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In geotechnical engineering, vertical drainage is the most economical method for

accelerating the consolidation of a large area of soft ground. In this study, we analyze

the viscoelasticity of the soil and the actual drainage conditions on the top surface of

the soil, and then we introduce continuous drainage boundary conditions and adopt

a fractional derivative model to describe the viscoelasticity of the soil. With the use

of a viscoelasticity model, the governing partial differential equation for vertical drains

under continuous drainage boundary conditions is obtained. With the application of the

Crump numerical inversion method, the consolidation solution for vertical drains is also

obtained. Further, the rationality of the proposed solution is verified by several examples.

Moreover, some examples are provided to discuss the influence of interface drainage

parameters on the top surface of soil and the viscoelasticity parameters of soil on the

consolidation behavior of vertical drains. The proposed method can be applied in the

fields of transport engineering to predict the consolidation settlement of a foundation

reinforced by vertical drains.

Keywords: vertical drains, consolidation, continuous drainage boundary, Laplace transform, finite sine transform

INTRODUCTION

Consolidation of vertical drains is the most economical and effective method for reinforcement
treatment of a large area of soft soil (Indraratna et al., 2010, 2012). In order to theoretically study
the consolidation of vertical drains, Carrillo (1942) first proposed the division of a combination
of seepage problems in vertical drains into radial seepage and vertical seepage for separate
analysis. Subsequently, Barron (1942), Horne (1964), Yoshikuni and Nakanodo (1974), Yoshikuni
(1979), and Xie et al. (1993) divided the vertical drain consolidation problem into two ideal
conditions, free strain and equal strain, to analyze and answer the problems separately. They
established a linear elastic consolidation theory for vertical drains. However, a large amount
of scientific research and engineering measurement data has shown that soil has viscoelasticity
properties and that its consolidation process cannot be completed in a short time. The soil
consolidation process often takes years or even decades to complete (Karlsson et al., 2016).
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For the purpose of analyzing viscoelastic soil, many scholars have
introduced viscoelasticity models into the consolidation theory
of vertical drains, such as the classic Kelvin, Maxwell, Merchant
and the generalized Kelvin. Zhao (1988) and Liu et al. (1998,
2005) established the consolidation differential equation for
integer-order viscoelastic vertical drains and obtained numerous
excellent results.

In 1940, Blair (1947) and Gerasimov (1948) proposed a
fractional derivative model to describe viscoelasticity behaviors
of a linear elasticity model and an integer-order viscoelasticity
model. Bagley and Torvik (1986, 2012) verified the rationality
of a fractional derivative rheological model by combining a
molecular theory with a rheological theory based on fractional
derivatives. Subsequently, the fractional derivative viscoelasticity
model began to appear in geotechnical engineering. Sun and
Wei (2007) and Li-jun et al. (2011) studied the creep of soft
soil with a fractional calculus model. Wang et al. (2017) used
the fractional derivative model to describe the 1D consolidation
of viscoelastic soil. Qing-zi et al. (2016) experimentally verified
that the application of the fractional derivative model is effective
in describing creep deformation of soft soils. Huang and Li
(2019) studied the consolidation characteristics of fractional
derivative viscoelastic vertical drains for variable loads based on
the fractional-derivative Merchant (FM) model. Because of the
studies mentioned above, the fractional derivative model will be
used more frequently in the study of vertical drains consolidation
in the future.

Traditional boundary conditions are mainly Terzaghi (1943)
drainage (permeab le and impervious). Gray (1945) proposed a
semi-permeable boundary. Schiffmann and Stein (1970) studied
the effect of permeability coefficient on the 1D consolidation of
soil. However, the Terzaghi drainage boundary has nothing to
do with time, and the boundary conditions contradict the initial
conditions. Although the semi-permeable boundary reflects
the change process in the permeable boundary, its boundary
condition is a function that complicates the solution process.
Based on this, Mei et al. (2013) proposed a continuous drainage
boundary that was simple in form and could reflect changes in
drainage boundary pore pressure with time to describe the actual
boundary drainage during soil consolidation.

This study is conducted based on the research results
mentioned above and on the FMmodel. We have introduced the
continuous drainage boundary conditions proposed by Mei and
have derived a solution to the fractional derivative viscoelastic
vertical drain consolidation problem for continuous drainage
boundary conditions. Finally, some special cases are given
to study the effect of interface drainage parameters and soil
fractional viscoelasticity parameters on consolidation properties.

MODEL AND BOUNDARY CONDITIONS

Continuous Drainage Boundary
According to Mei et al. (2013), the expression of the continuous
drainage boundary is

u (t, 0) = q0e
−bt (1)

where q0 is the initial load and b is the interface drainage
parameter, which can be obtained through experiments. t is
the time.

From Equation (1), it can be easily found that when t → 0, the
pore-water pressure on the top surface of soil results in u (0, 0) =
q0, satisfying the initial condition. When t → ∞, the pore-
water pressure on the top surface of soil approaches 0. Therefore,
Equation (1) solves the initial condition problem, and it reflects
the change in pore pressure at the boundary of soil with time.

Consolidation Model of Vertical Drains
In order to facilitate mathematical derivation, the following basic
assumptions are adopted in this study, as shown below:

(1) Darcy’s law applies to seepage of water in soil.
(2) The amount of inflowing water from soil at any depth

is equivalent to the amount of outflowing water in
vertical drains.

(3) External load is infinite and evenly distributed.
(4) Equal strain condition is established; that is, the soil and

the vertical drains at the same depth only undergo vertical
deformation, and the vertical deformation is equal.

(5) The compressibility of smeared area is the same as the
compressibility of undisturbed soil.

(6) Permeability coefficients in the vertical direction of the
smeared area are equal to those of the undisturbed soil, and
the horizontal permeability coefficient of the smeared area is
less than that of the undisturbed soil.

The consolidation system is composed of vertical drains, smeared
area, and natural soil, as shown in Figure 1. From the figure,
q0 is the pre-compression load on the top surface of the soil.
rw, rs, and re are vertical drains radius, smear area radius,
and influence radius, respectively. r and z are the radial and
vertical coordinates, respectively. kv is the vertical permeability
coefficient of the soil in the smeared area and the natural area.
ks and kh are the horizontal permeability coefficient of the
smeared soil and the natural soil, respectively. kw is the vertical
permeability of the vertical drains. γw is the average severity of
water. εv is the strain of soil in vertical direction. us (r, z, t) is
the excess pore-water pressure in the smeared area. un (r, z, t) is
the excess pore-water pressure in the natural soil. ū (z, t) is the
average pore-water pressure in the soil. uw(z, t) is the pore-water
pressure in the vertical drains. h is the thickness of the soil.

Based on the above assumptions, the basic equation for
vertical drain consolidation is as follows (Barron, 1942; Tang and
Onitsuka, 2000):

− ks
γw

(

∂2us
∂r2

+ 1
r

∂us
∂r

)

− kv
γw

∂2ū
∂z2

= ∂εv
∂t , rw ≤ r ≤ rs (2)

− kh
γw

(

∂2un
∂r2

+ 1
r

∂un
∂r

)

− kv
γw

∂2ū
∂z2

= ∂εv
∂t , rs ≤ r ≤ re (3)

The average pore-water pressure of the soil can be expressed
as follows:

ū =
1

π
(

r2e − r2w
)

(∫ rs

rw

2πrusdr +
∫ re

rs

2πrundr

)

(4)
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FIGURE 1 | The consolidation system of vertical drains under continuous

drainage boundary conditions.

The top boundary in this model is considered to continuous
drainage and the bottom boundary is considered to be undrained.
At the same time, according to symmetry, no seepage occurs at
the boundary of the soil-affected area. Thus, boundary conditions
are as follows:

ū
∣

∣

∣z=0 = q0e
−b1t , uw

∣

∣

∣

z=0
= q0e

−b2t (5)

∂ ū

∂z

∣

∣

∣

∣

= 0,
∂uw

∂z

∣

∣

∣

∣

z=h

= 0 (6)

∂un

∂r

∣

∣

∣

∣

r=re

= 0. (7)

where b1 and b2 represent the interface drainage parameters on
the top surface of the soil outside the vertical drains and the
interface drainage parameters on the top surface of the vertical
drains, respectively. Initial conditions of the consolidation model
are as follows:

ūt=0 = uw|t=0 = q0 (8)

Fractional Derivative Model
In order to determine the rheological consolidation properties
of vertical drains more accurately, the theory of vertical drain
consolidation adopted the FM model (Huang and Li, 2019), as
shown in Figure 2.

The constitutive equations for the FM model can be
expressed as

ε = ε1 + ε2
σ=E1ε1
σ=E2ε2 + E2λ

αRLDt
αε2







(9)

FIGURE 2 | Fractional derivative Merchant (FM) model.

where σ is the total stress, ε is the total strain, E1 is the elastic
modulus of spring 1, E2 is the elastic modulus of spring 2, λ=η/E2
is the viscosity coefficient of the bomb element, ε1 and ε2 are
strain of spring 1 and strain of spring 2, respectively, and RLDt

α

is the fractional-derivative operator of type α of function f (t),
which is defined as

RLDα
t

[

f (t)
]

=
1

Ŵ (1− α)

d

dt

∫ t

0
(t − τ)−α f (τ ) dτ (10)

where f (t) is a function, α is the fractional order, 0 ≤ α ≤ 1.
Ŵ (·) is the gamma function, and τ is an integral variable.

The Laplace transform for Equation (9) can be obtained
as follows:

L (ε) = L (σ )

[

1

E 1
+

1

E2
(

1+λαpα
)

]

(11)

This study introduces the FM model to describe the effective
stress-strain relationship in the soil. Using the effective stress
principle, the effective stress of soil σ ′

v under loading is

σ ′
v = q0 − ū (12)

Obviously, the initial conditions of the soil are

σ ′
v

∣

∣

t=0
= 0, εv|t=0 = 0 (13)

By substituting Equation (12) into Equation (11) and performing
the inverse Laplace transform on Equation (11), the expression
changes as follows:

εv=
1

E1

[

q0 − ū (t)
]

+
κ

E1
L−1

(

1

λαpα + 1

)

⊗
[

q0 − ū (t)
]

(14)

where⊗ denotes convolution. Furthermore,

L−1

(

1

λαpα + 1

) ∣

∣

∣

∣

α=1 =
1

λ
e−

t
λ ,

L−1

(

1

λαpα + 1

)∣

∣

∣

∣

α=0

=
1

2
δ (t) (15)

Frontiers in Materials | www.frontiersin.org 3 April 2021 | Volume 8 | Article 670150

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Chen et al. Fractional Derivative Viscoelastic Model

where δ (t) is the Dirac function. When α = 1, the FM model
degenerates to a standard Merchant (SM) model. When α = 0,
the FM model degenerates to a linear elasticity model.

DERIVATION AND SOLUTION

Governing Equations and Solutions
The consolidation differential Equation of the fractional
viscoelastic vertical drains for continuous drainage boundary
conditions is the same as the derivation Equation of (Huang and
Li, 2019):

r2eFn

2
(

n2 − 1
)

kw

kh

{

cv
∂4uw

∂z4
−

∂3uw

∂z2∂t

−
κ

λα

∫ t

0

∂3uw

∂z2∂τ
(t − τ)α−1Eα,α

[

−
(

t − τ

λ

)α]

dτ

−
2ch

r2eFn

[

1+
(

n2 − 1
)

(16)

×
kv

kw

]

∂2uw

∂z2

}

∂uw

∂t

+
κ

λα

∫ t

0

∂uw

∂τ
(t − τ )α−1Ea,a

[

−
(

t − τ

λ

)α]

dτ = 0

ū = −
r2eFnkw

2
(

n2 − 1
)

kh

∂2uw

∂z2
+ uw (17)

where cv = kvE1/γw, ch = khE1/γw, and n(=re /rw) represents
the ratio of vertical drains radius to influence radius, and Eα,α (t)
is a Mittag–Leffler function.

Fn =
n2

n2 − 1

(

ln
n

s
+

kh

ks
ln s−

3

4

)

+
s2

n2 − 1
(

1−
kh

ks

) (

1−
s2

4n2

)

+
kh

ks

1

n2 − 1

(

1−
1

4n2

)

, s =
rs

rw

The following dimensionless parameters and variables are
defined as

ξ =
z

h
,G =

kh

kw

(

h

2rw

)2

,Tv =
cvt

h2
,Tλ =

cvλ

h2
, vw =

uw

q0
, v̄ =

ū

q0

Substituting the above parameters and variables into Equations
(16) and (17) results in

n2Fn

8G
(

n2 − 1
)

{

∂4vw

∂ξ 4
−

∂3vw

∂ξ 2∂Tv

−
κ

Tα
λ

∫ Tv

0

∂3vw

∂ξ 2∂ς
(Tv − ς)α−1Eα,α

[

−
(

Tv − ς

Tλ

)α]

dς

−
8G

n2Fn

(

n2 − 1 (18)

+
kw

kv

)

∂2vw

∂ξ 2

}

+
∂vw

∂Tv
+

κ

Tα
λ

∫ Tv

0

∂vw

∂ς
(Tv − ς)α−1Ea,a

[

−
(

Tv − ς

Tλ

)α]

dς = 0

v̄ = −
n2Fn

8G
(

n2 − 1
)

∂2vw

∂ξ 2
+ vw (19)

The continuous drainage initial conditions and boundary
conditions can be rewritten as

vw|ξ=0 = e−c2Tv , vw|ξ=2 = e−c2Tv (20)

v̄|ξ=0 = e−c1Tv , v̄|ξ=2 = e−c1Tv (21)

v̄|Tv=0 = vw|Tv=0 = 1 (22)

Since the continuous drainage boundary conditions are non-
homogeneous, the finite Fourier sine transform is very suitable
for solving such a problem. The expression of the finite Fourier
sine transform of f (x) is (Sneddon, 1995).

Sm = S
[

f (x)
]

= 2
L

∫ L
0 f (x) sin

(

mπ
L x

)

dx, m = 1, 2, · · · (23)

where 0 ≤ z ≤ l. The inverse transformation is defined as

f (x) = S−1 [Sm] =
∞
∑

m=1

Sm sin
(mπ

L
x
)

(24)

The above finite Fourier sine transform has the following
basic properties:

S

[

d2f (x)

dx2

]

= −
(mπ

L

)2
S
[

f (x)
]

+
2mπ

L2

[

f (0) − (−1)mf (L)
]

(25)

In order to facilitate the application of finite Fourier sine
transform, we applied the principle of mirroring and found
that the consolidation problem under the conditions of
the single drainage boundary with soil thickness of h is
equivalent to the problem in a double sided continuous
drainage boundary with soil thickness of 2h. The problem in
the double-sided continuous drainage boundary is shown in
Figure 3.

The bottom boundary conditions of the equivalent
consolidation model are the same as top boundary conditions,
which are

ū
∣

∣

∣z=2h=q0e
−b1t , uw

∣

∣

∣

z=2h
= q0e

−b2t (26)
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FIGURE 3 | Schematic of the equivalent consolidation model of vertical drains.

Dimensionless initial conditions and the boundary of the
equivalent consolidation model of vertical drains are

vw|ξ=0 = e−c2Tv , vw|ξ=2 = e−c2Tv (27)

v̄|ξ=0 = e−c1Tv , v̄|ξ=2 = e−c1Tv (28)

v̄|Tv=0 = vw|Tv=0 = 1 (29)

where c1 = h2b1/cv and c2 = h2b2/cv are the dimensionless
interface drainage parameters on the top surface of the
foundation soil outside the vertical drains and the dimensionless
interface drainage parameters on the top surface of the vertical
drains, respectively.

Substituting Equations (27) and (28) into Equation (19)
leads to

∂2vw

∂ξ 2

∣

∣

∣

∣

ξ=0

=
8G

(

n2 − 1
)

n2Fn

(

e−c2Tv − e−c1Tv
)

,
∂2vw

∂ξ 2

∣

∣

∣

∣

ξ=2

=
8G

(

n2 − 1
)

n2Fn

(

e−c2Tv − e−c1Tv
)

(30)

Implementing the Laplace transform of Tv for Equation (18) and
using the given initial condition of Equation (29) generate

n2Fn
8G(n2−1)
{

∂4 ṽw
∂ξ4

−
[(

1+ κ
Tα

λ p
α+1

)

· p+ 8G
n2Fn

(

n2 − 1+ kw
kv

)]

∂2 ṽw
∂ξ2

}

+
(

+ κ
Tα

λ p
α+1

)

·
(

pṽw − 1
)

= 0

(31)

Correspondingly, the boundary conditions of Equations (27) and
(28) can be transformed into

ṽw|ξ=0 =
1

p+ c2
, ṽw|ξ=2 =

1

p+ c2
(32)

∂2ṽw

∂ξ 2

∣

∣

∣

∣

ξ=0

= 8G(n2−1)
n2Fn

(

1
p+c2

− 1
p+c1

)

, ∂2 ṽw
∂ξ2

∣

∣

∣

ξ=2

= 8G(n2−1)
n2Fn

(

1
p+c2

− 1
p+c1

)

(33)

Performing the finite Fourier sine transform on ṽw
(

ξ , p
)

results in

Ṽm = S
[

ṽw
(

ξ , p
)]

=
∫ 2

0
ṽw

(

ξ , p
)

sin (Mξ) dξ (34)

where M = mπ/2m = 1, 2, · · · . The inverse transformation of
Equation (34) is

ṽw
(

ξ , p
)

= S−1
[

Ṽm

]

=
∞
∑

m=1

Ṽm sin (Mξ) (35)

The basic properties of the finite Fourier sine transform are

S

[

d2ṽw
(

ξ , p
)

dξ 2

]

= −M2Ṽm+M
[

ṽw
(

0, p
)

− (−1)mṽw
(

2, p
)]

(36)

The finite Fourier sine transform is performed on both
ends of Equation (31), and Equations (32) are used to obtain
the following:

Ṽm

[

M2 +
(

1+
κ

Tλ
αpα + 1

)

p+
1

Fn + Dm

8G

n2
kw

kv

]

−
1

Fn + Dm

[

1− (−1)m
]

{

Dm
1

M

(

1+
κ

Tλ
αpα + 1

)

+

MDm
1

p+ c1
+

1

p+ c2

[

MFn +
1

M
Fnp

(

1+
κ

Tλ
αpα + 1

)

+
1

M

8G

n2
kw

kv

]}

= 0

(37)

where Dm = 8G(n2 − 1)/
(

M2n2
)

. By solving Ṽm in Equation

(37), the expression of Ṽm can be obtained by,

Ṽm =
{

2
M

1
p+c2

+ 1
M

2Dm
Fn+Dm

T̃m,m = 2n− 1, n = 1, 2, 3 · · ·
0, m = 2n, n = 1, 2, 3 · · ·

(38)

where

T̃m =
(

Tλ
αpα + 1

)

(

Tλ
αpα + κ + 1

)

p+ βm

(

Tλ
αpα + 1

)

{

−
1

p+ c2

[

M2 +
(

1+
κ

Tλ
αpα + 1

)

p

]

+

M2 1

p+ c1
+

(

1+
κ

Tλ
αpα + 1

)}

(39)
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Performing the inverse Laplace transform on Ṽm results in

Vm =
2

M
e−c2Tv +

2

M

Dm

Fn+Dm
Tm. (40)

Performing the inverse finite Fourier sine transform on Equation
(40) leads to the solution for pore-water pressure in the vertical
drains, which is

vw =
∞
∑

m=1

2

M
e−c2Tv sin (Mξ) +

∞
∑

m=1

2

M

Dm

Fn+Dm
Tm sin (Mξ)

(41)

where Tm is the inverse Laplace transform of T̃m.

Tm =
1

2π j

∫ β+j∞

β−j∞

[

1− (−1)m
] (

Tλ
αpα + 1

)

(

Tλ
αpα + κ + 1

)

p+ βm

(

Tλ
αpα + 1

)

{

−
1

p

[

M +
1

M

(

1+
κ

Tλ
αpα + 1

)

p

]

+M
1

p
+

1

M

(

1+
κ

Tλ
αpα + 1

)}

epTvdp (42)

where j =
√
−1, and β is a real number. Generally, for the case

of 0 < α < 1, Equation (44) is difficult to have an analytical
solution. The Laplace transform numerical inversion Crump
method (Crump, 1976; Koeller, 1984) is used to obtain the
solution for Tm, which is

Tm (Tv) ≈
eβTv

T

{

1

2
T̃m (β)

+
∞
∑

k=1

Re

[

T̃m

(

β +
jkπ

T

)

e
jkπ
T Tv

]

}

(43)

where T is a real parameter exceeding one-half of the
longest time.

By substituting Equation (41) into Equation (19), the average
pore-water pressure of the soil layer can be obtained as

v̄ =
∞
∑

m=1

2

M
Tm sin (Mξ) +

∞
∑

m=1

2

M

(

Fn

Dm
+ 1

)

e−c2Tv

sin (Mξ) (44)

Based on Equation (44), the average degree of consolidation U
can be obtained as

U =
q0h−

∫ h
0 ūdz

q0h
= 1−

∫ 1

0
v̄dξ =

1−
∞
∑

m=1

2

M2
Tm −

∞
∑

m=1

2

M2

(

Fn

Dm
+ 1

)

e−c2TvTm (45)

Solution Validation
Degeneration to the Terzaghi Drainage Boundary
In this section, the rationality of the consolidation solution
derived from this study is verified by comparison with two
existing theories. The first case involves the degeneration of
the solution in this study to the consolidation solution for the
Terzaghi drainage boundary condition (i.e., c1 → ∞, c2 → ∞).
After degeneration, Equation (42) can be simplified to

T̃m =
(

Tλ
αpα + 1

)

(

Tλ
αpα + κ + 1

)

p+ βm

(

Tλ
αpα + 1

)

(

1+
κ

Tλ
αpα + 1

)

(46)

Based on Equation (45), the following expression can
be obtained:

U =
q0h−

∫ h
0 ūdz

q0h
= 1−

∫ 1

0
v̄dξ = 1−

∞
∑

m=1

2

M2
Tm (47)

Obviously, the degradation solution in this study is exactly
the same as that in the result obtained by Huang and Li
(2019) based on the fractional derivative viscoelastic vertical
drain consolidation model for the completely pervious boundary
condition. As shown in Figure 4A, the calculation result of the
solution in Huang and Li (2019) is consistent with the calculation
result of the solution in this study.

Degeneration to SM Model
In the second case, the solution in this study is degenerated
into the solution with the SM model for the completely pervious
boundary (i.e., c1 → ∞, c2 → ∞,α= 1) and compared with the
consolidation solution of Liu et al. (1998), which is based on the
integer-order viscoelasticity model for vertical drains. In order
to facilitate the comparison, it is assumed that the parameters of
the vertical drains are the same as those in the study of Liu et al.
(1998). The calculation parameters are h/(2rw) = 100, n = 15, s
= 1.3, kh/k s = 2, kh/kv = 1.5, kh/kw = 0.00015, and Tλ = 0.01κ .
κ is changed from 0 to∞. The time parameter is

Th =
cht

4r2e
(48)

where This the same as that given by Liu et al. (1998).
From Figure 4B, it can be observed that the consolidation

solution in this study degenerates into an integer-order
viscoelasticity model for a completely pervious boundary, which
is the same as the U-curve calculated by Liu et al. (1998).
Therefore, the solution derived in this study is consistent with
the existing theory.

PARAMETER ANALYSIS

From the deduced fractional-derivative viscoelastic vertical
drain consolidation solution, it can be easily found that the
consolidation characteristics are related to the interface drainage
parameters on the top surface of the soil outside vertical
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FIGURE 4 | Results of the comparison of U-curve: (A) degeneration to the

Terzaghi drainage boundary; (B) degeneration to the SM model.

FIGURE 5 | Consolidation progress with different interface drainage

parameters.

drains c1 and at the top of vertical drains c2. In addition, the
viscoelastic parameters of the soil also affect soil consolidation.
This study describes the compilation of the program based on
the solution mentioned above, mainly calculation and analysis

FIGURE 6 | Consolidation progress with different values of c1.

FIGURE 7 | Consolidation progress with different values of c2.

of the parameters c1, c2, α, κ , and Tλ, and discusses the
general law of the consolidation characteristics of fractional
derivative viscoelastic vertical drains. In the calculation, the
design parameters of the vertical drains are consistent with those
given in Huang and Li (2019) and are as follows: h/(2rw) = 100,
n = 15, s = 1.3, kh/k s = 2, kh /kv = 1.5, kh/kw = 0.00015, Tλ =
0.1, κ = 10, and α = 0.5.

Analysis of Interface Drainage Parameters
Figure 5 shows the influence of equivalent change in the
drainage parameters of the soil top surface interface inside
and outside the vertical drains on the U-curves. Figure 6

illustrates the impact of interface drainage parameters on
the top surface of the soil outside vertical drains c1 on the
U-curves when interface drainage parameters at the top of
vertical drains c2 remain constant. Figure 7 depicts the impact
of the interface drainage parameters c2 on U-curves when
the interface drainage parameters c1 remain constant. It can
be seen from Figures 5–7 that the change in the interface
drainage parameters has a crucial impact on U-curves. The
pore-water pressure of different interface drainage parameters
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FIGURE 8 | Dissipation of pore-water pressure at any depth when c1 = c2: (A) pore pressure in vertical drains, (B) average pore pressure in the soil layer.

FIGURE 9 | Dissipation of pore-water pressure at any depth when c2 = 10 and c1 changes: (A) pore pressure in the vertical drains, (B) average pore pressure in the

soil layer.

dissipates differently with time. The greater the interface
drainage parameter, the faster the dissipation of the excess
pore water pressure. When the interface drainage parameter
is increased to 104, the U-curve approaches a curve. This
indicates that when the interface drainage parameter is >104, the
drainage boundary approaches the complete drainage boundary.
Therefore, the continuous drainage boundary can describe the
drainage boundary between the completely drained boundary

and the completely undrained boundary, which is more in line
with engineering reality.

Figure 8 shows the distribution curve of the pore-water
pressure vw in the vertical drains and the average pore-water
pressure v̄ along the depth range when the interface drainage
parameters c1 and c2 change equivalently. From the figure, it
can be observed that under the same consolidation time, vw
and v̄ both decrease with the increase in the interface drainage
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FIGURE 10 | Dissipation of pore-water pressure at any depth when c1 =10 and c2 changes: (A) pore pressure in the vertical drains, (B) average pore pressure in the

soil layer.

FIGURE 11 | Consolidation process with different values of α.

parameters of the soil. When the interface drainage parameters
are the same, as the consolidation time increases from Th = 1 to
Th = 10, the pore-water pressure gradually dissipates.

Figure 9 shows the distribution curves of vw and v̄ along
the depth range when the interface drainage parameters c2
remain unchanged and the interface drainage parameters c1
changes. As shown in Figure 9B, it is clearly seen that
the dissipation of v̄ is affected by the interface drainage
parameters c1. However, after a certain depth, v̄ is no longer
affected by the interface drainage parameters c1. Moreover,
vw relative to v̄ is less affected by the interface drainage
parameters c1.

Figure 10 shows the distribution curves of vw and v̄ along the
depth range when the interface drainage parameters c1 remain

FIGURE 12 | Consolidation process with different values of κ.

constant and the interface drainage parameters c2 changes.
Figure 10 shows the significant effect of the interface drainage
parameters c2 on pore-water pressures vw and v̄. Furthermore, in
the initial stage, the pore-water pressure vw in the vertical drains
is more affected by the interface drainage parameters c2 than the
average pore-water pressure v̄.

Analysis of Fractional Viscoelasticity
Parameters
Figure 11 illustrates the effect of the fractional order α on U-
curves. In this figure, the other parameters remain unchanged
except for the fractional order α. Obviously, Figure 11 shows
that in the initial stage, U-curves are very close in value,
indicating that pore water pressure is not sensitive to fractional
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FIGURE 13 | Consolidation process with different values of Tλ.

order α. However, in the later stage, the lesser the fractional
orderα, the earlier soil consolidation completed, revealing
that α has a great impact on the dissipation rate of pore-
water pressure. This phenomenon is caused by the fractional
derivative element. In the later stage of consolidation, when
α = 0, the soil is a linear elastic body, and the consolidation
speed is fast; when α gradually increases to 1, the soil
becomes more viscous; and the effective stress increases
slowly, which causes the pore-water pressure to dissipate more
slowly.

Figure 12 illustrates the effect of the modulus ratio
κ on U-curves. In this figure, the other parameters
remain unchanged except for κ . Since the modulus E1
of the independent spring is set to 1, the influence of
the independent spring modulus E1 is eliminated; and
the influence of spring 2 is reflected independently.
Obviously, the figure shows that the average degree of
consolidation decreases when the soil layer modulus ratio
increases.

Figure 13 illustrates the effect of the creep time factor Tλ on
U-curves. In this figure, the other parameters remain unchanged
except for Tλ. The creep time factor is Tλ = cvλ/h2, which is
related to the viscosity coefficient of the soil. From the figure, it
is clearly seen that in the early stage, the greater Tλ is the faster
excess pore-water pressure dissipates. However, in the late stage,
the greater Tλ, the slower the dissipation rate of the pore-water
pressure. This phenomenon is in a good agreement with the 1D
consolidation of viscoelastic soil (Xie et al., 2008).

CONCLUSIONS

This study combined continuous drainage boundary conditions
and the fractional-derivative model to establish the governing
differential equations of vertical drains. After a series of
derivation, the consolidated solution was obtained, and the
accuracy of the solution was verified by comparison with existing

theories. Finally, the solution is used to study the effect of
the parameters of interface drainage and viscoelasticity on the
behavior of consolidation. Some important conclusions are
summarized as follows:

(1) Continuous drainage boundary can describe the change in
pore-water pressure at the boundary of soil with time.
In addition, the greater the interface drainage parameter,
the faster the pore-water pressure dissipates. When the
interface drainage parameter is >104, the drainage boundary
approaches the complete drainage boundary.

(2) The interface drainage parameters on the top surface of the
soil at the boundary outside the vertical drains mainly affect
the dissipation rate of average pore-water pressure in the soil
layer, when other parameters remain consistent. On the other
hand, the interface drainage parameters on the top surface
of the vertical drains mainly influence the dissipation rate
of the pore-water pressure in the vertical drains, when other
parameters remain consistent.

(3) Fractional order is a crucial factor affecting the consolidation
of viscoelastic vertical drains. In the later stage of
consolidation, the greater the fractional order, the more
viscous the soil and the slower the progress of soil
consolidation.

(4) In the initial stage, the greater the creep time factors, the
faster the pore-water pressure dissipates; but in the later stage,
the situation is just the opposite: the modulus ratio will slow
down the dissipation of pore-water pressure during the entire
consolidation process.
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