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Fibrous scaffolds based on biodegradable and biocompatible polyhydroxybutyrate (PHB)
were produced by electrospinning. The scaffolds were coated by a thin solid film of
polypyrrole, PPyI, deposited by plasma polymerization technique. FTIR and Raman
spectroscopy results confirm the presence of PPyI on the PHB fibers, in FTIR can be
show the signal of the NH2 groups characteristic of the polypyrrole, so Raman show a
broad band due to fluorescence from the PPyI coating. The morphology of the
scaffolds was characterized by scanning electron microscopy, and the average fiber
diameter of PHB is (2.68 ± 1.69) μm, also the average fibers diameter of PHB-PPyI is
(3.57 ± 1.36) μm, the comparation of the average fibers diameter of coated and
uncoated indicates that the average PPyI coated thickness is 0.45 μm. Crystallinity of
the PHB fibers was characterized by X-ray diffraction and differential scanning
calorimetry, the degree of crystallinity is estimated at 70%. Pancreatic beta cells
(from the RIN-M cell line) were cultured on PHB and PHB-PPyI scaffolds. Cell viability
results showed that the surface modified material is a good cell culture substrate for
beta cells.
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INTRODUCTION

Diabetesmellitus (DM) is a health problem that affects a substantial number of people all over the world.
In 2019, 463million people were estimated to have this disease. An important aspect in the development
of this illness is the reduction of insulin producing pancreatic beta cells and their inability to produce
enough insulin to control the glucose in blood (World Health Organization and International Diabetes
Federation, 2006; De Fronzo et al., 2015; Ogurtsova et al., 2018). DM represents a serious public health
problemwith significant social and economic impact. For this reason, it is the subject of wide research. In
search of an alternative to control and prevent DM, tissue engineering (TE) makes use of polymeric
biomaterials combined with cells. One of the most important goals in this research field is the design of
biomaterials that support cells and carry signaling molecules that allow tissue regeneration (O’Brien,
2011). TE scaffolds have been prepared from different biocompatible and biodegradable polymers
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because of their easy processing. These polymers can be natural or
synthetic, and scaffolds have been prepared from single polymers or
combinations with other materials.

Polyhydroxyalkanoates are a family of biodegradable and
natural polymers produced by microorganisms, used for
biomedical applications. A member of this family of polymers
is poly(3-hydroxybutyrate) (PHB). PHB exhibits
biocompatibility, biodegradability, abrasion resistance, good
mechanical strength, and adequate dimensional stability.
Studies indicate that biodegradation of PHB is slower than
poly(lactic acid), a commonly used biodegradable polymer
(Zhuikov et al., 2021). PHB is a hydrophobic polymer with
low cellular interaction, which limits its use in TE. PHB
oligomers produced during degradation are non-toxic. The
main disadvantage of PHB is its hydrophobic nature and lack
of functional groups which results in low cell affinity, this limits
its applications in TE. To solve the problem, PHB has been
functionalized or mixed with other materials to create scaffolds
that have good cellular interaction (Nahideh et al., 2019; Toloue
et al., 2019; Naderi et al., 2020).

Various methods have been used for scaffold preparation, such
as solvent casting, leaching, and electrospinning. One of the most
widely used techniques is electrospinning, which can produce
fibrous scaffolds with fiber diameters in the range from
micrometers to nanometers. The fiber diameter can be
controlled through the electrospinning process variables such
as solution viscosity, applied voltage, injection flow rate, and
needle-collector distance (Michael et al., 2001). The electrospun
fibers have advantages for TE, such as high surface area, high
porosity with interconnected pores that allow cell growth,
proliferation, and differentiation in three dimensions (Sadeghi
et al., 2016).

To improve biocompatibility, PHB has been electrospun with
other materials, such as zinc oxide, (Zviagin Andrei et al., 2019),
chitosan (Tolouea et al., 2019), carbon nanotubes, (Maryam and
Saeed, 2020), and alumina nanowires (Tolouea et al., 2019). Degli
Esposti and Chiellini, made bioactive and bioresorbable porous
scaffolds for bone tissue regeneration, based on PHB and the
incorporation of hydroxyapatite (Degli Esposti et al., 2019).
Chondrocytes have been cultured on scaffolds of PHB/
poly(hydroxybutyrate-co-hydroxyhexanoate) copolymer for
cartilage regeneration (Ba et al., 2019). In the treatment of
diabetic wounds, scaffolds of PHB with graphene oxide
improved healing of normal and diabetic wounds (Daisy et al.,
2020). PHB has also been combined with gelatin in electrospun
scaffolds to evaluate their capability to treat diabetic wounds
(Claudia et al., 2020).

One technique that has been shown to be effective in
modifying the surface of different polymers is plasma
polymerization. Surface modification can be accomplished by
depositing a polymeric thin film that has functional groups that
allow biomolecules to anchor to the surface (Ramírez-Fernández
et al., 2012; Zuñiga Aguilar et al., 2014). Plasma polymerization
using pyrrole as monomer has shown reliable performance in
producing surfaces that promote cell adhesion and proliferation,
especially in in vivo experiments (Ramírez-Fernández et al., 2015;
Ruiz Velasco et al., 2017). Electrospun PHB has been treated by

plasma to improve its biocompatibility. Electrospun PHB
scaffolds have been exposed to oxygen plasma discharge and
polyaniline nanoparticles have been synthesized on the treated
surface of the scaffolds. The results indicated that the
modification by oxygen plasma and nanoparticles of
polyaniline had a favorable impact on the cell adhesion and
direction of cell growth (Zamanifard et al., 2020).

In this study PHB scaffolds were prepared by electrospinning.
The diameter of the fibers in the scaffolds have nano and
micrometer size, with a high area-to-volume ratio and pores
with sizes in the micrometer range. The surfaces of the PHB fibers
were modified by coating with a thin polymeric film of
polypyrrole deposited by the plasma polymerization technique
and doped in situ with iodine, PPyI. This film has the objective of
improving the biocompatibility of the fiber. Structural analyses
confirm the presence of PHB and PPyI in the coated scaffolds.
The scaffolds were placed in beta cell culture and the results show
that the PPyI coating produces a biologically active surface on the
scaffolds.

EXPERIMENTAL

Materials
Poly(3-hydroxybutyrate) (product #363502, natural origin),
pyrrole (product #131709, reagent grade, 98%), ethanol
(product #459844, 200 proof, ACS reagent. ≥99.5%) and
iodine (product #207772, ACS reagent, ≥99.8%) were
purchased from Sigma-Aldrich, reactive grade chloroform
(product #AC423550250, ACS reagent, ≥99.8%, Acros
Organics) was purchased from Fisher Scientific, all substances
were used without further purification.

PHB Electrospinning
PHB scaffolds were prepared in a NaBond Electrospinning
United model TL-01 of Tong Li Tech (Shenzhen, China). The

FIGURE 1 | Experimental setup for superficial modification by means of
deposition of PPyI thin film.
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machine is equipped with a 2-channel injection pump, a variable
high-voltage source (0–30 kV) and a rotating cylinder collector
10 cm in diameter, with variable angular speed. In a typical
experiment, PHB (1.2 g) was dissolved in 10 ml of a
chloroform/ethanol mixture (9/1 v/v). The solution was
heated to 50°C with stirring using a magnetic stirrer for
1 h. The solution was then introduced into a disposable
syringe (20 ml) and placed in the injection pump. The
injection flow rate was set to 3.0 ml/h. The solution was
pushed through a food grade Teflon hose and reached a

0.6 mm ID needle. The collecting cylinder was covered
with aluminum foil. A voltage of 15.0 kV was applied
between the needle tip and the collector, and the needle-
collector distance was set to 12 cm. PHB fibers were
deposited on the collector, which was rotating at
1700 rpm. The electrospinning total time was 6.5 h.

PHB Surface Modification by Plasma
Polymerization
Samples of PHB electrospun material were cut (approx. area of
1.0 cm2) and placed inside a plasma reactor. The plasma reactor
(Figure 1) consists of a Pyrex glass tube of 90 mm external
diameter and 250 mm long. Each end of the tube was
sealed with a stainless-steel flange. Stainless-steel rods
fitted with a 70 mm plate on their end, were inserted
through the center of each flange and placed 5 cm apart.
Each flange has two access ports. One port was used to
introduce the pyrrole monomer and the iodine dopant.
Pyrrole and iodine were in separate reservoirs and were
introduced into the plasma reactor in vapor form. A
pirani pressure gauge (Edwards) and a vacuum system
consisting of a cold trap and a mechanical vacuum pump
(Edwards) were fitted on the other flange. Plasma
polymerization was performed using 20 W of power, a
pressure of 2 × 10−2 Torr, a total synthesis time of 30 min
and rf of 13.56 MHz.

Characterization
Raman Spectroscopy
Raman spectra of the scaffolds were obtained with a WiTec
Raman System Alpha 300 RA confocal microscope. The
samples were exposed to light from a 532 nm wavelength and
75 mW laser. Spectra were obtained from 32 replicate scans
recorded between 3,700 cm−1 and 200 cm−1 with 4 cm−1

FIGURE 2 | FTIR spectra of PHB and PHB-PPyI scaffolds. Amine
groups in PPyI produce the band at 3,354 cm−1.

FIGURE 3 | Raman spectra of PHB and PHB-PPyI scaffolds. The broad
signal in the PPyI spectrum is due to fluorescence.

FIGURE 4 | X-ray diffractograms of PHB and PHB-PPyI. The lattice
parameters of PHB and PHB-PPyI scaffold were a � 5.65 Å, b � 13.61 Å and c
� 5.86 Å.
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resolution. Samples were placed on the Raman System stage
without further treatment.

Infrared Spectroscopy
The PHB and PHB-PPyI scaffolds were characterized by Fourier
transform infrared spectroscopy (Perkin-Elmer GX-2000
System) with an attenuated total reflectance unit (Smith
diamond DuraSample II). Spectra was recorded with 64 scans
between 4,000 cm−1 and 400 cm−1 with 4 cm−1 resolution.

X-Ray Diffraction
The crystalline structure of PHB and PHB-PPyI scaffolds were
studied by X-ray diffraction with a Bruker D8 Advance ECO
diffractometer equipped with SSD160 detector, and Cu Kα X-ray
source (0.15406 nm wavelength). Scaffold samples of 1 cm2 were
placed in the sample holder and the diffractograms were acquired
in a 2θ range of 2°–50°.

Differential Scanning Calorimetry
Differential scanning calorimetry was performed in a DSC
instrument (DSC 2820 Modulated DSC, TA Instruments).
Scaffold samples were placed in sealed aluminum trays. The
samples were heated from 20 to 200°C using a 10°C/min
heating ramp and were then cooled at 10°C/min from 200 to
20°C. The degree of crystallinity was calculated from the ratio of
the enthalpy of fusion (ΔHm) of the sample to the enthalpy of fusion
of 100% crystalline PHB, ΔH0m � 146 J/g (Barham et al., 1984).

Scanning Electron Microscopy
The morphology of the scaffolds was characterized from images
obtained using a high-resolution scanning electron microscope
(HRSEM JEOL JSM-7600F), at an accelerating voltage of 30 kV.
The samples were coated by sputtering with a thin film of gold
with 5 nm thickness, prior to SEM analysis. The fiber diameters
were measured from SEM images using ImageJ software (National
Institutes of Health, United States, version 1.53b). Histograms of
fiber diameters were prepared and best fits to normal distribution
were made using Origin software (OriginLab, version 8.1).

Cell Culture
Scaffold samples were sterilized overnight under UV light. Cells
from the RIN-M cell line were cultured on the sterilized scaffolds.
This cell line comes from a male rat’s insulinoma of the Rattus
Norvegicus species. The cells secrete insulin and somatostatin.
They have an epithelial morphology and an approximate size of
10 μm. Cells were proliferated following the ATCC® protocol
using RPMI-1640 (ATCC® 30-2001) as the base culture medium
and supplementing with fetal bovine serum and antibiotic with
antimycotic at 10 and 1% of the total volume, respectively. The
cells were incubated in a moistened environment with 5% CO2 at
37°C, using 100 × 20 mm culture petri dishes (product #
CLS430167, Sigma Aldrich) and changing the culture medium
every 3 days. The number of cells seeded on each scaffold was 4 × 104.

Cell Viability
To determine cell viability, a Calcein-AM and Ethidium-1
Homodimer kit purchased from AccesoLab was used. The
scaffolds were washed with PBS buffer for 5 min and the
supernatant was removed, this process was repeated two times.
A PBS solution with Calcein-AM and Ethidium Homodimer-1
was prepared with a concentration of 1 and 2 μM, respectively. A
volume of 500 μl of the solution was added to the scaffold

TABLE 1 | PHB XRD signals.

Crystalline plane (020) (110) (101) (121)

2θ 13° 17° 23° 26°

d (Å) 6.80 5.21 3.56 3.42

FIGURE 5 | DSC thermograms of PHB and PHB-PPyI scaffolds on (A) heating and (B) cooling.
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samples. The samples were covered to protect them from light
and allowed to stand before being viewed under the confocal
microscope. With this technique, viable cells fluoresce green
while dead cells fluoresce red.

RESULTS AND DISCUSSION

FTIR Analysis
The infrared spectra of uncoated PHB and surface-modified
PHB-PPyI scaffolds are show in Figure 2. The most intense
band of the PHB is found at 1724 cm−1, corresponding to the
characteristic stretch of the carbonyl bond (ester carbonyl
stretch). Peaks at 2,972 cm−1 and 2,927 cm−1 are characteristic
of aliphatic CH3 and CH2 groups. The band at 1,442 cm−1

corresponds to the asymmetric deformation of C-H bonds,
and the signal corresponding to stretching of these bonds is
also observed at 1,378 cm−1. The series of intense bands located
between 900 and 1,300 cm−1 correspond to the stretching of the
C-O bond of the ester group. The spectrum of PHB-PPyI shows a
broad and intense band between 3,100 and 3,700 cm−1, this signal
is due to amine groups along with hydroxy groups. Since this
band is not present in the PHB spectrum, it is produced by
vibrations of chemical groups in the PPyI coating. Also, in the
PHB-PPyI spectrum, the band at 1724 cm−1 shows a shoulder

around 1,627 cm−1 which is due to amine groups in the PPyI
coating (Zuñiga Aguilar et al., 2014).

Raman Spectroscopy
Raman spectra obtained with a Raman confocal microscope are
shown in Figure 3. The Raman spectrum of the PHB scaffold
shows an intense band at 2,920 cm−1 that corresponds to aliphatic
carbons. The spectrum is consistent with other reports (Furukawa
et al., 2006; Tsuyoshi et al., 2006). In contrast, the Raman
spectrum of PHB-PPyI shows a broad band between 1,600
and 3,600 cm−1 which masks most other signals. This broad
band is due to fluorescence from the PPyI coating (Vazquez
Ortega et al., 2014). Two other bands can be observed at 1,357 and
1,588 cm−1. The first of these bands is likely due to aliphatic CH3

groups and is also present in the PHB spectrum. The second band
is only present in the PHB-PPyI spectrum and is likely due to the
presence of iodine (Vazquez Ortega et al., 2014).

Crystalline Structure
The X-ray diffractograms of PHB and PHB-PPyI were obtained at
room temperature and are shown in Figure 4. Both samples present
the same diffraction signals, showing that the PPyI surface coating
did not affect the PHB crystallinity (Socrates, 2001). The figure
shows two very intense diffraction peaks centered at 2θ � 13° and 17°

corresponding to the (020) and (110) planes of the orthorhombic

FIGURE 6 | SEM images (A–C) of PHB scaffold and (D) fiber diameter distribution.
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unit cell of PHB crystals. Less intense diffractions are located around
2θ � 23° and 26°, corresponding to (101) and (121) planes,
respectively (Tolouea et al., 2019).

PHB crystals have an orthorhombic unit cell with dimensions
a � 5.76 Å, b � 13.20 Å and c � 5.96 Å (Wang and Tashiro, 2016).
The lattice parameters from the diffractograms of PHB and

PHB-PPyI samples were calculated to be a � 5.65 Å, b � 13.61 Å
and c � 5.86 Å. The crystal size was estimated from the main
diffraction peak to be 300 Å; and the percentage of crystallinity
of both samples is 70%. Table 1 shows the crystal planes, the
angular position of the diffraction peaks and the interplanar
distance of the PHB crystals.

FIGURE 7 | SEM images (A–C) of PHB-PPyI scaffold and (D) fiber diameter distribution.

FIGURE 8 | Optical photographs of RIN-M cells on the 10th day of culture on (A) PHB and (B) PHB-PPyI scaffolds.
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DSC Analysis
The thermal analysis of the scaffolds was carried out by
means of differential scanning calorimetry. The DSC
thermograms are shown in Figure 5. The melting
temperature of the PHB fibers was 176°C and ΔHm of
102.3 J/g. The degree of crystallinity is estimated at 70%,
consistent with XRD results. The PHB-PPyI scaffold, in
contrast, had a melting point of 172°C, lower than that of
PHB. During the plasma polymerization procedure, the electricfield
is turned on for a fewminutes before pyrrole is allowed into the reactor.
The air that remains in the reactor forms a plasma which can damage
the fibers. Previous studies have shown that during plasma
polymerization of electrospun materials, very thin fibers disappear
due to this etching (Cruz et al., 2019). This process also results in partial
degradation of PHB molecules, therefore reducing the molecular
weight of the PHB molecules. This is possibly the reason for the
lower melting temperature that was measured in PHB-PPyI.

The DSC cooling curve (Figure 5B) also shows a difference in
the crystallization temperature of pure PHB and PHB-PPyI. After
heating to 200°C, the materials are no longer in fiber form since
melting has occurred. On cooling, the PHB-PPyI sample
crystallizes at a higher temperature than the PHB sample
likely because PPyI fragments act as nucleation agents.

SEM Analysis
Figures 6A–C show SEM images of the electrospun PHB scaffold.
The fibers are distributed over the entire observation region.
Figures 6A,B show that the fibers were aligned by the rotation of
the collecting drum, they also show the formation of beads along
the fibers. The fibers alignment and a wide size distribution are
more evident in Figure 6B. In Figure 6C a thick fiber with rough

surface can be observed. The roughness is likely due to the
interaction of the fiber with the air during travel to the
collecting cylinder as the solvents were evaporating. The fiber
size distribution is shown in Figure 6D. The average fiber
diameter is (2.68 ± 1.69) µm.

Figures 7A–C show SEM images of the PHB-PPyI scaffold.
Some fibers are fractured possibly due to their interaction with
the high energy plasma. Figure 7A shows a panoramic view of the
scaffold, and higher magnification images are shown in Figures
7B,C. The roughness of the coating could promote the anchorage
of the cells on the fiber’s surface and contribute to better cellular
interaction. The PPyI coating resulted in an increase in the
diameter of the fibers; the average fiber diameter was (3.57 ±
1.36) μm. Comparing the average fiber diameter of the coated
and uncoated samples indicates that the average PPyI coating
thickness was 0.45 μm.

Cell Culture
Figure 8 shows optical photographs of RIN-M cells after 10 days
of culture on PHB and PHB-PPyI scaffolds. The images show the
frameworks of the PHB fibers and anchoring of cells on the
scaffold. RIN-M cells can be seen forming cell colonies on the
scaffold. Cells have also entered the scaffolding forming a 3D
culture. In contrast, it is not possible to observe the internal
structure of the PPyI-coated scaffold (Figure 8B). Amonolayer of
RIN-M cells can be seen growing on the edge of the PHB-PPyI
scaffold. This confirms the biocompatibility of this material.

Cellular Viability
Figure 9 shows the results of the Calcein and EthD-1 cell viability
assay for RIN-M cells cultured for 10 days on PHB and PHB-

FIGURE 9 | Cell viability assay after 10 days of culture resulting images for (A) PHB and (B) PHB-PPyI scaffolds.
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PPyI. Figure 9A corresponds to the PHB scaffold. It is possible to
identify both living and dead cells on the image. Some cell
colonies are also appreciated. There are more living cells
(green) than dead cells (red).

In Figure 9B, viable cells are observed after 10 days of cell
culture on the PHB-PPyI scaffold. A large number of living cells
are observed on the scaffold fibers. The cells seen in green are
viable and form colonies of cells spread throughout the
observation area. It is also observed that some cells anchored
to the scaffold fibers. This shows that this type of scaffold allows
the anchorage, growth, proliferation, and viability of this type
of cells.

CONCLUSIONS

PHB electrospun scaffolds allow the anchorage, differentiation,
and proliferation of RIN-M beta cells. The scaffold coated with
PPyI shows a better response in cell culture. It is possible to grow
RIN-M cells on these scaffolds.

In vitro cell culture tests with the RIN-M cell line showed
that PHB electrospun scaffolds are biocompatible since cell
adhesion and proliferation was observed. The cell viability test
showed that the scaffold with best suited for beta cell culture
was PHB-PPyI. This coated scaffold showed a greater number
of viable cells. The materials presented in this work have the

potential to be used for treatment of diabetes mellitus in the form,
for example, of an insulin producing subcutaneous patch.
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