The experimental result shows that the equivalent
viscous damping ratio is 0.29%.

A motor is attached to the top of the frame. A quasi-periodic
disturbance is generated when the motor rotates. The generated
frequency can be controlled by adjusting the excitation voltage
motor. In the forced vibration experiments, the structure was

FIGURE 2 | Variation curves of shear modulus and loss factor of
viscoelastic materials with temperature increase.

TABLE 1 | Experimental conditions.

Condition (No.) 1 2 3 4 5 6 7 8

Temperature/°C –20 –17.5 –15 –12.5 –10 –8.5 –6.5 –5
Condition (No.) 9 10 11 12 13 14 15 16
Temperature/°C –2.5 0 1.5 3.5 5 6.5 8.5 10
Condition (No.) 17 18 19 20 21 22 23 24
Temperature/°C 11.5 13.5 15 16.5 18.5 20 22.5 25
Condition (No.) 25 26 27 28 29 30 31 32
Temperature /°C 27.5 30 32.5 35 37.5 40 42.5 45
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excited at twenty different sweep frequency conditions ranging
from 2.6Hz to 5Hz. The experimental results indicate that portal
frame reaches the maximum displacement when the excitation
frequency is 3.13Hz.

Design of PTMD
As shown in Figure 5, the single-sided PTMD consists of mass
block, spring steel, and a viscoelastic delimiter (EVA sponge,
produced by 3M). An aluminum pole connects the PTMD to the
portal frame. To avoid affecting the dynamic characteristics of the
structure, the pole of the PTMD consisted of aluminum. The
optimum frequency of the PTMD, fop, is designed using following
formula(Wang et al., 2018a):

fop � 1
2
fd (14)

where fd is the natural frequency of the main structure.

The weight of the tuned masses is 246g, and the
corresponding mass ratio is 4.7%. A coupon of spring steel
connected the tuned mass to the PTMD body. This design is an
update of prior designs in which a nylon rope served as the
connector and sometimes suffer from circular, out-of-plane
motions (Tan et al., 2019b).

EXPERIMENTAL RESULTS AND ANALYSIS

Preliminary Test of PTMD at Room
Temperature
At first, the free vibration and forced vibration experiments with
and without PTMD control were carried out at room
temperature (18°C).

Figure 6 shows the free vibration of the portal frame with and
without PTMD control. With PTMD control, the displacement of
the frame rapidly reduced to a very small level compared to the
case without control. The time taken to suppress the displacement
from 10mm to 2mm reduced from 57.4s to 1.19s. The damping
ratio of the system is correspondingly increased from 0.29%
to 4.4%.

The displacements during forced vibration experiment are
shown in Figure 7. The blue line describes the frequency
response of the portal frame with PTMD control. The
frequency response curve only has one peak at 3.13Hz, and
the maximum displacement is 18.43mm, which occurred on the
right side of the uncontrolled resonance frequency.
Additionally, the peak displacement of the controlled
vibration is 3.26mm, which is 17.7% of the uncontrolled
resonant amplitude.

Figure 8 shows the vibration response of the portal frame
before and after the PTMD is released. After the release of the
PTMDs, the portal frame reached a new steady state in a short

FIGURE 3 | (A) Experimental device and equipment; (B) Temperature-controlled lab.

FIGURE 4 | Portal frame and its components.

TABLE 2 | Parameters of Portal frame.

No. Component Length/mm Width/mm Thickness/mm Weight/kg

1 Aluminum block 300 120 40 3.88
2 Spring steel columns 250 100 1 0.20
3 Aluminum plate base 400 150 10 1.62
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time. The displacement amplitude decreased from 16.34mm to
2.61mm.

Experiment on the Effect of Temperature on
PTMD Control
The experiment on the effect of temperature on PTMD control
was carried out in the temperature-controlled room. The
forced vibration test in Preliminary test of PTMD at room
temperature was repeated at different temperatures (listed in
Table 1). The maximum displacements of the structure with
PTMD at different temperatures are shown in Figure 9. As can
be seen in Figure 9, the control performance of PTMD can be
divided to three phases. In Phase 1 (–20°C to –8.5°C), the
displacement of portal frame decreased slightly from 4.4mm to
4.34mm, and the reduction ratio increased from 76.1% to
76.4%. In Phase 2 (–8.5°C to 20°C), the maximum
displacement of portal frame decreased first before
decreasing. The corresponding reduction ratio increased
first before decreasing. The maximum displacement

decreased to 2.5mm at 10°C. In the meantime, the
maximum reduction ratio reached 86.4%. In Phase 3 (20°C
to 45°C), the displacement and reduction ratio remained
almost constant (3.26mm and 82.3%, respectively) despite
further changes in temperature.

At glassy stage, the damping effect of PTMD almost does not
change obviously with temperature variation. For the
viscoelastic region (–8.5°C to 20°C), the damping effect of the
PTMD changes with temperature, and there is an optimal
control temperature, which is around 10°C for this
viscoelastic material. Between 20–45°C the material behaved
elastically, and the damping effect of PTMD remained in a
steady state.

Although the damping effect is affected at low and high
temperatures, the maximum displacement of the structure can
still be reduced beyond 75%. As the thermal influence on PTMD
control performance can be divided to three phases, results of
each phase for the forced vibration experiments are shown in
Figure 10. The results shows that PTMD has a good temperature
robustness.

FIGURE 6 | Displacement response of portal frame in time domain.

FIGURE 7 |Displacement response of portal frame in frequency domain.

FIGURE 8 | Displacement response of forced vibration with PTMD
release.

FIGURE 5 | Portal frame with PTMD.
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FIGURE 9 | Displacement response of portal frame in frequency domain.

FIGURE 10 | Displacement response of the portal frame at different state: (A) Free vibration in time domain; (B) Resonant vibration in time domain; (C) Forced
vibration in the frequency domain.
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NUMERICAL RESULTS

Impact Test and Validation of the Pounding
Force Model
An impact test at 18°C was carried out to study the performance
of the viscoelastic material during the impact. The experimental
setup is shown in Figure 11. The spring steel-mass systemwas the
same as in Experimental device and equipment, and the thickness
of the viscoelastic materials was also set to 7mm (2 layers). An
initial displacement of 35mm was applied to the mass and then
released, allowing the mass pounds the viscoelastic material
freely. The displacement of the mass was recorded by a laser
displacement sensor, and a force sensor was used to record the
pounding force during the experiment.

The results of the impact test are shown in Figure 12.
Figure 12A, B are the time history records of mass
displacement and impact force, respectively. Calculated from
the initial displacement (35.00mm) and the rebound
displacement (15.33mm) after the first impact, the coefficient
of restitution e is 0.434. Furthermore, obtained by eq (13). the
pounding damping ratio ξ is 0.882. Through the force peak value
(6.24N) in Figure 12B and corresponding displacement
(3.12mm), the pounding stiffness β is 3.6 × 104N/m1.5.

Ignoring the damping of the spring steel, motion equation of
the mass in Figure 11 can be expressed as

m€x + kx � F (15)

where F is the impact force, calculated by eq (11) to eq (13), m
and k are mass and stiffness of the spring steel-mass system. The
initial x(0) was set to 35.00mm, and the pounding parameters
were set as values obtained in the impact test. The fourth-order
Runge-Kutta method was utilized to solve eq (15)with a time step
of 1 × 10-6s. The comparison of experimental result and
simulation result is shown in Figure 12. It can be seen that
the pounding model is highly accurate to predict displacement
and impact force of the mass.

Numerical study on PTMD
To further validate the accuracy of the PTMD model, a
simulation analysis was performed on the experimental
structure with PTMD in Experimental setup. The motion
equations of the structure with PTMD were expressed in eq
(1) to eq (4), and the pounding force model was expressed in eq
(11) to eq (13). In the free vibration, the excitation force P(t) � 0,
in the forced vibration experiment, the excitation force can be
calculated as follows:

FIGURE 11 | (A) Diagram of impact test setup; (B) Photo of experimental setup.

FIGURE 12 | The results of the impact test: (A) Time history records of mass displacement; (B) Time history records of impact force.
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P(t) � mer
2 sin(ωt) (16)

where me, r, ω are the eccentric mass, eccentricity, excitation
frequency. In the article,me � 100P(t) � mer2 sin(ωt)g, r � 55mm.

The parameters of the simulation at 18°C were derived from the
results of the previous experiments and were summarized in
Table 3. Similarly, Runge-Kutta method was utilized to solve
the coupled equations, and both free vibration case and forced
resonant case were simulated. The simulation results are plotted in
Figure 13. As shown in Figure 13A and Figure 13B, the proposed
coupled equations can high accurately predict dynamic response of
structure with PTMD in both cases.

CONCLUSION AND FUTURE WORK

Conclusion
In this study, a single-sided pounding tuned mass damper
(PTMD) was designed to mitigate the vibration of a portal
frame. From experimental results, the conclusions are as follows:

(1) A single-sided PTMD can reduce the structural dynamic
response and improve the damping ratio of structure effectively;

(2) From –20°C to 45°C, the displacement reduction ratio
remained above 75%, which demonstrates the temperature
robustness of the PTMD. The highest reduction ratio (86.4%)
occurred at 10°C;

(3) The displacement reduction ratios of the PTMD are affected
by temperature. With the increase of temperature, the
effectiveness of PTMD can be divided into three stages.
From –8.5°C to 20°C, reduction ratio is sensitive to
temperature, where the ratio increases first and then
decreases. The reduction ratios at –8.5°C and 20°C are
76.4% and 82.4%, respectively. Between –20°C to –8.5°C
the reduction effects decrease slightly with temperature

variation, while between 20°C to 45°C, the reduction
effects remained stable.

(4) The numerical results validated the accuracy of the pounding
force model and the performance of PTMD.

Future Work
The changes of parameters in pounding force model at different
temperatures are vital factors for simulation and theoretical
analysis of PTMD. The exploration of a wide range of
temperatures impact tests to establish the damping factor vs.
temperature curve will be delegated as a future work.
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TABLE 3 | Parameters of simulation.

m1
°(kg) m2

°(kg) cs(N/(m/s)) k1(N/m) k2°(N/m) β(N/m1.5) e ξ

5.13 0.25 0.0029 19.66 9.83 3.6 × 104 0.434 0.882

FIGURE 13 | Simulation results: (A) Free vibration case; (B) Forced resonant vibration case.
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