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Research in the orthopedic application has attracted the scientific community to design
and develop advanced, engineered synthetic scaffolds that possess all the essential
cues properties necessary for successful regeneration and restoration of tissue
function. Despite having the best surgical practices, nosocomial infections like
surgical site infections can negatively impact the outcome of the scaffolds that are
intended only for regenerative purposes. Therefore, there is a need to include anti-
microbial properties as one of the parameters while designing a scaffold. There are
various methods implemented to tackle microbial colonization such as modifying the
scaffold surface that deflects microbes from surface adhesion and modifying the
scaffold surface by inactivating microbes upon contact while maintaining the
biocompatibility of the scaffold and also maintaining the scaffold viable for new bone
formation. This review lists various anti-microbial polymers and compounds available in
nature and methods to incorporate them into the scaffold with polymer and ceramics as
the base material, without compromising bioactivity. We have reviewed various anti-
microbial compounds, biomaterials and have also identified various biomolecules
(vitamins, phytochemicals and anti-microbial peptides) that can be utilized for
orthopedic application.
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HIGHLIGHTS

1. Antimicrobial action can be from added nanoparticles, chemicals or chemical modifications on
the polymer.

2. Metal, ceramics and carbon based nanoparticles and their modification in the scaffold are
identified.

3. Phytochemicals, vitamins and anti-microbial peptide with anti-microbial properties are reviewed.
4. Possible chemical modification of polymer with innate anti-microbial properties are discussed.
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INTRODUCTION

With 2.2 million bone graft procedures performed per year, bone
becomes the second most transplanted tissue followed by blood
(Kashte et al., 2017). Even though autografts were considered the
“Gold standard”, their availability, donor site morbidity, and
increased risk of infection has made researchers to seek for
alternative materials that fulfill the advantages autografts
possess. Over the years, the design aspects of synthetic grafts
have been modified to incorporate the requirements of the grafts
that they are intended for. 1) Initially, the synthetic graft was
meant to serve the mechanical needs of the host tissue but not to
interact with them. Metals like titanium and its alloy, polymers
like PMMA, PEEK, and ceramics like alumina and zirconia were
used. 2) Then, the material design of synthetic graft was further
modified by incorporating bioactive compounds like calcium
phosphates, calcium sulfates, along with polymers that degrade
with time in vivo that includes synthetic polymers like PCL, PLGA,
PGA, PLA, etc., and natural compounds like gelatin, collagen, and
bioactive glasses were used. 3) Later, it was further modified by
incorporating growth factors like compounds and compounds
that modify according to external stimuli (Qu et al., 2019). Based
on the evolution of synthetic graft’s design requirement the
scaffold can be defined as a three dimensional template that
provides biophysical, chemical and mechanical stimuli essential
for successful tissue regeneration, restoration and function.

United States faces approximately 500,000 surgical site
infections per year. 25% of open fractures have a risk of
infection based on severity of fracture (Schmitt, 2017). This
may result in complications like non-unions or delayed unions
of bones (Lee et al., 2015). Osteomyelitis (bone marrow
inflammation) is predominantly caused by S. aureus in bone.
Other microorganisms frequently involved are P. aeruginosa
and methicillin resistant S. aureus (MRSA), S. epidermidis,
E. coli, E. faecalis, E. faecum. 30–60% percent of infection is
caused by Staphylococcus aureus (Hofstee et al., 2020).
Osteomyelitis can be caused through 1) infection spreading
through blood stream, 2) infection spreading through adjacent

focus of infection and 3) diabetic foot infection (Brit et al., 2017;
Schmitt, 2017). The general treatment involves surgery
i.e., aggressive debridement of necrotic tissue followed by
antibiotic therapy. Antibiotic therapy involves vancomycin,
ciprofloxacin, cloxacillin, gentamycin, clindamycin, and/or
their combination through the intravenous route (del Pozo
et al., 2018). In most cases, nosocomial infection, an infection
caused by organisms from skin flora as a result of fracture,
diabetics, are more prevalent in causing osteomyelitis (Schmitt,
2017). 25% of open fractures have a risk of infection based on how
severe the fracture is (Schmitt, 2017).

Even with the usage of appropriate surgical techniques, pre and
post-operative procedures, all the orthopedic and related surgeries
are at risk of bone infection. There is about 20–30% relapse of
osteomyelitis, even after surgical debriment and/or anti-microbial
therapy for 4–6 weeks (Bhattacharya et al., 2013). Due to
insufficient blood supply, the required amount of antibiotics
does not reach the target site, also, biofilms are growing
resistant towards antibiotics (Bhattacharya et al., 2013).
Therefore, one section of research is focused on incorporating
antibiotics or their cocktail into the scaffold that locally deliver
antibiotics to the infected site. Some of the antibiotics incorporated
biodegradable antimicrobial orthopedic scaffold are listed in
Table 1. The diagnosis, classification, treatment for
osteomyelitis are discussed elsewhere (Scherping and Aaron,
2007; Witso, 2014; Winkler, 2017).

Currently, the antibiotic loaded scaffold available in the
market are OSTEOSET® T (Humm et al., 2014) containing
tobramycin sulfate, STIMULAN® (Kallala et al., 2018)
containing antibiotics like vancomycin, gentamicin or
tobramycin and injectable bone substitute like CERAMENT|G
eluting gentamicin (Drampalos et al., 2018). There are various
scaffolds, designed to release anti-microbial agents on demand on
the site of infection. Even if the microbe is dead, the presence of a
dead microbe can still be a site for antibiotic resistant biofilm
formation (Johnson and Garcia, 2015). But also, there is very
limited studies on cytotoxic effects, long term effects of antibiotics
eluting scaffold and its involvement in bone’s regeneration
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capacity Figure 1. Therefore there is a need to design a fourth
generation orthopedic scaffold that, also has anti-microbial
property so that it not only prevents microbial adhesion,
inactivates microbes but also reduces the need for anti-
microbial therapy for long term use without compromising
bone’s regeneration capability. This review describes favorable
factors of microbial and osteoblast interaction on the scaffold and
the host, essential to describe a suitable biodegradable resorbable
antimicrobial orthopedic scaffold design.

SCAFFOLD DESIGN PARAMETERS THAT
OPPOSE MICROBIAL ADHESION AND ITS
MATURATION
Design on degradable anti-microbial scaffold was aimed 1) to
avoid external microbial ambush before implanting and 2) to
eliminate established network of microbe in the host tissue.

Microbial adhesion on the scaffold surface is one of the
complex multifactorial problems. External microbial ambush

can be avoided by devising strategies that prevent microbial
adhesion before it forms permanent bond with the substratum
as in Figure 2. Microbial adhesion and biofilm formation on the
surface has four stages: 1) transport of micro-organism to the
surface, 2) initial but reversible binding to the surface, 3)
permanent binding, and 4) colonization. The details of biofilm
formation and cell to cell communication for both Gram-negative
and positive species is discussed elsewhere (Arciola et al., 2018; Lu
et al., 2019). Factors that determine microbial adhesion on
biomaterials are 1) roughness and topography, 2) surface
energy or charge, 3) hydrophilicity or hydrophobicity, and 4)
chemical composition of the surface Figure 3. The following
subsections will discuss the surface factors that can be tuned
against initial microbial adhesion.

Roughness and Topography on the
Biomaterial Surface
One way to reduce bacterial colonization is by providing less
contact surface area for adherence. Many of the naturally

FIGURE 1 | Properties considered while choosing biomaterials for scaffold over generations (Qu et al., 2019).

TABLE 1 | Effect of antibiotics used in scaffold towards osteoblasts and microbes function.

S.
no

Antibiotics Polymer(s)/
ceramic

Effect
on biological function

References

1 Roxithomycin PCL/PEG ↑Anti-bacterial activity against S. aureus than E. coli. ↑Viability of MG63 Bai et al. (2020)
2 Minocycline

hydrochloride
PLA/collagen/HA ↑Anti-bacterial activity against S. aureus. ↑P, ↑OD of hMSC. Martin et al. (2019)

3 Levofloxacin PU/HA/silica ↑OD of BMSC. ↑Anti-bacterial activity against S. aureus and E. coli co-culture Kuang et al. (2019)
4 Amoxicillin Bredigite ↑Anti-bacterial activity against S. aureus and E. coli. ↓MG63 adhesion ↑amoxicillin

concentration
Bakhsheshi-Rad et al. (2018)

5 Vancomycin PLGA/Bioactive
glass

↑P, ↑OD of hBMSC. Anti-bacterial activity against S. aureus Cheng et al. (2018)

6 Enoxacin PLGA/Mg scaffold ↓P of S. aureus and S. epidermidis and ↑P of NIH-3T3 and ↓osteoclast and activity Li et al. (2016a), Li et al.
(2016b)
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available surfaces like Wings of cicada (Psaltoda claripennis),
dragonfly (Diplacodes bipunctata), damselfly (Calopteryx
hemorrhoidalis), taro leaves (Colocasia esculenta), and
gecko skin (Lucasiuum steindachneri) has high aspect ratio
nanostructures on their surface making them bactericidal on
contact. Many studies have tried to mimic, evaluate and
analyze the bactericidal efficiency of nanostructures
arrangement and geometry. Such nanostructures were
successfully implemented on the surface of various metallic
and polymeric non-degradable implants. Bactericidal
efficiency differs between Gram-positive and Gram-
negative bacteria. Their difference in shape, cell membrane
thickness, motility and plane of cell division, ruptures
the cell membrane of bacteria that differentiates the
nanotopography’s bactericidal efficiency (Diu et al., 2014;
Bhadra et al., 2015; Kelleher et al., 2016; Tsimbouri et al.,
2016; Wu et al., 2018; Linklater et al., 2019). Studies on
wrinkled patterns on polymer surface provide combinations
of nano and microstructures that prevents microbial
colonization (Nguyen et al., 2020). Scaffolds prepared
through electrospinning provide roughness and topography
essential for reduced bacterial contact.

Surface Charge, Surface Energy and
Wettability of the Biomaterial Surface
The second mode of making an anti-bacterial surface is by
utilizing materials with surface charge. Bacteria at biological
pH have a negative surface charge. Gram-negative bacteria
have a highly negative charge and hydrophilic surface in
comparison to Gram-positive bacteria. The lipopolysaccharide
renders Gram-negative bacteria a more negative charge than
Gram-positive bacteria. When positively charged nanoparticles

from metal and metal oxide are used, they get attached to the cell
wall due to electrostatic interaction and they get pulled into the
bacteria. These nanoparticles not only alters cell membrane’s
structure and permeability but also causes ion homeostasis,
catalyzes proteins to inactive and produces reactive oxygen
species (ROS) (Raghunath and Perumal, 2017). Similar to
nanoparticles, polycations adhere to the membrane surface
leading to membrane integrity disruption. In quaternary
ammonium chitosan salts, an increase in the alkyl group
rendered a strong anti-bacterial effect for both Gram-negative
and Gram-positive bacteria (Rabea et al., 2003). The hydrophobic
alkyl group got inserted or penetrated into phospholipid bilayer
causing cytoplasmic leakage and cell death in E. coli and S. aureus.
The presence of a cationic group in the main polymer chain has
more anti-bacterial activity in comparison with side chain
cationic polymers and small molecule cationic compounds
(Guo et al., 2018). These mechanisms do actively kill bacteria.

Other mechanism is to passively drive away the bacteria from
the surface. One way is to repel the bacteria by using negatives
charged surface instead of killing them (Abbaszadegan et al.,
2015). The second way is to delay bacterial adhesion is by using
hydrophilic polymer brushes on the biomaterial surface and also
by using a hydrophilic surface (Nejadnik et al., 2008). Pidhatika
et al., 2010 used cationic hydrophilic polymer brushes to repel
E. coli by providing both electrostatic repulsion and steric
hindrance. Additional, factors that affect bacterial adhesion are
temperature, time of exposure, bacterial concentration, the
presence of antibiotics, environment electrolyte concentration
and surface chemistry (Filipović et al., 2020). Similar concept
applies to other microbes as well.

The above discussions focusses on the anti-adhesive properties
of scaffold towards microbes. But the presence of fimbriae and
flagella on the microbes plays a key role in overcoming all the

FIGURE 2 | Stages of biofilm formation.
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initial barriers between the cell and substratum (scaffold surface
and/or animal tissue) and irreversibly attach. In host, microbes or
it’s colonies enter through iatrogenic or hematogenous routes and
attachs to extra cellular matrix of bone by identifying adhesive
molecules thereby forming biofilm (Hofstee et al., 2020). Similarly
when a scaffold is inserted into host, the conditioning provided by
the host can also be suitable for microbial attachment to the
surface (De Cesare et al., 2019). Biofilms are established complex
network of irreversibly attached microbes on substratum
encapsulated by extracellular polymeric substances (EPS).
Depending on the environment they are developed, biofilm
may also contain non-cellular substances. The extensive details
on EPS properties is discussed elsewhere (Donlan, 2002).

Bacteria’s presence in host activates innate immune responses.
Planktonic microbes are usually eliminated by phaogocytosis,
oxidative bursts and by production of antimicrobial peptides,
proinflammatory cytokines and chemokines. But microbial
colonies has protective network that protects them from
immune cells attack. Once a biofilm is established, they
become impenetrable by immune cells and they start evolving,
bone matrix becomes their nutrient source, osteoclastogenesis is
promoted, inhibits bone formation thereby bone tissue loss
(Hofstee et al., 2020).

For an established biofilm, changes in the physical
properties like roughness and topographies of the scaffold
doesnot affect EPS of biofilm. But EPS can be polycationic
in case of Gram-positive bacteria and polyanionic in case of
Gram-negative bacteria and EPS can be hydrophilic or
hydrophobic (Donlan, 2002). Therefore, the scaffold have to
be designed based on the organism that caused osteomyelitis.
Usually, higher dose of antibiotic supplement on site using
scaffold, but, biofilm tends to evolve. Therefore, these scaffold
should be redesigned to possess all chemical elements that can
penetrate and eliminate biofilm and also support
osteoblastogenesis.

SCAFFOLD DESIGN PARAMETERS THAT
SUPPORT ORTHOPEDIC TISSUE
ENGINEERING
Tissue engineering on scaffold usually deals with mimicking the
environment necessary for the successful restoration of tissue and
its function. Scaffold for bone regeneration should be
biocompatible, bioresorbable, biodegradable, should not create
immunogenic responses, should have interconnected pores, it
should support angiogenesis along with osteogenesis, should
have strength similar to the original tissue along with the
characteristics discussed in physical cues, so that it is anti-microbial.

Bone is a complex matrix and vascularized connective tissue that
aids in locomotion. The chemical composition of bone can be
classified into mineral phase and organic phase. The mineral phase
of bone consists of hydroxyapatite and other trace levels of impurities
like carbonates, sodium, magnesium, chlorine, fluorine, potassium,
strontium, silicon, zinc, chromium, cobalt, and manganese. The
organic phase consists of collagen I and non-collagenous proteins
like osteocalcin, osteopontin, and alkaline phosphatase. Even though
collagen I is present in abundance there are other types III, V and VI
are present too (Neto and Ferreria, 2018).

Fabricating ideal scaffold deals with providing adequate,
favorable biophysical, chemical and mechanical properties to
manipulate complex interplay of various factors in the system
towards the regeneration process. Physical and chemical
properties play an important role in determining stem cell
fate. Physical property that induce stem cells to differentiate
towards osteogenic lineage and increase the activity of
osteoblast that can be incorporated while designing scaffold
are discussed here.

Roughness and Topography
Roughness and topography has a greater influence on directing
stem cell towards osteogenic lineage and modulate immune cell

TABLE 2 | Effect of vitamins towards osteoblast's function.

S.
no

Vitamin Polymer(s)/ceramic Encapsulation
strategy

Other
compounds
(if present)

Effect on
biological function

References

1 D3 PCL Layered double
hydroxide

— ↑P and no significant increase in ALP activity of
MG63

Belgheisi et al. (2020)

2 HA PCL/PEG — ↓Osteoclastic activity Vu and Bose (2019)
3 PCL/gelatin — HA ↑P, ↑ALP, ↑early OD, ↑M of hADSCs Sattary et al. (2019)
4 Gelatin Layered double

hydroxide
HA ↑P, ↑ALP, ↑M of G-292 Fayyazbaksh et al.

(2017)
5 E Poly(hydroxy butyrate) — Bioactive glass ↑P of MG63 Misra et al. (2009)
6 β-Tricalcium phosphate PCL — No coating on β-Tricalcium phosphate lead to

↑ALP of hFOB
Bose et al. (2019)

7 Titanium — HA ↑P of hFOB and ↓P of MG63 Sarkar et al. (2020)
8 Poly urethane grafted

vitamin C
— — ↑P, ↑ALP, ↑collagen-I of osteoblast progenitor

cell
Zhang et al. (2003)

9 K HA Poly xylitol sebacic
adibate

— ↑ALP and ↑M on day 10 in MSC Dai et al. (2019)

10 K2 PCL, gelatin,
poloxamer 188

— — Vitamin coated fiber has ↑P, ↑ALP of SaOS-2 Alam et al. (2019)
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response. They are directly linked to the number of focal adhesion
point which increases stem cell’s stiffness and thereby increasing
osteogenic expression (Yang et al., 2020). Micro/nanotopography
that supports higher spreading area and giving rise to polygon like
cell morphology supports osteogenic lineage commitment of stem
cells. Similarly, a study on honeycomb like microstructure promoted
osteogenic differentiation of hADSC (Zhang et al., 2020a; Zhang
et al., 2020b). Additionally, nanotopographies regulate immunological
response. Macrophages grown on the surface with grooves showed
cytoskeletal structure reorganization and change in phenotype from
M1 to M2 (Luu et al., 2015). Surfaces like nanotubes and nanofibers
have also shown reduced inflammatory response by switching the
phenotype of macrophages from M1 to M2 (Chen et al., 2017).
Topography induced change in stem cell’s stiffness showed biphasic
behavior with respect to the degree of osteogenesis. hMSC cultured on
the topography that supported osteogenic differentiation presented
with higher focal adhesion area, higher cell stiffness triggered YAP
translocation to the nucleus (Yang et al., 2020).

Pore Size and Porosity
Pore size, porosity and pore interconnection are one of the
essential factors involved in scaffold construction. They are
necessary for cellular infiltration, nutrient exchange, cellular
waste removal and gas transport. Pore structure and size
affects osteogensis and inflammation suppression (Zhu et al.,
2020). Very small pores about 100 µm supports cell adhesion and
proliferation. Pores above 325 µm supports cell migration. Pores
in the range of 290–310 µm exhibit faster bone formation (Dave
and Gomes, 2019). Therefore, scaffold having hierarchial pore
structure will cell adhesion, proliferation, differentiation and
migration of stem cells.

Degradation
The term degradation in our context can be defined as gradual
breakdown of a material mediated by specific biological activity
by host. Similarly, the term resorption can be defined as
elimination or completely absorption of degraded scaffold (Liu
et al., 2017). Tuning scaffold degradation with bone remodeling is
one important aspect in designing biodegradable and resorbable
scaffold. Scaffolds undergo degradation when they are exposed to
body fluids and the scaffolds properties changes as a result of
chemical, physical, mechanical and biological interaction
between scaffold and the surrounding environment.
Degradation can be classified into oxidation and hydrolysis.
These reactions may be catalyzed by acids, bases, salts or
enzymes (Azevedo et al., 2005). Degradable scaffolds increase
the pore size of scaffold with time for oxygen, water and cellular
permeation (Dave and Gomes, 2019). Degradation also provides
dynamic surface topography and roughness and regulates cell
response.

Surface Charge and Wettability
When the scaffold is placed in the site of interest for bone
regeneration, proteins get adsorbed to the surface from the
blood within seconds. The surface on which the protein is
adsorbed gives appropriate signals to recruit cells and perform a
healing cascade. Adhesion of monocyte promotes local
inflammation. Hydrophobic materials enhance whereas
hydrophilic or neutral surface decreases monocyte adhesion
(Jones et al., 2007; Hezi-Yamit et al., 2009; Chen et al., 2016a;
Chen et al., 2016b). When it comes to surface charge, rat bone
marrow mesenchymal stem cells cultured in basal medium on
LibNO3, showed higher cell spreading and directed its fate towards
osteogenic lineage on a positively charged substrate compared to
a negative and neutral substrate (Li et al., 2015). When
osteoblast cell line MC3T3-E1 cultured on charged
poly(ethylene glycol)-diacrylate hydrogel, proliferation and
differentiation increased with increased for both positive
and negative charge with higher surface charge density (Tan
et al., 2018). This was because the mammalian cell membrane is
neutrally charged and contains zwitterionic phospholipids,
lipopolysaccharides, and lipoteichoic acid in its structure
(Glukhov et al., 2005). Regarding apatite formation, initially,
the usage of a negatively charged surface was preferred over
neutral and positively charged surface when the study was
conducted on polarized hydroxyapatite surface. The main
reason being negative charge can attract Ca2+ ions and other
proteins responsible for apatite formation and cell growth (Ohgaki
et al., 2001). When a similar study was conducted on charged
titanium surfaces, positively charged surface allowed apatite
formation like their negative counterpart (Pattanayak et al.,
2012) and bone has grown on the surface of positively charged
titanium (Kokubo et al., 2010). But on the surface with no charge
thin calcium phosphate layer did form but not as effective as
charged surface (Pattanayak et al., 2012). Therefore, hydrophilic
surface with high charge density supports cell adhesion and
mineralization.

FIGURE 3 | Scaffold surface properties that can be tuned to incorporate
anti-microbial properties.
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KEY QUESTION: HOW TO MODULATE THE
DESIGNPARAMETERSOFADEGRADABLE
SCAFFOLD THAT HAS A PREFERENCE
FOR BONE GROWTH OVER MICROBIAL
ADHESION?

Based on the discussion from “Scaffold Design Paramaters
That Oppose Microbial Adhesion and its Maturation and
Scaffold Design Parameters That Support Orthopedic Tissue
Engineering” the following conclusion on the desired properties
of a biomaterial suitable to support osteoblast adhesion along with
antibacterial property, has been listed below.

(1) The roughness of the scaffold should be in the range of
0.2–2 µm (Hasan et al., 2017.

(2) Hydrophilic scaffold is preferable as it offers passive
resistance towards microbes and better mammalian cell
adhesion (Jones et al., 2007; Nejadnik et al., 2008; Hezi-
Yamit et al., 2009; Chen et al., 2016a; Chen et al., 2016b).

(3) Charges on the surface are preferred. The positive charge will
give active bactericidal activity, negative charge will offer
passive electrostatic repulsion. If the surface is zwitterionic
(has both the charges but resulting in net zero charge), they
produce a hydration layer that prevents bacterial adhesion by
creating a physical and energetic layer (Vallet-Regi et al.,
2020) and better osteoblast adhesion.

Generally, biodegradable and bioresorbable scaffold materials
for bone tissue engineering scaffold can be classified into ceramics
and polymers based on the base mater. To make scaffold with
anti-microbial property, the following approaches can be
followed:

(1) To use a degradable and resorbable base material of scaffold
that possess anti-microbial property,

(2) By modifying the surface with a suitable charge/functional
group that aides bone formation and repels microbes,

(3) By incorporating suitable nanofiller that enhances osteogenesis
and/or bactericidal or adding filler that possesses all the desired
property by surface or chemical modification of filler with ions
or molecules and

(4) By blending or grafting scaffold with anti-microbial adhesive
polymers or

(5) By using the combination of the above-mentioned strategies.

The following sections discuss about nanofillers, biomolecules,
plant based extracts and biodegradable polymers that has both
antimicrobial and osteogenic property.

Scaffold With Metal Based Substitutions/
Fillers
Other than the ionic and chemical makeup of bone, bone
remodeling is a complex interplay of growth factors, signaling
molecules, and cells. Growth factors included in the scaffold
activates cascades of active bone repair, but they are associated

with disadvantages like immunogenicity, instability, and high cost.
To counteract the disadvantages, metallic ion or its oxide
incorporation with or without incorporation of other ions and
small molecules are investigated to make scaffold osteoinductive
along with anti-microbial properties. Even though new anti-
microbial drugs are researched, microbes can eventually develop
resistance towards it. The optimal approach is to design scaffold that
releases ions whose dosage and release kinetics support osteogenesis
and eliminate microbes. Some of the ions are discussed in the
section below.

Ceramic Scaffolds
Hydroxyapatite comprises 65% of bone mass comprises. They
provide bone with high strength and toughness. The presence of
ionic substituents in biological hydroxyapatites and their nano
size makes them highly reactive and has the potential in
maintaining ionic equilibrium in the body fluids (Ginebra
et al., 2018). While designing ceramics like calcium
phosphates, calcium silicates, and hydroxyapatites they are
usually doped with ions that are responsible for increased
osteoblast activity, angiogenesis, and anti-bacterial activity.
Some of them are discussed in the table. Hydroxyapatites
though osteoconductive they are not osteoinductive.
Therefore the ratio of calcium to phosphate is modified
accordingly to get better solubility. If the ratio is less than
1.5, the calcium phosphate has a higher solubility than
hydroxyapatite. This was because, the presence of more
phosphate ion makes the surrounding acidic, which
eventually dissolves the ceramic e.g. the solubility of
monocalcium phosphate monohydrate is highest with 18 g/L
in water at 25 °C (Ginebra et al., 2018). Initially, the usage of
hydroxyapatite in the scaffold was because of their presence in
bone. But as research progressed, it was observed that this
ceramic can house various element in their interstices and
their ions can be substituted to give rise to a range of
modified ceramic that can not only enhance the attachment,
proliferation, and differentiation of osteoblast like cells but can
also induce angiogenesis along with anti-microbial property.
Other than the conventional substitutions like zinc, copper,
silver, a new class of elements like molybdenum, gallium,
selenium, bismuth, tellurium, samarium and cerium also
found to possess anti-microbial property against both Gram-
negative and positive bacteria and certain fungal strains too (The
detailed explanation of anti-microbial activity will be discussed
in the following section). Increasing metal ions attributed to
microbial death, increased the anti-microbial activity but at the
cost of mammalian cell cytotoxicity. Cytotoxicity of metal ion
substitution depends on their extent to metal ion substitution,
dosage and their release kinetics. The effect of different ionic
substituents on the biological functions of ceramics towards
osteoblasts and microbes is given in Supplementary Table S1.

Scaffolds With Metal and/or Metal Oxides
Nanoparticles
As microbes grow resistant against antibiotics, the demand for
alternative antimicrobial therapy that can replace the limited
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antibiotic options increased. Over the years it has been
established that metal and metal oxide nanoparticles possess
antimicrobial activity by the following mechanisms: 1)
damaging the outer membrane by increasing permeability,
disrupting electron transport chain leading to cellular content’s
leakage, 2) producing ROS to inactivate respiratory chain activity,
and 3) DNA damage, thus disturbing gene replication of bacteria
(Nostro et al., 2012; Pasquet et al., 2014; Thukkaram et al., 2014;
Sirelkhatim et al., 2015; Li et al., 2016a; Li et al., 2016b; Mohan
and Mala, 2019; Li et al., 2020a; Li et al., 2020b; Li et al., 2020c; Li
et al., 2020d; Sánchez-López et al., 2020). They have diverse
application in dentistry. For example, silver nanoparticles used in
dental resin has good antibacterial activity against S. mutans and
S. sobrinus (Foong et al., 2020).

Along with antimicrobial activity, nanoparticles serve multiple
functions. They can be used to deliver bioactive agents, increase
the mechanical strength of scaffold and with their controlled
release from scaffold, nanoparticle can enhance biocompatibility,
cell adhesion and proliferation.

Nanoparticles like, silver and silver oxide, copper and copper
oxide, gold, zinc and zinc oxide, aluminum and alumnia,
magnesium and magnesium oxide, Titanium and titania,
zirconium and zirconia and iron oxide possesboth osteogenic
and antimicrobial property. Among them certain metals like zinc
and magnesium are responsible for increased synthesis of
collagen, ALP, osteocalcin and matrix mineralization (O’Neill
et al., 2018). Zinc is present in bone up to 39 ppm and up to
10–4 M in blood. Zinc is essential for bone metabolism, the
paucity of zinc in the diet leads to abnormalities in bone
growth, reduced bone mineral density, and might lead to
osteoporosis in the later stage (Yamaguchi, 1988; Yamaguchi,
2010; O’Neill et al., 2018). The activity of zinc on osteoblast is
dose-dependent. Zinc positively influences osteoblast in the
narrow concentration of 1–50 μM, above this concentration
they do not inhibit osteogenic activity but they become
cytotoxic at a very high concentration of 600–900 µM
(O’Connor et al., 2020). Magnesium is present at about
0.6–0.72 wt% in bones. Dietary intake of magnesium increases
bone mineral density and tougher bones. This was because the
incorporation of magnesium in hydroxyapatites made the crystal
size smaller but stronger (Orchard et al., 2014). Low magnesium
reduces the function of osteoblast while increasing the number of
osteoclast. It also creates resistance towards parathyroid hormone
and 1,25(OH)2-vitamin D. Magnesium deficiency reduces anti-
oxidant defenses, making bone brittle, fragile, impairs mechanical
property leading to hypomagnesemia. But high magnesium
content inhibits hydroxyapatite content by competing with
calcium contributing to osteomalacic renal osteodystrophy
(Castiglioni et al., 2013).

Metal and metal oxide nanoparticles at higher concentrations
possess toxicity. Because of their small size, shape, charge and
surface functional group these nanoparticles can diffuse across
the cell or nuclear membrane, can be engulfed, disturb
mitochondria and interfere in nucleus function thereby
causing cytotoxicity and genotoxicity (Baptista et al., 2018; Lee
et al., 2019; Wang et al., 2020). They donot undergo

biodegradation, hence, their retention time is longer (e.g. some
nanoparticle like copper donot get degraded by the body. They
get accumulated in body causing Wilson’s disease) (Varier et al.,
2019).

These nanoparticle’s antimicrobial and osteogenic activity can
further be enhanced or the cytotoxicity of the nanoparticle can be
reduced by doping it with other metal ions (Rao et al., 2013;
Baptista et al., 2018; Saxena et al., 2018; Saxena and Pandey, 2020)
that are present in bone and grafting biomolecules/polymer on its
surface (Hasan et al., 2018). The extent of cytotoxicity can also be
reduced by tuning the concentration, release kinetics of
nanoparticle from the scaffold and their degradation. The
effect of commonly used metal and metal oxide nanoparticles
on scaffold towards osteoblasts and microbes function is given in
Supplementary Table S2.

Scaffolds With Carbon Based Fillers
Carbon based nanomaterials has a versatile nature and has
profound use in biomedical application. Their high surface to
volume ratio, smaller size, modifiable surface charge, functional
groups, wettability, their stability, and strength makes them
suitable for bio sensors, drug delivery, tissue engineering and
exhibit good anti-microbial properties. The following sections
discusses about the anti-microbial and osteogenic potential of
allotropes of carbon namely 1) carbon dot, 2) nanodiamond, 3)
carbon nanotube, and 4) graphene.

Carbon Dot (CD)
Carbon dots are zero-dimensional material whose lateral size is
below 10 nm. CDs have carbon core and functional groups on the
surface by surface passivation. Carbon dots can be easily and
economically produced from any carbon source, either by
breaking down large carbon molecules and polymerizing (top-
down approach) or by carbonizing small molecules (bottom-up
approach). The surface functional group can be introduced by
using a carbon source that has the desired functional group and/
or by modifying the CD through hydrogen bond, covalent bonds
and, electrostatic interaction. The common reactive functional
groups are hydroxyl, carbonyl, and amine (Du et al., 2014; Liu
et al., 2016).

In vitro CDs exhibited mild cytotoxicity above 80 μg/ml for
preosteoblast and supported osteogenesis of preosteoblasts and
faster bone formation with blood vessel formation in vivo through
PERK-eLF2α-ATF4 pathway (Jin et al., 2020). Similarly, CDs
exhibited mild cytotoxicity above 50 μg/ml for rBMSC and
supported osteogenesis using ROS-mediated MAPK pathway
(Shao et al., 2017). CDs also exhibit anti-microbial activity
electrostatically interacting with the cell wall (Verma et al.,
2019; Li et al., 2020a; Li et al., 2020b; Li et al., 2020c; Li et al.,
2020d) and ruptures them, generates ROS (Verma et al., 2019)
and also helps in eliminating mature biofilm. Their performance
is on par with vancomycin (Wang et al., 2019a; Wang et al.,
2019b; Wang et al., 2019c; Wang et al., 2019d). CDs anti-
microbial activity was improved by coating with polymers like
methyl polyethylene glycol/polyethyleneimine (Liu et al., 2020a;
Liu et al., 2020b).
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Nanodiamond (ND)
Nanodiamonds have truncated octahedral architecture whose size
is in the range of 2–8 nm. They are inert, biocompatible, and can be
functionalized, which makes them an ideal candidate to be used in
delivering therapeutics and bone tissue engineering. NDs have
shown good biocompatibility, osteogenic potential (Ibrahim et al.,
2018) and anti-microbial property. Details of NDs osteogenic
potential in various scaffolds is listed in Supplementary Table
S3. NDs supports osteoblast adhesion over S. aureus (Rifai et al.,
2019). NDs with negative or positive charge has shown anti-
bacterial against E. coli and B. subtilis. This was because
negative charged NDs penetrated bacterial cell, agglomerated
and generated ROS because of the presence of high oxygen
functional groups. Whereas positive surface charged NDs,
attached to the surface of bacteria due to electrostatic force and
caused little cell wall deformation making them less bactericidal
(Wehling et al., 2014). Similarly, hydroxyl functionalized ND and
its modification with menthol (Turcheniuk et al., 2015) and ND
grafted with hydrophilic copolymer also showed anti-bacterial
against E. coli and B. subtilis (Cao et al., 2018).

Carbon Nanotube (CNT)
Carbon nanotubes are one-dimensional allotrope, whose diameter
ranges from 10 to 200 nm. CNT can be single-walled or multi-
walled. The ability to surface functionalize, excellent tensile property,
and mimicking nanostructure makes them suitable for bone tissue
engineering. Even though unmodified CNTs are relatively toxic,
surface functionalizing and grafting molecules like HA (Song et al.,
2019) or a polymer like gelatin (Yoon et al., 2014) that covers the
surface to reduce its toxicity. In terms of anti-microbial property,
surface functionalizing theMWCNTwith -COOHby acid oxidation
can delay the growth of V. parahaemolyticus but not completely

deactivate it (Ding et al., 2020). But ethanol amine graftedMWCNT
causes significant microbial toxicity. The order of toxicity was
triethanolamine > diethanolamine > monoethanolamine along
with it the triethanolamine grafted MWCNT caused higher
toxicity with lower minimum inhibitory concentration (MIC)
(Zardini et al., 2014). To further enhance the anti-microbial
property, CNTs can be decorated with metal (Jatoi et al., 2020)
or metal oxides nanoparticles or both (Mohammed et al., 2019).
Similarly, anti-bacterial activity can be enhanced by grafting amino
acids like arginine and lysine (Zardini et al., 2012).

Graphene
Graphene is a two-dimensional allotrope of carbon that has
honeycomb lattice with an atomic bond length of 0.142 nm.
Apart from possessing good mechanical, electrical, and thermal
property, their high surface area and their effective surface
modifications can be used as a drug carrier and also in various
tissue engineering fields. Graphene exhibits high anti-bacterial
property by damaging the surface of bacteria through its sharp
edges, inducing oxidative stress within the bacteria, and stabilizing
surface through electrostatic interaction due to wrapping. This
property was further enhanced by coating nanoparticles on the
surface of graphene (Mohammed et al., 2020).

Several scaffolds prepared using graphene as filler has shown
that the presence of graphene has supported and improved the
commitment of stem cells towards osteogenic lineage in vitro
(Table 3). Presence of graphene activated RhoA/Rho-associated
protein kinase that increased the formation of F-actin stress fiber
and also for Smad signaling activation for osteogenesis (Xie et al.,
2019). Graphene oxide, a derivative of graphene showed toxicity
towards MSC abpve 1 μg/ml concentration by generating high
intracellular ROS. At low concentration of 0.1 μg/ml graphene

TABLE 3 | Effect of phytochemicals on scaffold towards osteoblasts and microbes.

S.
no

Plant extract
or phytochemical

Polymer(s)/ceramic Encapsulation
strategy

Effect on
biological function

References

1 C. quadrangularis extract Chitosan, collagen and HA PCL, PVA
nanoparticles

Slow release of extract. Proliferation of MC3T3-E1 is not
affected

Thongtham et al.
(2020)

2 PLA — ↑P, ↑ALP of rMSCs Parvathy et al. (2018)
3 Chitosan and sodium

carboxymethyl cellulose
— Early ALP activity and ↑M of SaOS-2 Tamburaci et al. (2018)

4 O-carboxy methyl chitosan
and alginate

— ↑P, ↑ALP and ↑M of hMSCs Soumya et al. (2012)

5 M. tenuiflora extract Chitosan — ↑P and ↑ALP of primary calvaria osteoblast Martel-Estrada et al.
(2015)

6 C. quadrangularis and B.
monosperma extract

Sulfonated poly aryl ether
ketone

— ↑ALP and ↑Mof SaOS-2 in the order ofB. monosperma
coated > C. quadrangularis coated than uncoated
Sulfonated poly aryl ether ketone

Raghavan et al. (2013)

7 Veratic acid PCL, PVP Chitosan
nanoparticle

↑M of mMSCs at 200 µM Sruthi et al. (2020)

8 Mucic acid PLA, gelatin — ↑ALP, ↑M of mMSC at 10 µM Ashwin et al. (2020)
9 Taurine PLA, PCL Gelatin nanofiber Supports bone cell proliferation in vitro and bone

regeneration in vivo
Samadian et al. (2020)

10 Sinapic acid PCL Chitosan
nanoparticle

↑ALP, ↑Col-I, ↑osteocalcin of mMSCs. Possible
activation of TGF-β1/BMP/Smads/Runx2 signalling
pathway at 50 µM

Balagangadharan et al.
(2019)

11 Silibinin Alginate, Gelatin Chitosan
nanoparticle

↑M of mMSC at 50 µM Leena et al. (2017)
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oxide enhanced osteogenesis through NJK and FoxO1 signaling
pathway activation (Halim et al., 2019).

Eventhough the carbon based nanofillers prove to posses all the
physical cues essential for osteogenic and anti-microbial activity, their
major limitation lies in ease of manufacture, their nondegradability
property therby carbon nanofillers get accumulated and generate
excesses ROS in vivo. The effect of commonly used metal and metal
oxide nanoparticles on scaffold towards osteoblasts and microbes
function is given in Supplementary Table S3.

Scaffolds With Vitamins
Ionic balance is essential for active bone remodeling. Also,
Vitamins do help in active absorption of ions for bone.
Vitamins like A, B complex, C, D, E, and K are essential for
maintaining bone in optimal health (Ahmadiesh and Arabi et al.,
2011). Among them, some possess anti-microbial property
as well.

Vitamin D is a lipophilic protein responsible for bone
formation, resorption, and regeneration. This vitamin helps in
the absorption of ions like calcium and phosphorous essential for
bone metabolism, absence of which causes osteoporosis in old
age. Higher levels can cause calcification along with heart, blood
vessels, and kidney damage. Vitamin D gets activated to calcidiol
or calcitriol by UV irradiation of cholesterol in the skin. This
vitamin losses it functionality upon exposure to light heat and
oxidation. Vitamin D promotes anti-microbial activity by
stimulating anti-microbial peptide production of LL-7 and
β-defensin and also induces nitric oxide production
(Herscovitch et al., 2014; Fayyazbaksh et al., 2017; Sattary
et al., 2019).

Vitamin E is an anti-oxidant that express anti-inflammatory
property. They are usually added into the polymer to render it
biocompatible. Initially, it was assumed that vitamin E possess anti-
bacterial activity. Campoccia et al. (2015), observed that the addition
of vitamin E or vitamin E acetate reduced the adhesion of S. aureus
and S. epidermidis. Similarly, when vitamin E acetate and vitamin E
phosphate, vitamin E acetate have better anti-adhesive property
towards S. epidermis but vitamin E phosphate has better anti-
adhesive property towards S. epidermis than S. aureus. Vitamin E
phosphate has excellent prevention of biofilm towards S. epidermis
than S. aureus, than vitamin E acetate. Vitamin E acetate and vitamin
E phosphate does not have anti-adhesive property and does not
prevent the biofilm formation of P. aeruginosa (Bidossi et al., 2017).
When vitamin E phosphate is coated on titanium implant, they
stimulated bone deposition even in presence of high bacterial load of
3 × 104 CFU of S. aureus in the rat model (Lovati et al., 2018).

Vitamin B2 or otherwise called riboflavin is a water-soluble
vitamin that usually gets absorbed in the small intestine into
blood. Riboflavin supplemented diet can prevent pathogenic
infection. Experiments suggested that riboflavin has shown a
higher zone of inhibition towards both the Gram strain of
bacteria along with C. albicans (Ahgilan et al., 2016).
Riboflavin-low density polyethylene composite at 5% percent
loading showed 99.44% reduction of E. coli and 94.31%
reduction of S. aureus (Orusuwan et al., 2019).

Vitamin C is a water-soluble anti-oxidant, that aides in
collagen synthesis necessary for bone formation. It also

inhibits osteoclasts and various types of cancers including
lung, pancreas, oral, cervical, and esophageal. To know the
effect of vitamin C on effective bone formation,
ovariectomized rats were subjected to diets with Vitamin C. It
was observed that vitamin C has increased the calcium content in
bones, bone mineral density and bone volume fraction.
Osteoblast related protein expression like bone morphogenic
protein-2 (BMP-2), osteocalcin, collagen-I has increased and
reduced osteoclast related protein expression (Choi et al.,
2019). Vitamin C also exhibited anti-bacterial property against
E. coli and S. aureus (Voss et al., 2018). Some studies show that
vitamin C at a concentration of 0.31 mg/ml inhibits P. aeruginosa
and at 0.15 mg/ml inhibits S. aureus growth. Even at near neutral
pH, vitamin C has potent anti-microbial activity against
streptococci (Mousavi et al., 2019).

Vitamin K is lipophilic and has osteoinductive properties, whose
dietary intake increases bone mineral density by producing more
osteocalcin and other osteoblast specific genes and reduce
osteoclastogenesis. Vitamin K5 has anti-microbial activity. At
concentrations of 80, 120, 140, and 220 ppm they are bactericidal
towards S. aureus, B. subtilis, P. vulgaris, P. fluorescens, and E. coli
(Merrifield and Yang, 1965). The reason is lipophilic substances
permeabilize the cell membrane of bacteria, damaging themembrane
integrity, causing cell lysis and death (Andrade et al., 2017).

Vitamins along with antibiotics showed synergic effect aginst
microbes. The presence of vitmins lowered the MIC of
antibiotics. One such example is that vitamin B2 with
oxytetracyline or linezolid was effective against MRSA
(Shahzad et al., 2018). Similarly, vitamin B2 with
ciprofloxacin and azithromycin was effective against MRSA
by enhancing ROS production but also ensures host cells
protection from inflammation damage (Dey and Bishayi,
2016). Even though vitamins had good anti-microbial
property, their stability was the drawback. Factors like
temperature, moisture, oxygen, light, pH, oxidizing and
reducing agent, presence of metallic ions and other
compounds, presence of other vitamins and the combinations
of above affected their stability or activity (Ottaway, 2010).
These factors can be lowered by using an appropriate
encapsulation strategy using a polymer, porous nanoparticles
or by intercalating between layered nanoparticle.

Scaffolds With Phytochemicals
Natural compounds obtained from plant based extracts have been
used to treat ailments for ages. Some of them possess osteogenic
properties and has been documented in Indian and Chinese
traditional medicine. For nearly 2 decades, the compounds
responsible for osteogenic and anti-microbial activity has been
individually identified and the research on this front is
incomplete. Some of the phytochemicals or plant based extract
that has both osteogenic and anti-microbial activities are
discussed in this section.

Shrubs like Cissus quadrangularis possess vitamin C, vitamin
A, carotene, and anabolic steroidal substances along with ions like
calcium, phosphorus, zinc, iron, sodium, cadmium, copper and
magnesium essential for their use in bone tissue engineering.
They also possess anti-osteoporosis, anti-bacterial, bone fracture
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healing activity along with free radical scavenging and anti-
oxidant potential. The fresh and dried stem extracts of C.
quadrangularis showed anti-oxidant activity and it is also
observed to have high anti-bacterial activity against Gram-
positive bacteria like B. subtilis, B. cereus, S. aureus than
Gram-negative bacteria like P. aeruginosa and E. coli but they
exhibited significantly higher resistance towards plant extracts
(Chidambara Murthy et al., 2003). When patients with
maxillofacial fracture were supplemented with 500 mg of C.
quadrangularis thrice a day for 6 weeks, showed less tissue
reaction, early callus formation and complete new bone
formation in 7 weeks (Brahmkshatriya et al., 2015). C.
quadrangularis diet inhibits bone loss in ovariectomized mice
(Banu et al., 2012).

Medicarpin, cajanin, formonentin, isoformonentin, cladrin
present in ethanol extract from the bark of Butea monosperma
found to possess osteogenic activity (Maurya et al., 2009).
Medicarpin treatment generated new bone in ovariectomized
and osteopenic mice models by activating Wnt/canonical and
notch signaling pathway (Dixit et al., 2015). They have
osteoblastogenic, anti-osteoclastogenic activity, and increases
bone volume fraction (Tyagi et al., 2010). Also, prevents bone
loss in ovariectomized and collagen-induced arthritis models
(Mansoori et al., 2020). Medicarpin also possesses anti-fungal
activity towards Cladosporium cladosporioides (Bandara et al.,
1989). They usually get distributed in the liver, bone marrow,
small intestine, lungs, and kidney and gets excreted from the body
via urine (Taneja et al., 2020).

Dalbergia sissoo also known as Indian Rosewood, whose leaves
extract was rich in phytoestrogens, which exhibits bone forming
property. Phytoestrogens are naturally occurring, chemically
similar to 17 β-estradiol, which are metabolized and can be
eliminated from the body. Phytoestrogens possess
osteoprotective and fracture healing properties (Khedgikar
et al., 2017). It restores bone mineral density, bone volume
fraction, and mineralization by enhancing osteoblast and
reducing osteoclast activity in ovariectomized rats (Karvande
et al., 2017). Ethanolic extract from bark showed higher anti-
bacterial activity towards S. aureus, M. leteus and E. aerogenes
than leaves. Both bark and leaf extract showed little anti-fungal
activity against A. niger, A. alternate, and S. commune (Majeed
et al., 2019). Dalbergia sissoo also possesses polyphenolic
compounds that belong to a class of neoflavonoids, exhibited
anti-oxidant and anti-inflammatory properties. Dalbergin is a
neoflavinoid enhanced ALP activity, mineralization, enhanced
bone volume fraction, osteoblast, and reduced osteoclast
expression in ovariectomized rats (Choudhary et al., 2016).
Dalbergia sissoo based magnesium oxide particle showed good
anti-bacterial activity against E. coli and R. solanacearum (Khan
et al., 2020).

Ethanolic extracts from the flower of Pterospermum
acerifolium contains 17 compounds. Among them,
pterospermin A (4’-(2-methoxy-4-(1,2,3-trihydroxypropyl))
phenoxy luteolin), pterospermin C (3,5-dihydroxyfuran-2(5H)-
one) and trans-triliroside showed higher ALP activity,
mineralization and osteoblastic gene expression in the
concentration range of 10–100 pM (Dixit et al., 2011).

Similarly, seed coats of Pterospermum acerifolium contains two
phytoceramides (A and B), two acylated phytosterol (A and B),
and five other compounds. Among them, the two phytoceramides
at 1 nM concentration, increased ALP activity, mineralization,
and osteoblastic gene expression. When neonatal pups of
1–2 days old were treated with phytoceramides A and B at
10 mg/kg showed higher expressions of osteoblast (Dixit et al.,
2012). Extracts from the bark of Pterospermum acerifolium
showed promising antibacterial activity against B.
lichenoformis, S. aureus, P. florescence and S. typhimurium
(Panda and Dutta, 2011).

Extract from fruits of Cupressus sempervirens contains sugiol,
trans-communic acid, 15-acetoxy imbricatolic acid and
imbricatolic acid had effects on calvarial derived osteoblast
cells. Among them, sugiol has good mineralization potential
and expressed high osteogenic markers like BMP-2. On
ovariectomized rat, dietary intake of 1 mg/kg of rat exhibited
osteoprotective property and also improved biomechanical
properties of the bone (Khan et al., 2014). The methanol
extract of Cupressus sempervirens showed anti-bacterial activity
against E. faecalis, S. aureus, K. pneumonia, and P. aeruginosa
(Selim et al., 2014).

Ethanol extract of Peperomia pellucida is found to have
fracture healing property. When rats with drill-hole femur
injury surgery were orally administered with 200 mg/kg
showed higher calcein content and bone volume fraction. In
vitro study with BMSC also confirms high mineralization and
osteoblastic gene expression (Ngueguim et al., 2013). Mineral
content in aqueous extract contains potassium, phosphorous,
magnesium, calcium, and sodium. Administration of aqueous
extract increased calcium level and ALP in serum and bone,
concluding that it has dose-dependent fracture healing property
(Florence et al., 2017). Essential oil and extract from leaves, stem,
flowers, and even the whole plant has anti-bacterial and anti-
fungal properties (Alves et al., 2019).

Ulmus wallichiana also known as Himalayan elm is used to
heal bone fractures in Indian traditional medicine. The bark of
Ulmus wallichiana contains a flavanol called (2S,3S)-
Aromadendrin-6-C-β-D-glucopyranoside that stimulates
osteoblast expression, maturation and also during estrogen
deficiency. It also inhibits bone marrow cells towards
osteoclast differentiation giving them an osteoprotective
property. It also inhibits adipogenic differentiation and
induces apoptosis and does not evoke undesirable effects in
the uterus (Swarnkar et al., 2011). Similarly, compounds like
quercetin-6-C-β-D-glucopyranoside, ulmoside A, and B were also
found to have an osteogenic property (Rawat et al., 2009). Also,
naringenin-6-Cglucoside increased ALP activity and osteogenic
gene expression and maintains bone volume fraction in
ovariectomized mice (Swarnkar et al., 2012). Ethyl acetate
extract from the bark of Ulmus wallichiana has a better anti-
oxidant property and showed greater anti-bacterial activity
against E. coli, B. subtilis, S. aureus, P. aeruginosa and anti-
fungal activity against A. fumigates and A. flavus than chloroform
extract (Bora et al., 2018).

Tinospora cordifolia in ayurvedic medicine is considered as
“nectar of immortality” because of various property it possesses.
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Ethanolic extract of Tinospora cordifolia increased ALP activity,
mineralization in both MG3 and osteoblasts, and also acts as an
osteoprotective agent (Abiramasundari et al., 2012). They possess
anti-oxidant activity (Saha and Ghosh, 2012) and also different
extracts of this species possess anti-microbial activity against S.
epidermidis, E. faecalis, S. aureus, P. aeruginosa, K. pneumonia,
E. coli, P. mirabilis, S. marcescens, C. freundii, C. koseri and E.
cloacae (Narayanan et al., 2011).

Achyranthes bidentata is used in one of the herb formula in
Chinese medicine for bone and mineral metabolism. Butanolic
extract from the root (He et al., 2010), alkaline
crude polysaccharide ABPRB (Zhang et al., 2018a; Zhang et al.,
2018b), AB70 water soluble polysaccharide (Zhang et al., 2019) in
ovariectomized rat, fructan ABW50–1 (Yan et al., 2019) and
polysaccharide ABPB-2 (Zhang et al., 2018a; Zhang et al., 2018b)
in zebrafish model of glucocorticoid induced osteoporosis, induced
osteoprotective effect. Oral dosage of 500mg/kg/day for 16 week in
ovariectomized- osteoporosis induced rats maintained bone volume
fraction and bone mineral density (Zhang et al., 2012). Fructan
ABW70–1 increased proliferation, ALP activity, mineralization and
osteogenic gene expression in MC3T3-E1 (Zhang et al., 2019).

Scutellarian 7-O-β-D-glucopyranoside present in butanol
fraction of Kigelia pinnata between the concentration range of
10 nM and 1 µM showed higher ALP activity and mineralization
in calvarial osteoblast (Ramakrishna et al., 2017). The methanol
extract of leaves and bark extract of Kigelia pinnata exhibited
good anti-bacterial activity against S. aureus, B. suubtilis, E. coli
and P. aeruginosa and anti-fungal activity against C. albicans
(Agyare et al., 2013).

Withania somnifera also known as Ashwagandha in Ayurveda
has multi-therapeutic purposes. The powder of root contains
phytosterols, polyphenols, flavonoids, and vitamin C that have
anti-arthritic properties (Rasool and Varalakshmi, 2007).
Ethanolic root extract possesses anti-osteoporotic activity
(Nagareddy and Lakshmana, 2006). Withaferin A present in
leaves of Withania somnifera is known to reduce
osteoclastogenic expression and promotes bone regeneration in
ovariectomized mice (Khedgikar et al., 2013; Khedgikar et al.,
2015). Water and chloroform extract from the unripened and
ripened fruit ofWithania somnifera possess anti-bacterial activity
against P. aeruginosa (Singariya et al., 2012) and methanolic leaf
extract inhibits MRSA (Bisht and Rawat, 2014).

Curcumin, a phenolic compound obtained from Curcum
longa is nown for its bone healing properties according to
Indian traditional medicine. They also exhibit anti-oxidant,
anti-inflammatory (Zambrano et al., 2018), anti-tumorigenic
and anti-microbbial properties. The synergistic effect of
curcumin along with antibiotics like oxacillin, ampicillin,
ciprofloxacin, norfloxacin and erythromycin reduced the MIC
of antibiotics aginst MRSA (Zhou et al., 2017).

Epigallocatechin-3-gallate, a polyphenolic compounds from
dried tea leaves has anti-tumor, anti-oxidation and anti-
microbial properties. This polyphenolic compound have been
studied in vitro towards dental adhesive, barrier membrane,
bone substitute material, anti-caries applications. They inhibit
bacterial colonization, improves cell viability, compatibility,
osteogenic activity, and reduces ROS production (Liao et al., 2020).

The listed phytochemicals in this sections are not the only
phytochemicals that has both osteogenic (Suvarna et al., 2018)
and anti-microbial property. The research in the usage of
phytochemicals are still in vitro. The in vivo effect of
phytochemicals and the mechanism that makes them
osteogenic, the maximum dosage and their release kinetics is
still needed to be evaluated. Along with this, the overall cost of
phytochemicals, the shelf life of phytochemicals based scaffold
should be further evaluated.

Polymer Scaffolds With Anti-Microbial
Peptide
To tackle narrow spectrum of antimicrobial agent and microbial
resistance, new class of molecules called anti-micobial peptide
(AMP), derived from immune responses of multicellular
organisms is gaining attention. Many recent studies have been
focused on incorporating AMPs into scaffold for othopedic
application to make them anti-microbial. AMPs are cationic
amphiphilic molecule with 10–50 amino acid residues on their
structure. AMPs disrupt microbial membrane by inserting their
hydrophobic residue through the lipid bilayer and some AMPs
inhibit nucleic acid, protein or cell wall synthesis. The limitations
of AMPs are their in vivo stability, susceptible to inactivation and
undesired cytotoxicity. These limitations can be overcome by
using nanoparticles as the drug delivery system for AMPs
(Makowski et al., 2019), by grafting or immobilizing AMP on
the surface or by attaching non-natural polyglycine (Hasan et al.,
2020a; Hasan et al., 2020b; Castelletto et al., 2020) to offer
protease resistance and enhanced lipid membrane
permeability. Many studies redarding surface grafting on
titanium surface is reported in the literature. When AMP of
polyphemusin I was grafted with diphosphoserine, they inhibited
dental plaque biofilm caused by S. mutans because the
modifications caused tooth binding ability without affecting
the cytocompatibility (Zhang et al., 2019). Similarly, when cationic
peptide LL37 binded with HA to make PCL/HA composite, LL37’s
cytotoxicity was circumvented along with retaining bactericidal
acitivity against S. mutans (Fateme et al., 2019). Also, LL37 was
found to promote odonto/osteogenic differentiation of apical papilla
stem cells (Cheng et al., 2020). When AMP of ponericin G1 and
BMP-2 is encapsulated by polydopamine and coated on PLGA, along
with osteogenic differentiation and mineralization of MCT3-E1, the
scaffold exhibited anti-bacterial activity against E. coli and S. aureus
(Chen et al., 2019).

Polymer Scaffolds and Its Chemical
Modifications
To design an anti-microbial resorbable scaffold, either the polymer
base should possess anti-microbial property or the scaffold should
have anti-microbial nanofiller or extracts within or chemical grafting
antibiotics on its surface. Surface grafting of antibiotics, anti-
microbial polymer or addition of phytochemical extract on the
scaffold has limited shelf life. Therefore there is a need for
polymers that has either innate anti-microbial property or their
chemical modification renders the polymer its permanent anti-
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microbial property and also to reduce the need for anti-microbial
nanofiller or extracts or antibiotics.

Chitosan is a deacetylated form of chitin usually derived from
the exoskeleton of crustaceans has innate anti-microbial
property. They get dissolved only at slightly acidic condition
and their surface charge becomes positive in acidic medium but
not at neutral pH. Amine group, secondary hydroxyl and primary
hydroxyl group in C-2, C-3 and C-6 position are nucleophilic
functional groups in chitosan. Therefore, various modifications
can be done to incorporate permanent positive charge at neutral
pH and enhancing solubility in the aqueous medium. Addition of
alkyl, aromatic, carboxyalkyl, quaternary ammonium groups,
amino acids, and peptides into chitosan are the various forms
to increase its anti-microbial potential. Four models are proposed
for their anti-bacterial mechanisms, 1) electrostatic interaction
between positively charged chitosan derivative with negatively
charged peptidoglycan causing them to hydrolyze, 2) change in
permeability of outer membrane because of ionic interaction
leading to restriction in nutrient transport and osmotic
pressure buildup, 3) perforating cell wall and interacting with
DNA by preventing its transcription and disturbing protein and
mRNA synthesis and 4) higher chelating ability with metal ions
and hindering with microbes overall growth (Sahariah and
Masson, 2017).

Cellulose being a highly renewable biopolymer does not
possess inherent anti-microbial property. Imparting positive
charge on the backbone of cellulose can be done through
quaternary ammonium moiety, aminoalkyl, or aminosioane,
quaternized halamine incorporation. Quaternary ammonium
moiety interacts with cell membrane through electrostatic
interaction. They bind to cell membrane, compromise their
permeability leading to bacterial apoptosis. Aminoalkyl
functionalization on cellulose not only imparts polycationic
nature but also lipophilic. Its lipophilicity increased with
increased chain length which helped the functional groups to
penetrate into cell membrane, therefore, further enhancing its
anti-bacterial effect. Quaternized halamine incorporation into
cellulose releases halogens, thereby, inactivating bacterial cells of
their growth (Tavakolian et al., 2020).

Biopolymers like silk has attracted researchers in orthopedics
for their mechanical property and good processibility. They are
biocompatible and their slow degradation helpful in repairing
critical size defects. Silk provides a better surface for cell adhesion
and mineralization (Bhattacharjee et al., 2017). Anti-bacterial
property of silk has conflicting results. Cocoon components
before and after proessing dinot resist E. coli growth. The
presence of processing chemicals may inhibit or kill bacteria
(Kaur et al., 2014). Silk spun by genetically modified silkworm has
inherent antibacterial activity against E. coli (Saviane et al., 2018).

PCL is one of the extensively studied polymer in tissue
engineering. Even though their performance is excellent in
vivo, they lack anti-microbial property. This lacuna is usually
overcome by adding metal, metal oxides or carbon based filler. A
recent study on grafting poly (Z-Lysine) with PCL showed anti-
bacterial activity. The positively charged lysine get attracted to the
negatively charged cell membrane. PCL being hydrophobic gets
inserted into the cell membrane causing them to rupture and leak

the bacteria’s intracellular contents. The balance between cationic
charge and hydrophilic chain is the key for effective bactericide
(Zhou et al., 2019).

Citrate based polymers do possess anti-microbial activity. Citric
acid in the polymer lowers pH in the cell, chelates with metal ion
and causes damage to proteins, DNA and cell membranes.
Poly(octamethylene citrate) and poly(octamethylene maleate
anhydride citate) has good anti-bacterial activity against E. coli
and S. aureus (Su et al., 2014). Polycitrate and silica polycitrate also
showed anti-bacterial activity against S. aureus (Du et al., 2015).
When poly(octanediol-citrate) crosslinked with poly-ε-lysine, they
showed excellent anti-bacterial activity against E. coli, S. aureus, P.
aeruginosa and E. faecalis (Li et al., 2018).

Similarly, chemical modifications are made to the naturally
available gums that have weak anti-microbial property.
Polyanionic polysaccharides like chichi gum from Sterculia
striata upon acetylation have shown to have higher inhibitory
effect against C. albicans, E. coli, P. aeruginosa, S. typhimurium
and K. pneumonia (Braz et al., 2020). Anionic
heteropolysaccharide like cashew gum from Anacardium
occidentale, with increasing quaternization degree showed
higher anti-staphylococcal activity (Quelemes et al., 2017).
Non-ionic Guar gum when crosslinked with polyacrylic acid
strongly inhibits E. coli and S. aureus (Kaith et al., 2015).

TESTING SCAFFOLDS FOR
ANTI-MICROBIAL PROPERTY

Anti-bacterial activity of scaffolds can be analyzed in vitro using
disc diffusion assay and dynamic contact assay. In disc diffusion
assay, the bacterial suspension is evenly spread across the agar
plate, followed by placing a sterilized scaffold in the middle and
then incubated at 37°C for a particular duration, and then the
diameter of inhibition zone is noted. In dynamic contact assay, the
scaffold is dipped and incubated in the bacterial suspension. Then
the serially diluted bacterial solution was spread on a nutrient agar
plate and cultured at 37°C and CFUs can be counted (Bai et al.,
2020). Similarly, in vitro adhesion studies of bacteria or bacteria
and host cells (osteoblasts and/or macrophages) co-culture
incubated at 37 °C for a specific period, to analyze the bacteria
and cell’s attachment and proliferative ability on surface through
live/dead staining (Mehrjou et al., 2019). To analyse bacteria
colonization and biofilm formation on various subtrates and
antimicrobials efficacy, microtiter plate based model (Nett et al.,
2011) can be used to mimick in vivo ativity. Microtiter plate based
model is one of the cheap but labour intensive study that can be
used to analyse biofilm mass and their metabolic activity under the
influence of antimicrobial agents (Vandecandelaere et al., 2016).
To simulate in vivo environment, 3D in vitromodels are created to
effectively reproduce the bacteria and host interaction in
osteomyelitis (Hofstee et al., 2020).

For chronic osteomyelitis animal model, the Nordon method was
employed. Hole is drilled into the medullary cavity of rabbit’s right
tibia and 0.1ml of 3× 107 CFU/ml of S. aureus suspension in nutrient
media is injected and sealed using bonewax for 4 weeks. Then rabbits
were treated with debridement and the scaffold is inserted. After
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implantation at specific time points, general observations, X-ray
imaging, gross pathology, Micro CT evaluation, and histological
evaluation can be conducted (Wang et al., 2017).

CONCLUSION AND FUTURE SCOPE

This review discussed various nanoparticles be it ceramic, metal
or carbon based along with polymers and its chemical
modification that were used in scaffolds to improve their anti-
microbial and osteogenic activity. These nanoparticles are
extensively studied over years both in vitro and in vivo. The
extent of substitution of metal ion(s) into the ceramic changed the
crystal structure and its solubility. Also, in the case of scaffold
with metal and metal oxides and carbon based nanofiller, the
release kinetics was determined by the degradation of the
polymer, size and concentration of nanoparticle that had a
potential impact in the scaffolds anti-microbial and osteogenic
property. These nanoparticles, have wide range of applications
from bio-imaging, tissue regeneration, drug delivery, and so on.
Due to their small size, large surface to volume ratio, surface
charge, and reactivity, they produce ROS, act as nanoknives, and
their surface charge either repel awaymicrobes or destabilize their
cell membrane. But they get distributed to all the organs, present
in vivo for long term, and mainly produce massive ROS which
becomes cytotoxic till they are degraded by macrophages in vivo
(Yang and Zhang, 2019).

Biomolecules like vitamins, even though they possess dual
properties like anti-microbial and osteogenic activity in vitro,
their in vivo release kinetics and efficacy have to be further
explored. Similarly, AMPs have good antimicrobial property
but their cytotoxicity can be overcome by modulating their
release kinetics by using suitable scaffold design. Their
drawbacks are their storage conditions, stability, and shelf life
are a major concern.

Phytochemical extract is a cocktail of various vitamins, metal
ions, and phytochemicals. Their performance in vivo shows an
excellent osteogenic property. But very few phytochemical extracts
were translated into scaffolds. Therefore, there is a need to elucidate
the osteogenic potential of different components in the extract.
Many traditional Indian plants are used in households of Indian
family for their positive effect in bones. But extensive scientific
studies do lack in that front. There is a need to gather information
about various plants and their phytochemicals from different native
traditions and their potential use in bone tissue engineering.
Drawbacks are difficulty in extraction, separation, purification,
and their large scale production.

Polymers are the base of a degradable scaffold. Except for
chitosan, many polymers requires either chemical modification
or addition of bioactive fillers to impart anti-microbial property.
Currently, it is encouraging to observe the research being focused
on developing and modifying already existing polymers to
possess anti-microbial properties. But ease of synthesis and
reproducibility is one of the concerns in this front. Inspiration
from naturally occurring monomers like citric acid, maleic acid
and tartaric acid are used in polymer synthesis with anti-
microbial property.

While manufacturing and implanting scaffold in vivo, it’s
important to maintain chemical homogeneity of the scaffold and
also to map the spatial-temporal interaction between scaffold and
various cellular activites by it, on it and around it. Various state of
art characterization tools can be employed to study the biological
ultrastucture (using volume electron microscopy and super
resolution optical microscopy) and biochemical composition of
extra cellular matrix (using Raman spectroscopic mapping,
fluorescene imaging and mass spectroscopic imaging). Similarly
one can also employ micro-computed tomography to track the
bone formation in an osteomyelitis model. Also, machine language
tools can be incorporated while studing the images of differrent
phases of scaffold interaction with host and bacteria cells and the
information between different individuals and be processed to give a
predictive model that can be employed to trobleshoot a similar
orthopaedic complications in future (Armstrong and Stevens, 2019;
Kim et al., 2019).

All the advantages that were discussed above are suitable to
minimize microbial adhesion and kill them on contact on the
scaffold. But the dead microbes shield the incoming microbes
from scaffold’s anti-microbial property and provide them a
suitable site for biofilm growth (Goodwin et al., 2016).
Therefore, the nonofiller incorporated inside scaffold upon
degradation, should be able to penetrate inside biofilm and
destabilize them [Example ZnO (Mahamuni-Badiger et al.,
2020) and Carbon dot (Ran et al., 2019)]. Also, the
nanoparticle should be provided with an additional functional
group by attaching biomolecules (Turcheniuk et al., 2015) or
antibiotics on their surface to enhance their properties against
biofilm elimination and reduce microbial mutation against
nanoparticle (Shkodenko et al., 2020).

In spite of the presence of various options to eliminate
microbes and support osteogenesis in vitro, the in vivo efficacy
for a longer term needs to be evaluated. To reduce the antibiotic
toxicity and effective osteomyelitis treatment, a cocktail of iron oxide,
CNT and gentamicin was used in bacterial capturing and effective
microwave assisted bacterial killing of E. coli andMRSA (Qiao et al.,
2020). Similarly, studies that involves a cocktail of nanofillers with
biomolecules on scaffold have to be designed to not only treat
osteomyelitis but also support osteogenesis and their long term in
vivo efficacy can be viewed as on opportunity that can open newer
avenues for an all in one patient specific scaffold that is lacking in the
market for the bone graft.
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Uskoković, V., Iyer, M. A., andWu, V. M. (2017). One ion to rule them all: the combined
antibacterial, osteoinductive and anticancer properties of selenite-incorporated
hydroxyapatite. J. Mater. Chem. B. 5 (7), 1430–1445. doi:10.1039/c6tb03387c

Vallet-Regí, M., Lozano, D., González, B., and Izquierdo-Barba, I. (2020).
Biomaterials against bone infection. Adv. Healthc. Mater. 56, 729–830.
doi:10.1002/adhm.202000310

Vandecandelaere, I., Van Acker, H., and Coenye, T. (2016). A microplate-based
system as in vitro model of biofilm growth and quantification, bacterial persistence.
New York, NY: Humana Press, 53–66. doi:10.1007/978-1-4939-2854-5_5

Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J.,
Li, Y., et al. (2019). Advanced nanostructured materials for environmental
remediation. Nanoparticles: antimicrobial applications and its prospects. Cham:
Springer, 321–355. doi:10.1007/978-3-030-04477-0_12

Verma, A., Arshad, F., Ahmad, K., Goswami, U., Samanta, S. K., Sahoo, A. K.,
et al. (2019). Role of surface charge in enhancing antibacterial activity of

fluorescent carbon dots. Nanotechnology 31 (9), 095101. doi:10.1088/1361-
6528/ab55b8

Voss, G. T., Gularte, M. S., Vogt, A. G., Giongo, J. L., Vaucher, R. A.,
Echenique, J. V., et al. (2018). Polysaccharide-based film loaded with
vitamin C and propolis: a promising device to accelerate diabetic wound
healing. Int. J. Pharmaceut. 552 (1–2), 340–351. doi:10.1016/j.ijpharm.
2018.10.009

Vu, A. A., and Bose, S. (2019). Effects of vitamin D 3 release from 3D printed calcium
phosphate scaffolds on osteoblast and osteoclast cell proliferation for bone tissue
engineering. RSC Adv. 9 (60), 34847–34853. doi:10.1039/C9RA06630F
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GLOSSARY

↑ Increase

↓ decrease

A Adhesion

ADSC Adipose derived stem cell

ALP Alkaline phosphatase

AMP Anti-microbial peptide

Ang Angiogenesis

BMP-2 Bone morphogenic protein-2

BMSC Bone marrow derived MSC

BV Bone volume

CD Carbon dot

CFU Colony forming units

CNT Carbon nanotube

Col-I Collagen I

HA Hydroxyapatite

L132 Human cervix carcinoma cells

M Mineralization

MC3T3-E1 Osteoblast precursor cell line from mouse

MG63, SaOS-2, U-2 OS Different osteosarcoma derived cells

MIC Minimum inhibition concentration

MRSA Methicillin-resistant S. aureus

MSC Mesenchymal stem cell

MW Multiwall

ND Nanodiamond

OB Osteoblast

OC Osteoclast

OD Osteogenic differentiation

P Proliferation

PCL Poly(ε-caprolactone)

PEEK Polyetheretherketone

PEG Polyethylene glycol

PGA Poly glycolicacid

PLCL Poly (lactide -co- caprolactone)

PLLA Poly(l-lactic acid)

PLGA Poly (lactic -co- glycolic acid)

PMMA Polymethyl methacrylate

PU Polyurethane

PVA Polyvinyl alcohol

PVDF Polyvinylidene fluoride

PVP Polyvinylpyrrolidone

S Solubility

SW Single wall
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