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The addition of a tempering or austempering step to the double soaking of a
0.14C–7.17Mn (wt pct) steel was investigated in the present contribution. The double
soaking heat treatment is a two-step intercritical annealing heat treatment, which
generates microstructures of athermal martensite, retained austenite and ferrite when
applied to medium manganese steels. Microstructures following double soaking and (aus)
tempering contained a combination of retained austenite, athermal or tempered
martensite, and blocky or bainitic ferrite. X-ray diffraction, dilatometry and transmission
Kikuchi diffraction were utilized to investigate microstructural changes which occurred
during tempering or austempering. The resulting mechanical properties were measured
using uniaxial tensile testing. The double soaking plus tempering heat treatment was
shown to generate an ultimate tensile strength of 1,340 MPa in combination with 28 pct
total elongation while the double soaking plus austempering heat treatment resulted in an
ultimate tensile strength of 1,675 MPa and total elongation of 22 pct. Overall, both novel
heat treatments produced a combination of strength and ductility desired for the third
generation of advanced high strength steels.

Keywords: medium manganese (Mn) steels, double soaking, advanced high strength sheet steels, retained
austenite, tempering

INTRODUCTION

Modern automotive designs seek to improve passenger safety while reducing vehicle weight. This
requires the development of new third generation advanced high strength steel (AHSS) grades
(Matlock and Speer, 2006; Matlock and Speer, 2009; De Moor et al., 2010). The present work
considers one of the proposed third generation AHSS, mediummanganese steels. Typically, medium
manganese steels undergo a single intercritical annealing heat treatment resulting in amicrostructure
of ferrite and austenite, with retained austenite volume fractions between 5 and 30 vol pct stabilized
by carbon and manganese (Miller, 1972; Merwin, 2007; Gibbs et al., 2011). Alternatively, the recently
proposed double soaking heat treatment allows for some fraction of ferrite to be replaced by athermal
martensite, while still maintaining significant volume fractions of austenite (De Moor et al., 2016).
The substitution of athermal martensite for ferrite, present after the application of a single
intercritical annealing heat treatment, is achieved through the application of a second
intercritical annealing or austenitizing treatment. This results in the formation of additional
austenite, which transforms to athermal martensite upon quenching due to a reduced
concentration of carbon and manganese (Glover et al., 2017; Glover et al., 2019). The
microstructures of double soaked medium manganese steels demonstrate increased strength
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while maintaining appreciable ductility, with ultimate tensile
strengths above 1700 MPa reported in conjunction with total
elongations of 15 pct (Glover et al., 2017; Glover et al., 2019). This
is consistent with previous studies of medium manganese steels
which have shown that small volume fractions of athermal
martensite also promote continuous yielding and improve the
overall strength-ductility combination of the material (Merwin,
2007; Gibbs et al., 2011; Gibbs et al., 2014; Rana et al., 2015;
Steineder et al., 2015; Steineder et al., 2017).

In this paper, the double soaking concept is expanded to
consider the addition of a tempering or austempering heat
treatment. These additional steps allow for the strength of the
BCC microstructural constituents to be further modified, either
through the tempering of athermal martensite or the formation of
bainitic ferrite during austempering. These heat treatments are
referred to as either double soaking plus tempering (DS-T) or
double soaking plus austempering (DS-A). Practically, tempering
or austempering may be implemented as part of galvanizing or
galvannealing heat treatments, which are commonly applied to
automotive sheet steels. The variation in cooling following the
double soaking heat treatment is intended to represent
the inclusion or omission of a quench following the secondary
intercritical annealing or austenitizing heat treatment. The DS-T
and DS-T heat treatments only consider a single temperature
(450°C) as this is the standard temperature for a zinc bath on a
continuous galvanizing line, with a range of isothermal
holding times.

MATERIALS AND METHODS

This investigation employs the addition of either a tempering or
austempering step to a double soaked medium manganese steel
(De Moor et al., 2016; Glover et al., 2017, Glover et al., 2019). The
DS heat treatment is shown schematically in Figure 1. The first
step, the primary soaking treatment in the intercritical regime, is
characterized by primary austenite (cP) nucleation and growth,
with manganese partitioning from ferrite to austenite. Next, a
short secondary soaking treatment is applied at a higher

temperature, as either a continuous or discontinuous heat
treatment, as shown in Figure 1. The microstructure at the
secondary soaking temperature consists of primary austenite
present after the initial soak (cP), newly formed secondary
austenite (cs), and potentially some remaining ferrite (α),
depending upon the selected secondary soaking temperature
and time. Upon quenching, some fraction of primary
austenite, which has an elevated concentration of manganese
and carbon, is expected to be retained, while the leaner secondary
austenite is expected to transform to athermal martensite. This
results in a microstructure of as-quenched, athermal martensite,
retained austenite enriched in manganese and carbon, and
potentially some ferrite (Glover et al., 2017).

For the DS-T heat treatment, a water quench is applied
between the double soaking and the tempering heat treatment,
as shown in Figure 1. This rapid quench to room temperature
transforms some fraction of primary and secondary austenite to
martensite. The subsequent application of a tempering treatment
is expected to reduce the carbon concentration in athermal
martensite either through diffusion of carbon to retained
austenite or through the precipitation of carbides. During the
tempering heat treatment, substantial manganese diffusion is not
expected due to the low temperatures and short time scales
considered. Upon quenching, the DS-T heat treatment is
expected to produce a microstructure of tempered martensite
(α′T ), retained austenite (c) and ferrite (α).

For the DS-A heat treatment, shown in Figure 2, the material
is held at a temperature between the A1 and Ms temperatures,
following the DS heat treatment, during which some fraction of
austenite may transform to blocky or bainitic ferrite. This is
similar to a traditional austempering heat treatment in that it
involves an isothermal hold between A1 and Ms following an
austenitizing or intercritical annealing heat treatment. During the
austempering treatment, the carbon concentration in newly
formed blocky or bainitic ferrite, is expected to decrease either
through diffusion to austenite (primary and secondary) or
through precipitation of carbides. This diffusion is driven by
the reduced solubility of carbon in ferrite, as compared to the
austenite from which it formed. Manganese diffusion is again not

FIGURE 1 | Schematic of the double soaking plus tempering (DS-T) heat treatment. Expected changes in microstructure are indicated: ferrite (α), primary austenite
(cP ), secondary austenite (cs), martensite (α′) and tempered martensite (α′T ).
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expected during the austempering heat treatment. Upon
quenching, any remaining secondary austenite may to
transform to athermal martensite (α′), as it likely does not
contain a sufficient concentration of manganese and carbon to
be stabilized at room temperature. The DS-A treatment is
expected to produce a final microstructure of retained
austenite (c), bainitic ferrite (αb), athermal martensite (α′),
and ferrite (α).

The DS-T and DS-A heat treatments were applied to a
0.14C–7.17Mn–0.21Si medium manganese steel. Both the DS-T
and DS-A heat treatments utilized a commercial batch
annealing heat treatment to apply the primary soaking step,
while salt pots were utilized to apply the secondary soaking
step at 800°C for 30 s followed by the tempering or
austempering heat treatment. The microstructural
characteristics and mechanical properties produced by this
double soaking heat treatment, referred to as DS: 800°C, 30 s,
are discussed in greater detail in previous work (Glover et al.,
2017). The tempering or austempering heat treatments utilized
a single temperature (450°C) and four isothermal hold times,
10, 30, 60 and 300 s.

Dilatometric data sets were gathered using a TA Instruments
DIL805A® quench dilatometer. A heating rate of 80°C/s and
quench rate of 50 °C/s was implemented for all samples. The
temperature corresponding to the onset of a phase
transformation was identified utilizing a methodology
proposed by Yang and Bhadeshia (2007). This method
suggests the onset of transformation can be defined at a
critical strain, off-set from the linear regression line for the
linear thermal expansion or contraction of the sample. In this
investigation a standard off-set of ±0.005 pct strain was used to
identify the deviation from linearity which indicates the initiation
or cessation of a phase transformation. In all cases this was a more
significant off-set than a three standard error off-set.

X-ray diffraction profiles were used to determine retained
austenite volume fractions and BCC (α/α′) phase dislocation
density. Coupons of each condition considered in this
investigation were heat treated using salt pots. Samples were
then mechanically ground to 1,200 grit and chemically polished

to remove any mechanical deformation from grinding, with a
mixture of 1:5:5 hydrofluoric acid, hydrogen peroxide, and water
for 300 s, removing approximately 0.5 mm of material. All XRD
scans were performed on a PANalytical Empyrean XRD with a
Cu-tube (Kα1, λ � 1.541 _A). Scans covered a 2θ range from 40 to
140°, with a step size of 0.028°. Three diffraction profiles were
collected from separate regions of each coupon. The PANalytical
X’Pert HighScore Plus® software associated with the
diffractometer was used to calculate the integrated intensity,
peak width (integral breadth), and peak position for each line
scan. This peak fitting package utilizes a Voigt profile to fit the
XRD peaks.

Retained austenite volume fractions were calculated for each
DS heat treatment condition using the Society of Automotive
Engineers (SAE) method from the XRD line profiles (Jatczak,
1980). The dislocation density of the BCC (α/α′) phase was
estimated based upon peak broadening from the {110}, {200},
{211}, {220}, {310} and {222} orientations of ferrite for each XRD
line scan collected from each heat treatment condition. To
quantify instrumental broadening for the PANalytical
Empyrean XRD, a large grain, polycrystalline silicon wafer was
used. Each of the Si diffraction peaks was fit using the PANalytical
X’Pert HighScore Plus® software package. The resulting peak
widths, characterized as integral breadth (instrumental
broadening, βInstrumental), were plotted as a function of scan
angle (2θ). To fit the resulting curve, a second order
polynomial function was utilized, and the following equation
for instrumental broadening:

βinstrumental � 0.2288 − (3.31 · 10− 3) · 2θ + (2.95 · 10−5) · (2θ)2
(1)

was determined. For all future calculations which utilize peak
width, Eq. 1 was used to remove the effect of instrumental
broadening.

After correcting the measured diffraction line profiles for
instrumental broadening, a modified Williamson–Hall method
was used to calculate dislocation density (Ungár and Borbély,
1996). For isotropic materials, the modified Williamson–Hall

FIGURE 2 | Schematic of the double soaking plus austempering (DS-A) heat treatment. Expected changes in microstructure are indicated: ferrite (α), primary
austenite (cP ), secondary austenite (cs), bainitic ferrite (αb) and martensite (α′).
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method estimates dislocation density due to strain broadening
from parameters ΔK and K:

ΔK � 0.9
D

+ bM

���
π

2
ρ

√ (KC 1
2) (2)

K � 2 · sin(2θ2 )
λ

(3)

where D is crystallite size, b is Burgers vector, M is a
dimensionless constant known as the dislocation distribution
parameter taken to be 1.4 (HajyAkbary et al., 2015), ρ is the
dislocation density, 2θ describes the position of the peak, λ is the
wavelength of the incident beam, and C is the average dislocation
contrast factor.

The average dislocation contrast factor is calculated using Eq.
4 where Chkl is the average contrast factor, q is a parameter that
depends on the edge or screw nature of the dislocation, and H2 is
calculated using Eq. 5:

C � Chkl(1 − qH2) (4)

H2 � h2k2 + k2l2 + h2l2

(h2 + k2 + l2)2 (5)

The term Chkl is determined from the average dislocation
contrast factor for the {hkl} reflections (Chkl) of pure edge and
pure screw dislocations as well as the fraction of screw and edge
dislocations. For pure edge and screw dislocations, Chkl is
determined by the elastic parameters of the material
(C11, C12,C44) using:

Chkl � ai[1 − exp(−A
bi
)] + ciA + di (6)

The parameters ai, bi, ci, and di are given by the elastic
constants of the material and were obtained from Ungár et al.
(1999). The elastic anisotropy parameter, A, is given by:

A � 2C44

C11 − C12
(7)

Elastic constants (Kim and Johnson, 2007) corresponding to a
martensitic steel were used in the calculation of A, which resulted
in a value close to unity. The average dislocation contrast factor of
the {hkl} reflections, Chkl , can be calculated from the Chkl values
determined for pure edge and pure screw dislocations by
considering the fraction of edge and screw dislocations present
in the material. For this analysis it was assumed that fedge � 0.5.
This estimate was determined to be sufficiently accurate as the
calculation of Chkl is relatively insensitive to the fraction of edge
and screw dislocations, as Chkl, pure edge and Chkl, pure screw were very
similar in magnitude. With values for ΔK, K, and C, it was then
possible to utilize Eq. 2 to determine dislocation density, where
dislocation density is related to the slope (m) of the linear
relationship between ΔK and KC

1
2.

Due to the ultra-fine grain size of the 0.14C–7.17Mn steel,
transmission Kikuchi diffraction (TKD), first developed by Keller
and Geiss, was implemented in this work (Keller and Geiss, 2012).
TKD was preferred as it offered significantly improved spatial
resolution, as compared to conventional EBSD, while still making

use of the automatic indexing of Kikuchi diffraction patterns
provided by the EBSD software (Sneddon et al., 2016). Thin-foil
samples, prepared using a FIB lift-out methodology, were
approximately 100 nm thick and generally contained a singular
grain in the through thickness direction. Samples were held in a
PELCO small grid FIB holder and positioned in the JEOL JSM-
7000F field emission scanning electron microscope (FESEM) at a
standard working distance of 10 mm, tilt of 70° (backtilt of 20°),
and an accelerating voltage of 30 kV. Adjustments were also made
to the detector settings within the TEAM™ EBSD software. An
algorithm of dynamic background subtraction, intensity
histogram normalization and median smoothing filter
generally produced the best results. A step size of 20 nm was
used to collect 6 × 6 μm2 maps, where BCC (ferrite/martensite)
and FCC (austenite) were the only phases considered. Following
TKD map collection, a clean-up procedure which utilized a
nearest neighbor orientation correlation was applied for all
grains with a confidence interval of less than 0.003.

Tensile testing was conducted using ASTM E8 subsized
samples machined parallel to the rolling direction with a
gauge section of 25 mm (ASTM International, 2015). Testing
was on a Instron 1,125 screw-driven load frame at a constant
engineering strain rate of 4.5 × 10–4 s−1 in a method consistent
with ASTM E8 (ASTM International, 2015). Applied load and
crosshead displacement were recorded at a rate of 10 Hz. Sample
deformation was monitored using 2D DIC (Sutton et al., 2000).
Images were captured using a CCD camera at a frequency of 5 Hz.
The resulting data were analyzed using the VIC 2D software (Vic
3D, 2018) to determine engineering strain for a virtual 25 mm
gauge length. For each heat treatment condition yield strength
(YS, 0.2 pct offset), ultimate tensile strength (UTS), uniform
elongation (UE), total elongation (TE) and the strength-
ductility product (UTS·TE) are reported.

RESULTS

The DS-T and DS-A heat treatments were applied according to
the heat treatment schematics presented in Figures 1, 2,
respectively. Phase transformations which occurred during the
DS-A and DS-T heat treatments were monitored using
dilatometry, based upon changes in relative dilatation as a
function of temperature and time. As the primary soaking
heat treatment was applied using a commercial batch
annealing heat treatment the dilatometric data only consider
phase transformations which occur during the secondary soaking
and the subsequent tempering or austempering heat treatment.

In Figure 3 the phase transformations inferred during each
step of the DS-T heat treatment are indicated on a plot of relative
dilatation vs. temperature or time for the DS-T: 450°C, 300 s heat
treatment. During the application of the secondary soaking heat
treatment at 800°C for 30 s, the transformation of BCC ferrite to
FCC secondary austenite is evident through a reduction in
relative dilatation. Upon quenching from the secondary
soaking heat treatment an increase in relative dilatation,
characteristic of the martensitic transformation, is evident in
Figure 3A. In all of the DS-T heat treatment conditions
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considered the Ms temperature is relatively consistent, occurring
between 306 and 310°C. Upon reheating to the tempering
temperature, no deviations from linearity are evident in the
relative dilatation vs. temperature plot, shown in Figure 3A.
During the tempering hold shown in Figures 3B a small increase
in relative dilatation is observed, which may be due to a small
amount of austenite decomposition to BCC ferrite (Hidalgo et al.,
2017). Volume contraction, which may be expected to result from
a reduction in martensite carbon concentration as a result of the
tempering, is not observed during the tempering hold shown in
Figure 3B. This may be due to the low carbon concentration of
athermal martensite, which would reduce the magnitude of this
contraction, allowing it to be obscured by the more significant
expansion attributed to austenite decomposition (Cheng et al.,
1990). Quenching to room temperature following the tempering
heat treatment results in linear thermal contraction, indicating
that no additional phase transformations occur.

In Figure 4A the phase transformations inferred during the
double soaking and austempering heat treatment are indicated on
a relative dilatation vs. temperature curve for the DS-A: 450°C,

300 s condition. Following heating at a rate of 80°C/s, a reduction
in relative dilatation during the isothermal hold of the secondary
soaking heat treatment is consistent with reduction in volume
associated with the transformation of BCC ferrite to FCC
secondary austenite. Following the isothermal hold at 800°C,
the sample is quenched to the austempering temperature of
450°C. During the austempering hold, the relative dilatation
vs. time plot for the DS-A: 450°C, 300 s heat treatment, shown
as Figure 4B, indicates volume expansion. This is consistent with
the transformation of FCC secondary austenite to BCC blocky
and/or bainitic ferrite (Grajcar et al., 2014; Hofer et al., 2016).
Growth of blocky ferrite, retained following an intercritical
annealing heat treatment, has been observed at temperatures
below the intercritical annealing temperature regime (Gallagher
et al., 2003; Speer et al., 2004). This results in competition between
the growth of blocky ferrite and nucleation and growth of bainitic
ferrite during austempering. As both phase transformations
would result in a volume expansion, complementary
techniques would be required to identify the dominant phase
transformation. The transformation of primary austenite to

FIGURE 3 | (A) Relative dilatation vs. temperature and (B) relative dilatation vs. time for the DS-T: 450°C, 300 s heat treatment. Phase transformations associated
with each feature of the dilatometric data are indicated as: ferrite (α), primary austenite (cP ), secondary austenite (cs ), martensite (α′) and tempered martensite (α′T ).

FIGURE 4 | (A) Relative dilatation vs. temperature and (B) relative dilatation vs. time for the DS-A: 450°C, 300 s heat treatment. Phase transformations associated
with each feature of the dilatometric data are indicated as: ferrite (α), primary austenite (cP ), secondary austenite (cs), martensite (α′) and bainitic ferrite (αb).
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bainitic ferrite would not be expected, as the increased manganese
concentration of primary austenite places the bainite start
temperature below the austempering temperature of 450°C
(Kang et al., 2014). Upon quenching to room temperature,
volume expansion consistent with the transformation of FCC
austenite to BCC/BCTmartensite is evident in Figure 4A. TheMs

temperature was measured as 273°C following the DS-A: 450°C,
300 s heat treatment.

When examining the range of austempering times considered
in this work it was noted that with increasing austempering time
at 450°C the Ms temperature is reduced. The reduction in Ms

temperature is evident in the plot of relative dilatation vs.
temperature for the DS-A heat treatments, shown in Figure 5.
For example, theMs temperature following the DS-A: 450°C, 10 s
heat treatment was measured as 299°C, which is reduced to 273°C
following the DS-A: 450°C, 300 s heat treatment. This reduction
in Ms temperature suggests that the solute concentration of the
austenite which transforms to martensite upon quenching has
increased as a result of the austempering heat treatment. Solute
enrichment of austenite is consistent with the formation of blocky
ferrite and/or bainitic ferrite during the austempering heat
treatment, with a reduction in solute carbon concentration
achieved through carbon partitioning into austenite or carbide
precipitation. The reduction in Ms temperature following the
austempering heat treatment is consistent with some amount of
carbon diffusion into secondary austenite, which transforms to
martensite upon quenching.

The austenite volume fractions measured using X-ray
diffraction after each DS-A and DS-T heat treatment are
shown in Figure 6, as a function of tempering or
austempering time. The DS: 800°C, 30 s heat treatment is also
included. In the DS-T heat treatment conditions, the measured
retained austenite volume fractions are relatively constant for the
10, 30 and 60 s tempering heat treatments at 450°C. After a 300 s
tempering treatment at 450°C the retained austenite volume
fraction appears to be slightly reduced, from 34 vol pct
retained austenite after the 60 s tempering treatment, to 29 vol
pct retained austenite after the 300 s tempering heat treatment.

This suggests that a small amount of austenite decomposition
may occur during tempering. In the DS-A heat treatment
conditions, the austenite fraction is relatively constant with
increasing austempering time, and only varies between 33 and
35 vol pct.

The dislocation densities of the BCC (α/α′) microstructural
constituents were calculated using a modified Williamson-Hall
methodology for each DS-T and DS-A heat treatment condition
(HajyAkbary et al., 2015). The calculated dislocation densities for

FIGURE 5 | (A, B) Relative dilatation vs. temperature for the DS-A heat treatments, indicating trends in Ms temperature with increasing austempering time.

FIGURE 6 | Retained austenite volume fraction as a function of
tempering or austempering time for the DS-T and DS-A heat treatments
(Jatczak, 1980). The retained austenite fraction for the initial condition,
DS: 800°C, 30 s, is also indicated. Error bars represent the standard
error of three measurements in each heat treatment condition.
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the BCC microstructural constituents are shown as a function of
tempering or austempering time in Figure 7. With increasing
tempering time, the dislocation density of the BCC
microstructural constituents in the DS-T heat treatment
condition decreased. For example, the dislocation density
following the 10 s tempering hold has been reduced to 1.44 ×
1015 m−2 as compared to the DS: 800°C, 30 s condition with a
dislocation density of 3.86 × 1015 m−2. The final dislocation
density, following the tempering treatment at 450°C for 300 s,
is 4.7 × 1014 m−2. The magnitude of dislocation recovery which
occurs during tempering is similar to other low-carbon
martensitic steels (Swarr and Krauss, 1976; HajyAkbary et al.,
2015).

In the DS-A condition, the dislocation density of the BCC
microstructural constituents was constant with increasing
austempering time, with an average value of 1.7 × 1015 m−2.
The dislocation densities of the DS-A conditions were reduced
compared to the dislocation density of DS: 800°C, 30 s sample, the
base condition for all of the DS-A heat treatments. As previously
discussed, either bainitic ferrite or blocky ferrite is expected to
form during the austempering hold. The dislocation density of
bainitic ferrite is slightly reduced as compared to martensite,
while the dislocation density of blocky ferrite is expected to be
consistent with the low dislocation density of intercritical ferrite
(Bhadeshia, 1992). As the formation of blocky and bainitic ferrite
was ongoing throughout the austempering heat treatment, as
indicated by the volume expansion observed in the relative
dilatometric curves shown in Figure 4, the constant value of
BCC phase dislocation density with increasing austempering time

may suggest that the modification of dislocation density
associated with the formation of blocky and/or bainitic ferrite
was not significant enough to be reflected in the dislocation
density measurements.

TKD maps were made for samples following the DS-A and
DS-T heat treatments. In Figure 8, 6 × 6 μm2 TKD maps of the
DS: 800°C, 30s, DS-T: 450°C, 300 s, and DS-A: 450°C, 300 s heat
treatment conditions are shown. The TKD map of the DS: 800°C,
30 s heat treatment condition is included for reference. When
analyzing the resulting TKD maps, image quality (IQ) was often
used to differentiate ferrite from athermal martensite or bainitic
ferrite. Image quality is a parameter which describes the Kikuchi
pattern quality or sharpness. Image quality is represented as
brightness when overlaid with phase or inverse pole figure
(IPF) data, with increased brightness corresponding to
increased IQ. As IQ has been shown to be very sensitive to
lattice distortion and therefore dislocation density, it can be useful
in differentiating between a low dislocation density phase, such as
recrystallized ferrite with an average dislocation density of 0.37 ×
1014 m−2, and phases with increased dislocation density such as
bainitic ferrite and martensite with dislocation densities
approaching 4 × 1015 m−2 (Bhadeshia, 1992; Maki, 2012).

The TKD map of the DS-T: 450°C, 300 s heat treatment
condition, shown in Figure 8B, suggests the microstructure is
composed of tempered martensite, retained austenite and ferrite.
The increased brightness of the BCC phase indicates that overall
image quality has increased as compared to the DS: 800°C, 30 s
condition, likely due to a reduction in the dislocation density of
martensite during tempering. Aside from the increased image
quality of the BCC phase, the distribution in grain size appears
relatively unchanged from the DS: 800°C, 30 s condition. This is
consistent with the microstructural changes observed for
tempering of low-carbon lath martensite within this
temperature range (Swarr and Krauss, 1976; Krauss, 2017).
The measured austenite volume fraction from TKD was
22.2 vol pct as compared to the 19.2 vol pct measured using XRD.

In the DS-A: 450°C, 300 s heat treatment condition the TKD
map, shown in Figure 8C, indicates a microstructure of bainite
and/or athermal martensite, ferrite, and retained austenite.
Bainite cannot be differentiated from athermal martensite as
both phases are expected to have a BCC or near BCC crystal
structure, fine grain size, and relatively high dislocation density. A
few ferrite grains, evident from their large size and increased
image quality, are dispersed throughout the DS-Amicrostructure.
Most notably, two large ferrite grains with irregular shapes are
present in the bottom right corner of the imaged area. The large
size and irregular shape of these ferrite grains are indicative of
blocky ferrite growth during austempering. This is consistent
with previous studies of austempered TRIP steels containing
intercritical ferrite, which suggest that the formation of both
bainitic ferrite and blocky ferrite may occur during austempering
(Gallagher et al., 2003; Speer et al., 2004). Excluding the two
aforementioned ferrite grains, the microstructure is very similar
to that of the DS: 800°C, 30 s condition, shown in Figure 8A. The
measured retained austenite volume fraction from TKD was
11.8 vol pct in this region, as compared to 19.2 vol pct
measured using XRD.

FIGURE 7 | Dislocation density as a function of tempering or
austempering time for the DS-T and DS-A heat treatments, calculated using
the modified Williamson–Hall methodology from XRD line scans (HajyAkbary
et al., 2015). Error bars represent the standard error for an average of
three measurements in each heat treatment condition.
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The uniaxial engineering stress-engineering strain and work
hardening rate-true stress curves, generated using the DS-T and
DS-A heat treatments, are presented in Figures 9, 10, respectively.
Only two austempering or tempering heat treatment times, 30 and
300 s, are plotted. This is because the tensile properties were very
similar for the DS-A or DS-T heat treatments, across all the
tempering or austempering times considered. The measured
tensile properties for all the conditions are summarized in
Table 1. The application of a tempering treatment was shown
to significantly improve the elongation of the 0.14C–7.17Mn steel
as compared to the DS: 800°C, 30 s heat treatment condition.
Improvements in elongation with the application of the DS-T heat

treatment were accompanied by a reduction in UTS. For example,
with increasing tempering time, TE increased from 22.9 pct
following a 10 s tempering treatment, to 28.3 pct following a
300 s tempering treatment. For these same DS-T conditions,
UTS decreased from 1,408MPa to 1,340MPa for the 10 s and
300 s tempering treatment, respectively. Following the DS-T heat
treatment, YS was substantially increased as compared to the DS:
800°C, 30 s heat treatment condition while UTS was reduced.
Additionally, the application of the tempering heat treatment
was shown to reintroduce discontinuous yielding and reduce
the work hardening rate as compared to the base, DS: 800°C,
30 s heat treatment condition.

FIGURE 8 | TKD phase map overlaid with image quality (top) and inverse pole figure map (IPF) overlaid with IQ (bottom) for the (A) DS:800°C, 30 s (B) DS-T:
450°C, 300 s and (C) DS-A: 450°C, 300 s heat treatment conditions. (Color image - see PDF).

FIGURE 9 | (A) Engineering stress-strain and (B) true work hardening rate as a function of true stress for the DS-A 0.14C-7.17Mn steel following austempering at
450°C for 30 or 300 s. The plastic instability criterion (dσ/dε � σ) is indicated by the dashed line.

Frontiers in Materials | www.frontiersin.org March 2021 | Volume 7 | Article 6221318

Glover et al. DS-T and DS-A Manganese Steels

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


The tensile curves generated using the DS-A heat treatment
are shown in Figure 10. All of the DS-A tensile samples
demonstrate continuous yielding, similar to the DS: 800°C,
30 s heat treatment condition. Following yielding, all the DS-A
samples exhibit a high rate of work hardening, which is reduced
slightly with increasing austempering time. Additionally, with
increasing austempering time the elongation of the DS-A samples
is significantly improved, while UTS is slightly reduced. This is
most evident in the DS-A: 450°C, 300 s condition where the TE
has increased to 21.7 pct, from 12.5 pct in the base condition (DS:
800°C, 30 s). Comparing these same heat treatments, UTS is
reduced by 33–1,675 MPa in the DS-A: 450°C, 300 s heat
treatment condition. The combination of increased elongation,
while maintaining a high UTS, leads to substantial improvements
in the strength-ductility product of the 0.14C-7.17Mn steel with
the application of the DS-A heat treatment.

DISCUSSION

The tempering of athermal martensite through the DS-T heat
treatment, was found to produce a microstructure with moderate
strength and elongation. Discontinuous yielding was

reintroduced, likely due to dislocation recovery during the
tempering heat treatment, which has been shown to occur at
temperatures of 450°C in low-carbon martensitic steels (Swarr
and Krauss, 1976; HajyAkbary et al., 2015). A reduction in
dislocation density resulting from the DS-T heat treatment
was documented through both the modified Williamson-Hall
measurements, which suggested a steady reduction in dislocation
density across all tempering times considered, as well as the
increased IQ of the BCCmicrostructural constituents in the TKD
map of the DS-T: 450°C, 300 s heat treatment condition.
Additionally, it should be noted that discontinuous yielding
may also be exacerbated by the UFG size of both BCC and
FCC microstructural constituents present in the DS-T heat
treatment conditions (Carlton and Ferreira, 2007; Morooka
et al., 2008; Gao et al., 2014). No additional phase
transformations occurred as a result of the tempering heat
treatment, as documented using dilatometry.

Following the DS-T heat treatment at 450°C for 10 s YS was
increased substantially as compared to the DS: 800°C, 30 s heat
treatment condition, from 957 MPa to above 1,200 MPa. The
increase in yield strength may be attributed to precipitation of
tempering carbides, carbon segregation to dislocations during
the tempering heat treatment. The reduction in work hardening

FIGURE 10 | (A) Engineering stress-strain and (B) true work hardening rate as a function of true stress for the DS-T 0.14C-7.17Mn steel following tempering at
450°C for 30 or 300 s. The plastic instability criterion (dσ/dε � σ) is indicated by the dashed line.

TABLE 1 | Tensile properties for the DS-T and DS-A medium manganese steels.

Heat treatment Yield strength Tensile strength Uniform elongation Total elongation UTS · TE
°C s MPa MPa pct pct GPa × pct

DS 800 30 957 1,708 11.8 12.5 21.3
DS-T 450 10 1,246 1,408 19.4 22.9 32.3
DS-T 450 30 1,218 1,369 23.8 27.4 37.5
DS-T 450 60 1,193 1,310 18.7 27.3 35.8
DS-T 450 300 1,213 1,340 24.5 28.3 38.0
DS-A 450 10 1,045 1,733 13.3 15.6 27.1
DS-A 450 30 1,133 1,776 14.0 15.9 28.3
DS-A 450 60 1,074 1,680 14.4 15.9 26.8
DS-A 450 300 1,148 1,675 19.1 21.7 36.4
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rate and UTS are likely related to microstructural changes
resulting from the tempering heat treatment. Similar heat
treatments, applied to low-carbon martensitic steels, have
been shown to reduce dislocation multiplication during
plastic deformation, and modify the strain-induced
transformation of austenite (Swarr and Krauss, 1976; Hidalgo
et al., 2017; Krauss, 2017). Overall, the DS-T heat treatment
produced an improved combination of strength and ductility,
while demonstrating the importance of athermal martensite and
the resulting elevated mobile dislocation density in preventing
discontinuous yielding.

The DS-A heat treatment was shown to produce a
microstructure containing athermal martensite and retained
austenite, along with some fraction of blocky or bainitic
ferrite. This resulted in an excellent combination of tensile
properties, with significantly improved elongation and only a
slight reduction in ultimate tensile strength as compared to the
DS: 800°C, 30 s heat treatment. The mechanical properties of the
DS-A heat treatment conditions may be linked to
microstructural changes which occur during the
austempering heat treatment. During the application of the
austempering heat treatment, volume expansion was noted in
dilatometric data, with the magnitude of the volume expansion
increasing with austempering time. This is consistent with the
transformation of FCC austenite to BCC blocky or bainitic
ferrite. The formation of blocky or bainitic ferrite during the
austempering hold was also supported by the TKD map of the
DS-A: 450°C, 300 s heat treatment condition, which indicated
the BCC microstructural constituents were composed of a
mixture of larger blocky ferrite as well as ultra-fine bainitic
ferrite and/or athermal martensite. The TKD mapping also
indicated that significant volume fractions of austenite were
retained following the DS-A heat treatment, consistent with
austenite phase fractions measured using XRD. Upon
quenching from the austempering hold, the Ms temperature
associated with the transformation of austenite to athermal
martensite was observed to decrease with increasing
austempering time. When taken together, the dilatometric,
XRD, and TKD results are consistent with the formation of
blocky or bainitic ferrite during the austempering hold, with
carbon diffusion out of the newly formed BCC microstructural
constituents and into the surrounding austenite.

The documented microstructural changes which result from
the austempering heat treatment help to explain the mechanical
properties produced by the DS-A heat treatment. Increasing the
carbon concentration of austenite would likely increase the

strength of athermal martensite (which forms from secondary
austenite) and increase the resistance of retained austenite to
deformation-induced transformation. Both of these changes may
result in an improved strength-ductility combination.
Additionally, the measured dislocation density following the
DS-A heat treatment was 1.7 × 1015 m−2 which is reduced
slightly compared to the base, DS: 800°C, 30 s heat treatment.
This may be attributed to the reduced dislocation density
associated with the formation of either blocky or bainitic
ferrite, as compared to athermal martensite. As continuous
yielding is still evident in all of the DS-A heat treatment
conditions, the mobile dislocation density in the initial
microstructure is still sufficient to prevent discontinuous yielding.

In summary, the addition of either a tempering or
austempering heat treatment to double soaking of a medium
manganese steel was shown to increase the strength-ductility
product and produce mechanical properties desired for the third-
generation of AHSS. In all instances, the mechanical properties
produced by the DS, DS-A and DS-T heat treatments represent a
significant increase in strength as compared to medium
manganese steels which undergo a single intercritical
annealing heat treatment. Overall, this work highlights
additional opportunities to modify the mechanical properties
of medium manganese steels by substituting athermal
martensite, tempered martensite or bainitic ferrite for ferrite
through the implementation of novel processing routes.
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