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Research on the design of semiconductor photocatalysts with rapid electron transfer
efficiencies and broad-spectrum responses for environmental remediation remains a
pressing challenge. Herein, we described the fabrication of a novel broad-spectrum
nitrogen and copper codoped carbon dots/mesoporous WO3 nanocomposite (N,Cu-
CDs/m-WO3), which exhibited complete UV–vis–NIR spectrum response, light harvesting
capabilities, rich oxygen vacancies, rapid electron-transfer ability, low electron–hole (e−/h+)
pair recombination rate, and extensive specific surface area. After 2 h of photocatalytic
reaction, it showed excellent photoactivities for the degradation of rhodamine B,methylene
blue, tetracycline hydrochloride, oxytetracycline, ciprofloxacin, and bisphenol A. Moreover,
we found that the conversion between Cu (II) and Cu (I) played a key role in accelerating
electron transfer and inhibiting the recombination of e−/h+ pairs. This work provides an
efficient strategy for the utilization of solar light and enhancing the charge-transfer capacity
in the semiconductor photocatalysis field.

Keywords: photocatalysis, mesoporous WO3, N Cu-CDs, full-spectrum response, rapid electron transfer, N Cu-CD/
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INTRODUCTION

As a novel solar-driven technology, semiconductor photocatalysis for environmental remediation has
garnered increasing attention due to its ecogreenness, recyclability, and high efficiency (Daneshvar
et al., 2007; Ong, 2017). Of the semiconductor materials (e.g., TiO2, WO3, and SnO2) investigated thus
far,WO3 exhibits extraordinary characteristics including nontoxicity, stability, and favorable band gaps
(2.6–3.0 eV) (Liu Y. et al., 2012; Carmona et al., 2016). However, several drawbacks such as low visible-
light utilization efficiency and the rapid recombination rate of photoinduced e−/h+ pairs still limit its
applicability (Zhang et al., 2017). Thus, considerable efforts have been devoted to improve its
photocatalytic activity. Note that controlling the formation and structure of heterojunction are two
strategies for enhancing the photocatalytic performance of WO3.

Structural modifications can provide special channels for electron transfer and differently exposed
surface areas, thus altering the photocatalytic activity of WO3 (Wang et al., 2018). Compared with
traditional nanostructures, mesoporous structures with extensive specific surface areas, uniform and
tunable pore sizes, and large pore volumes endow them with additional reactive reaction sites and
unique pathways for the diffusion of molecules, which can better interact with guest molecules (Luo
et al., 2013; Zhao et al., 2016; Lv et al., 2017). However, pure mesoporous WO3 is primarily used in
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gas sensors, and there are a few studies about single mesoporous
WO3 employed for photocatalysis (Teoh et al., 2003; Li et al.,
2010; Zhu et al., 2017; and Zheng et al., 2019). Besides, the
intrinsic absorption of WO3 is restricted to a marginal portion of
the visible-light spectrum. Therefore, the synthesis of
heterojunction to facilitate the utilization of solar energy is
necessary (Zhang et al., 2017; Ni et al., 2020).

Among various composites, carbon dots (CDs) have been
widely applied in photocatalysis due to their excellent
physicochemical properties including water solubility,
nontoxicity, upconversion capacities, and optical absorption,
which can facilitate the charge migration, resulting in
enhancing their photocatalytic activity (Li et al., 2012; Zhang
et al., 2017; Zhang J. et al., 2019). However, the slow electron-
transfer/storage capacities and low light-absorption efficiencies of
CDs also limit their practical application. Toward the potential
resolution of these deficits, heteroatom doping has been
considered as an efficient strategy for improving the
physicochemical properties of CDs (Barman et al., 2014; Ma
Y. et al., 2017; and Wu et al., 2017). In our previous work, we
found that doping nitrogen into carbon dots (N-CDs) could
enhance their optical absorption in the visible-light region (Wang
et al., 2017; Wang et al., 2019; Zhang J. et al., 2019). In addition,
metal doping has also been shown to be an effective method for
enhancing the electron-transfer properties of CDs (Wu et al.,
2015; Xue et al., 2017). Unlike noble metals, copper (Cu) doping
has the advantage of low cost, safety, and inclination to
coordinate with CDs chemical groups (Zong et al., 2014; Guo
et al., 2015; Xu et al., 2015; Zhang et al., 2017; Zhang W. J. et al.,
2019). Several studies have reported that Cu can serve as a
multielectron redox reaction site, which can accelerate the
electron transfer and broaden the optical absorption, thus
improving the photocatalytic activity (Irie et al., 2008;
Nakajima et al., 2011; and Ma et al., 2018). Therefore, if N
and Cu exist simultaneously in CDs that act as electron
donors and acceptors, respectively, which could significantly
facilitate electron-transfer and light-absorption capacities. Up
to now, there have been no reports about N and Cu codoped
CD-decorated WO3 for photocatalytic application.

Herein, we successfully synthesized a series of mesoporous
WO3 via a solvent evaporation-induced self-assembly (EISA)
process using diblock or triblock copolymers PEOx-b-PSx
(PbS) as the templates, respectively. After decorating with
N,Cu-CDs, the N,Cu-CDs/m-WO3 showed high electron-
transfer/reservoir capacities and enhanced photocatalytic
degradation activities against rhodamine B (RhB), methylene
blue (MB), tetracycline hydrochloride (TCH), oxytetracycline
(OTC), ciprofloxacin (CIP), and bisphenol A (BPA) under
UV, vis, and NIR light irradiation.

MATERIALS AND METHODS

Preparation of Mesoporous WO3
All chemicals used were of analytical grade. A series of
mesoporous WO3 were synthesized via the EISA process using
WCl6 as a precursor and diblock copolymers PEOx-b-PSy as

templates, which was similar to a previous work (Zhu et al., 2017).
Typically, 0.1 g templates were dissolved into 5.0 g
tetrahydrofuran (THF) to form solution A. Solution B was
then prepared by adding 0.25 g WCl6 into a mixed solution of
0.5 g ethanol and 0.25 g acetylacetone (AcAc). Solutions A and B
were subsequently mixed under stirring for 2 h at room
temperature. The obtained solution mentioned above was then
placed in Petri dishes to evaporate the solvent at room
temperature for 1 h and heated at 100°C for 24 h. Finally, the
resulting transparent films were further calcined at 350°C in N2

for 3 h and then 500°C in air for 2 h at a heating rate of 1°C/min.

Preparation of Samples
A one-step hydrothermal method was employed to synthesize the
N,Cu-CDs. Typically, 0.68 mmol folic acid (FA) and 0.13 mmol
copper nitrate trihydrate (Cu(NO3)2·3H2O) were dissolved into
30 ml of deionized water under stirring for 20 min at room
temperature. Afterward, the solution was transferred to a
100 ml Teflon-lined autoclave that was placed in an oven at
200°C for 4 h. Finally, the CDs solution mentioned above was
filtered using 0.22 µm filtration membranes and dialyzed by using
a 1000 Da dialysis bag for 8 h. The CD powders were then
obtained by a freeze-dry process.

A sonication-assisted hydrothermal method was employed to
synthesize the nanocomposites. Typically, 0.1 g of m-WO3 was
added into different CD solution concentrations (0.2–1.0 g/L,
20 ml) followed by sonication for 15 min to expel any pore
resident bubbles to form a homogeneous suspension.
Subsequently, the suspension was poured into a Teflon-lined
autoclave (50 ml) and heated at 190°C for 8 h. Finally, the
precipitates were obtained by centrifugation at 8000 r/min and
dried in an oven at 70°C. A series of N,Cu-CDs/m-WO3

nanocomposites were synthesized and designated as N,Cu-CD/
m-WO3-C (C � 0.2–1.0). The N-CDs/m-WO3 nanocomposites
were obtained by the same method, except for the N-CDs
prepared in our previous work (Ni et al., 2020).

Measurements
Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) tests were performed with Quanta FEG 450
and Tecnai G220S-Twin microscopes, respectively. X-ray
diffraction (XRD) measurements were obtained using a Bruker
D8 Advance X-ray diffractometer. X-ray photoelectron
spectroscopy (XPS) was characterized by using the EscaLab
250Xi spectrometer. The UV–vis–NIR diffuse reflection
spectra (DRS) were analyzed with a Shimadzu UV2600
spectrophotometer. Fourier-transform infrared (FT-IR) and
photoluminescence (PL) spectra were investigated using
Shimadzu IRTracer-100 and Edinburgh FLS1000
spectrometers, respectively. Nitrogen adsorption–desorption
isotherms were measured with an Autosorb IQ analyzer. A
Malvern Nano ZS laser particle-size analyzer was employed to
investigate the particle diameters.

Photodegradation Experiments
A 300W high-pressure mercury lamp (λ � 365 nm, the average
light intensity was 50 mW·cm−2), 500W gold halide lamp
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(λ ≥ 420 nm, the average light intensity was 30 mW·cm−2), and
500W xenon lamp (λ ≥ 780 nm, the average light intensity was
25 mW·cm−2) were employed to provide UV, visible, and NIR
light, respectively. For each experiment, 50 ml of RhB (10 mg/L),
MB (10 mg/L), CIP (20 mg/L), OTC (20 mg/L), BPA (20 mg/L),
and TCH (20 mg/L) solutions containing 50 mg of the
photocatalysts were stirred in the dark for 30 min to achieve
adsorption–desorption equilibrium. The reaction conditions
were controlled at 25 ± 1°C. The concentrations of RhB and
MB were detected using a UV-2600 spectrophotometer. The
concentrations of CIP, OTC, BPA, and TCH were analyzed by
high-performance liquid chromatography (see Supplementary
Material).

Photoelectrochemical Tests
The PEC properties including the photocurrent response and
electrochemical impedance spectroscopy (EIS) were performed
on an electrochemical workstation (Princeton, VersaSTAT 3)
with Na2SO4 (0.5 M) solution as the electrolyte. The as-
synthesized samples, a Pt plate, and a saturated calomel
electrode (SCE) electrode were employed as the working
electrode, counter electrode, and reference electrode,
respectively. The working electrode was prepared on FTO
glass via a spin-coating method, and a 300W xenon lamp was
used to simulate the solar light.

RESULTS AND DISCUSSION

The Synthesis Route for the N,Cu-CDs/
M-WO3 Nanocomposite
As shown in Scheme 1, theWCl6 and PEOx-b-PSy were chosen as
the precursor and template, respectively. Them-WO3 with a large
specific surface area and highly ordered pore sizes was

successfully synthesized via an EISA process and then
calcining under an N2 and air atmosphere. The N,Cu-CDs
were prepared by a facile one-step hydrothermal method,
using folic acid and copper nitrate hydrate as C and Cu
sources. A sonication-assisted hydrothermal approach was
used to synthesize the N,Cu-CDs/m-WO3 nanocomposite, in
which the N,Cu-CDs were well located at the pores of the
m-WO3.

Micromorphology Analysis
The SEM and TEM images (Figures 1A–C) indicate that the
m-WO3 possessed highly ordered and uniform pores with
dimensions of ∼30 nm, which was in good accordance with
the pore size of the Barrett–Joyner–Halenda (BJH) results.
Moreover, the hollow pores could significantly enhance its
multiple light-reflection capacities. N,Cu-CDs with average
sizes of 3.2 nm could be easily found within the pores
(Figures 1D,E). The HRTEM patterns shown in
Figure 1F reveal that the m-WO3 exhibited a good
crystalline structure with a lattice spacing of 0.365 nm,
which corresponded well to the (200) lattice plane of
WO3 (Zhu et al., 2017). In addition, the N,Cu-CDs
showed a lattice distance of 0.22 nm.

Brunner−Emmet−Teller and BJH Analysis
As shown in Figure 2, compared to the BET results of the three
mesoporous WO3 samples, the m-WO3 with PEOx-b-PSy as the
template possessed the largest specific surface area of
35.350 m2/g, which was much higher than that of commercial
WO3 (6.135 m

2/g). After coupling the N,Cu-CDs and N-CDs, the
specific surface area of m-WO3 was reduced to 29.431m2/g and
22.465m2/g, respectively. Furthermore, the average pore size
decreased from 30.566 to 17.083 nm and 17.361 nm within the
pores (shown in Figure 2).

SCHEME 1 | The formation process of the ordered N, Cu-CDs/m-WO3 composite.
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Chemical Group Analysis
Figure 3 shows the FT-IR spectra of the N-CDs and N,Cu-CDs.
The bands at 3446 cm−1, 3211 cm−1, 2823 cm−1, 1672 cm−1,
1585 cm−1, and 1398 cm−1 were ascribed to the v (O-H), v
(N-H), v (C-H), v (C�O), δ (N-H), and v (C-O), respectively.
There was no obvious band for Cu due to its low content.
Compared with pure m-WO3, the expanded regions between
1750 and 1500 cm−1, as well as the bands at 1398 cm−1 (v (C-O))
in the m-WO3/N-CD and N,Cu-CDs/m-WO3 nanocomposites,
confirmed the successful introduction of the CDs (Zhang et al.,
2017; Zhang J. et al., 2019; Ni et al., 2020). In addition, the bands
between 1000 cm−1 and 500 cm−1 were assigned to the vibration
of W-O-W (Zhan et al., 2018).

Crystal Structure and Element Analysis
The XRD patterns of as-prepared samples (Figure 4A) revealed
obvious diffraction peaks at 23.1°, 23.5°, 24.4°, 33.4°, 39.9°, and 49.8°,
corresponding to the (002), (020), (200), (022), (202), and (140)
planes of WO3, indicating that the m-WO3 belonged to the
monoclinic WO3 (JCPDS No. 43-1035) (Zhu et al., 2017; Ma G.
et al., 2017). There was no obvious change in the diffraction peaks
of N-CDs/m-WO3-0.8 and N,Cu-CDs/m-WO3-0.8, which
suggested that the CDs did not alter the phase structure of m-WO3.

XPS measurements were employed to analyze the states of
elements. In the survey scan of the XPS spectra of the N,Cu-CDs/
m-WO3-0.8 nanocomposite (Supplementary Figure S1), the
presence of C, N, O, W, and Cu further verified that the

FIGURE 1 | SEM and TEM images of as-synthesized samples. SEM image of N,Cu-CDs/m-WO3 (A); TEM images of N,Cu-CDs/m-WO3 (B) and (C); TEM image of
N,Cu-CDs (D); and FETEM images of N,Cu-CDs/m-WO3 (E–F).

FIGURE 2 | The nitrogen adsorption−desorption isotherms of the as-
synthesized samples. Inset depicts the BJH pore-size distributions.

FIGURE 3 | FT-IR spectra of the as-synthesized samples.
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N,Cu-CDs were successfully combined with the m-WO3. In the
high-resolution W 4f spectra (Figure 4B), the W of pure m-WO3

existed in four different states: W 4f5/2 of W
6+, W 4f7/2 of W

6+, W
4f5/2 of W5+, and W 4f7/2 of W5+ (at 37.80, 35.64, 36.80, and
34.50 eV, respectively), which suggested that the m-WO3

contained rich oxygen vacancies (Sun et al., 2019). In the O 1s
spectra (Figure 4C), the O 1s peaks in the pure m-WO3 were
divided into two peaks at 530.36 and 531.25 eV, which were
ascribed to the lattice oxygen (W-O) and the adsorbed oxygen,
respectively (Zhu et al., 2017). As for the O 1s of N-CDs/m-WO3

and N,Cu-CDs/m-WO3-0.8, the new peaks appearing at ∼533 eV
belonged to the binding energy of C�O in the CDs. It can be
clearly observed that the W4f and O 1s peaks of the
nanocomposites showed shifts to lower binding energies after

decorating with N-CDs or N,Cu-CDs, which was due to the
interactions between the CDs and m-WO3 (Di et al., 2015).
Moreover, the introduction of Cu could further enhance this
effect.

As shown in the C 1s spectra (Figure 4D), the peaks at 284.80
and 287.12 eV in the pure m-WO3 were attributed to the surface
carbon from ambient air (Ni et al., 2020). After decorating with
N,Cu-CDs, the new C 1s peaks appearing at 287.65 and 286.22 eV
were attributed to the C�O, C–O/C–N bands of the CDs,
respectively (Peng et al., 2019; Zhang J. et al., 2019).
According to the N 1s spectra of the N,Cu-CDs/m-WO3-0.8
nanocomposite (Figure 4E), the peaks at ∼399.66 and 401.66 eV
were assigned to C-N and N-H bonds, respectively (Yang et al.,
2018). Compared with the N-CD-decorated m-WO3, the C 1s

FIGURE 4 | XRD and XPS spectra of the as-synthesized samples. XRD (A); W 4f (B); O 1s (C); C 1s (D); N 1s (E); and Cu 2p (F).
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and N 1s peaks in the N,Cu-CDs/m-WO3-0.8 nanocomposite
underwent shifts, which was caused by the chelation between the
Cu and N-CDs (Orozco-Guareño et al., 2010). In addition, as
shown in the Cu 2p spectra of the N,Cu-CDs/m-WO3-0.8
(Figure 4F), the Cu components with their Cu 2p3/2 and Cu
2p1/2 binding energies at 932.56 and 952.34 eV were characteristic
of Cu1+, while the shoulder peaks at 934.97 eV for Cu 2p3/2 and
954.67 eV for Cu 2p1/2 could be ascribed to Cu2+ (Orozco-
Guareño et al., 2010; Liu et al., 2015; and Li et al., 2014). The
transformable valence states of Cu demonstrated that the N,Cu-
CDs could serve as multielectron redox reaction sites for the
efficient electron migration.

Optical Property Analysis
Figure 5A shows the UV–vis–NIR absorption in the regions of
200–1400 nm with the inset for band gaps. Interestingly, beyond
the intrinsic absorption edge of 480 nm, pure m-WO3 showed the
absorption ability in the NIR region, which could be attributed to
the existence of oxygen vacancies (Liu L. et al., 2012; Wu et al.,
2019) and multiple light-reflection within the pores (Yan et al.,
2019; Ni et al., 2020). Compared to the pure m-WO3, the N-CD-
and N,Cu-CD-decorated m-WO3 performed the reduced band

gaps (m-WO3) from 2.9 to 2.8 eV and 2.7 eV, respectively. In
particular, the N,Cu-CDs/m-WO3-0.8 nanocomposite exhibited
a broader optical absorption from the UV to NIR regions,
suggesting that more solar energy could be utilized through
N,Cu-CDs decorating.

As shown in Figure 5B, the N,Cu-CD-decorated m-WO3

showed a significantly decreased PL intensity, indicating the
efficient electron transfer capacity of N,Cu-CDs/m-WO3-0.8,
which could greatly accelerate the separation of e−/h+ pairs
(Liang et al., 2017).

PEC Properties
The photocurrent response and EIS tests were conducted to
further investigate the migration and separation of
photoinduced electrons and holes. As shown in Figure 6A, the
N,Cu-CDs/m-WO3-0.8 nanocomposite showed the highest
photocurrent intensity in contrast to the pure m-WO3 and the
N-CDs/m-WO3-0.8 under solar light irradiation, suggesting
faster electron transfer and highly efficient separation of e−/h+

pairs in the N,Cu-CDs/m-WO3-0.8. In the EIS spectrum
(Figure 6B), a smaller semicircle arc radius implied a smaller
resistance at the interfacial region, which further demonstrated

FIGURE 5 | UV–vis–NIR diffuse reflectance spectra (DRS) and band-gap analysis (A); photoluminescence (PL) spectra of the as-synthesized samples (B).

FIGURE 6 | PEC properties of as-synthesized samples: photocurrent response (A) and EIS measurement (B).
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that the N,Cu-CDs/m-WO3-0.8 nanocomposite possessed faster
interfacial charge transfer and a lower e−/h+ pair recombination
rate compared with m-WO3 (Zhang et al., 2017; Zhang J. et al.,
2019).

Photocatalytic Performance
As shown in Figure 7A, among the m-WO3 with different
contents of N,Cu-CDs, the N,Cu-CDs/m-WO3-0.8
nanocomposite showed the highest photodegradation
efficiency on RhB under visible-light irradiation. Compared
with the pure m-WO3 and N-CDs/m-WO3-0.8
nanocomposite, the N,Cu-CDs/m-WO3-0.8 nanocomposite
exhibited higher photodegradation efficiencies of 81.5, 97.6,

and 56.2%, respectively, after 2 h of UV–vis–NIR light
irradiation (Figures 7B–D), respectively. Furthermore, the
kinetics of the RhB photodegradation was investigated. As
displayed in Supplementary Figure S2, the highest
photodegradation rate constant of 1.895 h−1 under visible light
irradiation was found by the N,Cu-CDs/m-WO3-0.8
nanocomposite, whereas the photodegradation rate of
commercial WO3 was only 0.083 h−. This suggests that the
photodegradation rate of N,Cu-CDs/m-WO3-0.8 was almost
23 times higher than that of commercial WO3. In addition,
the N,Cu-CDs/m-WO3-0.8 nanocomposite showed excellent
photocatalytic performance for the degradation of MB, TCH,
OTC, CIP, and BPA under visible-light irradiation for 2 h

FIGURE 7 | Photocatalytic performance of as-synthesized samples under UV, vis, and NIR light irradiation. (A) The photocatalytic efficiencies of m-WO3 decorated
with different amount of N,Cu-CDs under visible light irradiation; (B–D) were the comparasion of photocatalytic activities under UV, vis, and NIR light irradiation,
respectively; (E) The photocatalytic efficiencies on various pollutants over N,Cu-CDs/m-WO3-0.8 under visible light irradiation; (E) The photocatalytic stability of
N,Cu-CDs/m-WO3-0.8.
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(Figure 7E). The stability of the N,Cu-CDs/m-WO3-0.8
nanocomposite was studied via the cycling tests under visible-
light irradiation for 2 h. Figure 7F shows that the nanocomposite
maintained almost unchanged RhB photodegradation efficiencies
varying from 97.6 to 90.2% after a five-cycle recycling, confirming
the stable and reusable properties of the N,Cu-CDs/m-WO3-0.8
nanocomposite.

Photocatalytic Mechanism
Electron spin resonance (ESR) tests using DMSO were conducted
to investigate the reactive oxygen species (ROSs) in the N,Cu-CDs/
m-WO3-0.8 nanocomposite under solar light irradiation. As
shown in Figures 8A,B, four peaks with an intensity ratio of 1:
2:2:1 corresponded to the signal of DMPO-·OH, and the
characteristic peaks of DMPO-·O2

-- could be clearly observed

FIGURE 8 | DMPO ESR and ROSs trapping experiments of the N,Cu-CDs/m-WO3-0.8 nanocomposite: DMPO-·OH (A); DMPO-·O2- (B); ROSs trapping
experiments (C); and kinetic fit for ROSs trapping experiments (D).

FIGURE 9 | Photocatalytic mechanism of the N,Cu-CDs/m-WO3-0.8 nanocomposite.
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(Xiao et al., 2018). Moreover, the signal intensity of DMPO-·OH
was significantly stronger than that of DMPO-·O2

-, suggesting that
·OHmight be the primary reactive species in the photoreaction. To
further examine the key reactive species in the N,Cu-CDs/m-WO3-
0.8 composite, ROSs trapping experiments were conducted by
adding various scavengers including AO (700 mg/L) for h+, IPA
(600mg/L) for ·OH, and BQ (80mg/L) for ·O2

- (Cai et al., 2019).
As presented in Figures 8C,D, the photodegradation rate of RhB
showed partial inhibition rates of 89.67, 51.19, and 25.95% after
adding the scavengers of AO, IPA, and BQ, respectively, indicating
that the photogenerated h+ and OH were the main ROSs in the
photocatalytic reaction.

Based on the abovementioned results, a possible photocatalytic
mechanism for the N,Cu-CDs/m-WO3-0.8 nanocomposite was
proposed as follows (Figure 9). Under UV–vis–NIR light
irradiation, both m-WO3 and N,Cu-CDs were excited, thus
forming the e−/h+ pairs. The photoinduced electrons in the
conduction band (CB) of m-WO3 combined with the h+ in the
valence band (VB) of the N,Cu-CDs. Moreover, the photoinduced e−

was directly transferred from the VB of the N,Cu-CDs to Cu(II),
forming a multielectron reaction site, where Cu(II) was reduced to
Cu(I). Subsequently, Cu(I) was oxidized toCu(II) with the conversion
of O2 to ·O2

− (Irie et al., 2008;Ma et al., 2018), whereas the remaining
h+ in the VB of m-WO3 could directly photodegrade the
contaminants or indirectly transfer H2O to ·OH (Wang et al.,
2019; Ni et al., 2020). Therefore, the introduction of N,Cu-CDs as
multielectron reaction sites could greatly accelerate electron transfer
and efficiently prevent the recombination of e−/h+ pairs.

CONCLUSION

In summary, mesoporous WO3 with a large specific surface area
was successfully synthesized via the EISA process with PbS as the
template. For the first time, the N,Cu-CDs/m-WO3-0.8
nanocomposite was prepared by a sonication-assisted
hydrothermal method. The N,Cu-CDs/m-WO3-0.8
nanocomposite, with a large specific surface area, full-spectrum

response, efficient electron-transfer capacity, and low e−/h+ pair
recombination rate, exhibited outstanding photocatalytic activities
for the degradation of RhB, MB, TCH, OTC, CIP, and BPA.
Characterization results demonstrate that the conversion
between Cu (II) and Cu (I) played a key role in accelerating
electron transfer and inhibiting the recombination of e−/h+ pairs.
Furthermore, the extended spectrum absorption was attributed to
the ample oxygen vacancies, the introduction of N,Cu-CDs, and
multiple light reflections within the pores of the mesoporousWO3.
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