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In this study high-entropy alloys (HEAs) were devised based on a new alloy design
concept, which breaks with traditional design methods for conventional alloys. As a novel
alloy, HEAs have demonstrated excellent engineering properties and possible
combinations of diverse properties for their unique tunable microstructures and
properties. This review article explains the phase transition mechanism and mechanical
properties of high-entropy alloys under the thermal-mechanical coupling effect, which is
conducive to deepening the role of deformation combines annealing on the structure
control and performance improvement of high-entropy alloys, giving HEAs a series of
outstanding performance and engineering application prospect. To reach this goal we
have explored the microstructural evolution, formation of secondary phases at high and/or
intermediate temperatures and their effect on the mechanical properties of the well known
AlxCoCrFeNi HEAs system, which not only has an important role in deepening the
understanding of phase transition mechanism in AlxCoCrFeNi HEAs, but also has
important engineering application value for promoting the application of high-entropy
alloys.
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INTRODUCTION

The design and development of structural materials that are suitable for extreme environments such
as high temperatures, cryogenic environments, or situations that involve irradiation and corrosion,
etc., are a high priority in the fields of materials science and technology. Modern technological
developments in engineering, particularly in the nuclear, turbine, and aerospace industries, require
new structural materials to provide higher performance than the currently available commercial
alloys. Cantor et al. (2004) and Yeh et al. (2004) took the lead in adapting the traditional design
methodology of alloys in 2004 and proposed the novel concept of alloy design, in which five or more
elements are mixed in equiatomic or near equiatomic concentrations, such that the high
configurational entropy ΔSconfmixing could promote single-phase-disordered solid solutions
formation, e.g., fcc-centered cubic (fcc), body-centered cubic (bcc) or hexagonal close-packed
(hcp) disordered phase (Troparevsky et al., 2015; Yuan et al., 2017; Tan et al., 2018a; Lu et al.,
2018). High-entropy alloys (HEAs), also called multi-principal element alloys (Senkov et al., 2015) or
complex concentrated alloys (Gorsse et al., 2017), have attracted attention on account of their
superior performance in many aspects and broad application prospects (Li et al., 2016; Wang et al.,
2017c; Guo et al., 2017; Tan et al., 2017; Wang et al., 2018a; Tan et al., 2018b; Gao et al., 2019; George
et al., 2020). The appearance of HEAs has made alloy design central to phase diagrams, making it
possible to obtain more potentially unique microstructures and properties.
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In the field of HEAs, solute and solvent cannot be applied in
the conventional alloy and the theoretical strengthening system
needs to be verified. The optimization of the mechanical
properties of high-entropy alloys is thus challenging. Recently,
studies have focused on overcoming the strength-ductility trade
off, by introducing high-density nano-twins in the grains (Lu,
2016; Schneider et al., 2020), as processing fine grains combined
with nanoscale precipitates even distribution within the grains
(Zhao et al., 2020b; Guillot et al., 2020; Yu et al., 2020), controlling
the lattice misfit between intermetallic nanoparticles and matrix
(Miracle, 2015; He et al., 2016a; Zhang et al., 2019) and producing
materials with a heterogeneous structure (Sun et al., 2018; Wu
et al., 2019; Du et al., 2020). The successful preparation of eutectic
high-entropy alloy (EHEA) provided a new way to optimize the
phase structure of HEAs by combining the ductile phase (e.g., fcc
solid-solution phase) with the hard phase (e.g., bcc solid-solution
phase or intermetallics) (Lu et al., 2014; Tan et al., 2019). This
structure design could be realized through a simple and effective
way of thermal-mechanical processing, offering a feasible strategy
for a new generation of high-strength and high-toughness HEAs.
Through cold rolling and annealing processing, the size, volume
fraction, and distribution of the nano-sized particles (L12-Ni3(Ti,
Al), L21-(Ni, Co)2TiAl, sigma (σ) or μ intermetallic phases)
formed within the fcc phase matrix of HEAs could be
controlled effectively, improving strain hardening ability by
interacting with dislocations in plastic deformation (He et al.,
2016b; Liu et al., 2016). An excellent balance between strength
and ductility was obtained in the as-cast AlCoCrFeNi2.1 EHEA
(Lu et al., 2014). After extra heavily cold rolling and annealing, it
showed significant improvement in tensile properties, with an
ultimate tensile strength (UTS) of 1,200 MPa and elongation to
failure (ef) ∼12% (Wani et al., 2016). Through cold rolling and
subsequent annealing, different types of precipitates were formed
within the matrix of the FeCoNiCrTi0.2 HEA, improving strength
and ductility at the same time (Tong et al., 2019). It is expected
that the mechanical properties of HEAs could be successfully
tailored using simple thermo-mechanical processing and further
extended to bulk engineer materials for industrial application.

Earlier studies have tended to focus on single-phase HEAs
with equal atomic ratio. However, phase stability is easily be
impacted by alloying or moderate temperature annealing, which
has a further effect on mechanical properties (Zhang et al., 2017;
Macdonald et al., 2019). In addition, there are often some fatal
disadvantages concomitantly, in that poor fluidity and castability
may cause considerable chemical inhomogeneity in single-phase
HEAs (Lu et al., 2014; Lu et al., 2017). It is hard to achieve
excellent balanced tensile properties, e.g., the single fcc phase
HEAs are usually soft while the single bcc phase HEAs are hard
and brittle (Wang et al., 2012; Guo et al., 2013; Liu et al., 2019b).
Thus, researchers have increasingly kept a watchful eye on not
only the single-phase HEAs but also multiphase HEAs. By
altering the composition of the alloying elements, the results
of Stepanov et al. (2015) showed that the volume fraction of σ
phase was related to the concentration of accumulated Cr and V
elements. It was reported that the addition of Ni in
AlCoCrFeMo0.5Nix alloys promoted the formation of the fcc
phase, and the Ni element was also found to be an effective

fcc structural stable element (Juan et al., 2013). Among them,
AlxCoCrFeNi HEAs have been perceived as potentially important
engineering materials as the inherent crystal structure can evolve
from fcc into bcc with the variation of Al concentration (Chou
et al., 2009; Wang et al., 2012; Garlapati et al., 2020). It has
attracted a wide range of research interest due to its excellent
physical and mechanical properties (e.g., creep behavior,
dynamical mechanical property, impact toughness, magnetic
properties, and resistivity–temperature behavior) (Kao et al.,
2011; Ma et al., 2014; Cao et al., 2016; Cieslak et al., 2018; Xia
et al., 2018; Wang et al., 2019a; Zhao et al., 2020a; Wang et al.,
2020).

This review reports on recent advancements in thermal-
mechanical processing and its effect on microstructural
evolution and phase transformation in AlxCoCrFeNi HEAs. It
also correlates insights into the mechanical properties and
strengthening of HEAs, especially the evolution of hardness,
plasticity, and strength under tension and compression at
room temperature as well as at high temperatures with the
phase structure, are also correlated.

DEVELOPMENT AND MECHANICAL
PROPERTIES OF ALXCOCRFENI HEAS

Development of AlxCoCrFeNi HEAs
In the initial stage of the HEA research field, the HEA systems
containing Cu were widely exploited due to the improvement of
plasticity (Cantor et al., 2004; Chen et al., 2004; Yeh et al., 2004;
Wu et al., 2006; Tung et al., 2007; Sriharitha et al., 2013).
However, Cu tended to segregate at grain boundary for its
high enthalpy of mixing with other elements. Meanwhile, the
AlxCoCrCuFeNi HEA system has been carefully studied and the
variation of Al content was found to bring significant changes in
microstructure and mechanical properties of AlxCoCrCuFeNi
(Tong et al., 2005a; Tong et al., 2005b; Wu et al., 2006; Tung
et al., 2007). The compressive properties of AlCoCrFeNi alloy
without Cu were investigated, showing a combination of excellent
compressive strength (∼2004 MPa) and plastic strain (∼32.7%)
(Wang et al., 2008). The Cu-free AlxCoCrFeNi HEA system has
subsequently received increasing attention in the last decade.

Effects of Al Addition on Microstructure of
AlxCoCrFeNi HEAs
The resultant phases in all the investigated as-cast AlxCoCrFeNi
HEA system (x � 0–3) were: only solid-solution structures,
mainly fcc, bcc or their mixture (Kao et al., 2009; Li et al.,
2009; Ma et al., 2014; Wang et al., 2014; Zuo et al., 2014; Niu
et al., 2016; Xia et al., 2016; Gangireddy et al., 2018a; Gangireddy
et al., 2018b; Liu et al., 2018; Zhou et al., 2018; Annasamy et al.,
2019; Li et al., 2019; He et al., 2020). Alloys with low Al contents
(x � 0–0.3) exhibited the simple fcc structure, as x exceeded ∼0.5,
the bcc phase formed out of the fcc solid solution phase. Spinodal
decomposition occurred later with an increase in Al content,
leading to the formation of ordered (NiAl-type) and disordered
bcc (A2) phases. Rao et al. (2016) also reported a fcc-bcc
crystallographic orientation relationship between the
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precipitation and fcc matrix: (1) (1−10)bcc//(200)fcc and [001]bcc//
[001]fcc; (2) (1−11)B2//(2−20)fcc and [011]B2//[11

�

2
√

]fcc.
The mechanism of bcc phase formation in AlxCoCrFeNi has

received much attention. Kao et al. (2009) investigated the
microstructural evolution of as-cast, -homogenized (1,100°C/
24 h), and -deformed (1,100°C/24 h + 50% CR) AlxCoCrFeNi
(0 ≤ x ≤ 2) high-entropy alloys. They reported that the structure
of as-cast was sequentially single fcc (x < 0.45), duplex fcc–bcc
(0.45 ≤ x ≤ 0.88), and single bcc (x > 0.88). While the x intervals
for the existence of duplex phase in -homogenized and -deformed
AlxCoCrFeNi alloys are 0.30 ≤ x ≤ 1.17 and 0.30 ≤ x ≤ 0.875,
respectively, indicating the widening of the range of two-phase
regions after homogenization treatment. The Al element was
found to be a bcc stabilizer in AlxCoCrFeNi alloys. Jasiewicz et al.
(2015) elucidated the phase stability of AlxCoCrFeNi (x ≤ 3)
HEAs based on experimental data and computational results and
found that the fcc phase was more stable when x < 0.62, and the
range of fcc/bcc two-phase region was 0.5 ≤ x ≤ 1.0. Ogura et al.
(2017) also illustrated the effect of Al addition on phase transition
in AlxCoCrFeNi alloys via first principles electronic structure
calculations and an increase in Al content lowered the total
energy difference between fcc and bcc.

Thermodynamic Appraisal of AlxCoCrFeNi HEAs
To accelerate the characterization of the composition-structure-
property relationship of AlxCoCrFeNi HEAs, a calculation of
phase diagrams (CALPHAD) approach was developed to predict
the phase relationship in previous studies (Xia et al., 2016; Butler
and Weaver, 2017; Rao et al., 2017; Gwalani et al., 2018; Shi et al.,
2018; Komarasamy et al., 2019).

Xia et al. (2016) successfully predicted the phase diagram of
the AlxCoCrFeNi (x � 0–2) alloy system through the CALPHAD
approach using the PanHEA database. The experimental
observations of AlxCoCrFeNi (x � 0.1, 0.75 and 1.5,
respectively) were consistent with the predicted equilibrium
phases diagrams. The fcc phase was stable over a wide
temperature range of 645–1434 C for Al0.1CoCrFeNi alloy,
whereas decomposition occurred at lower temperatures below
500 C. In addition, the predicted primary phase is the fcc phase
and the B2 phase for the Al0.75CoCrFeNi alloy and Al1.5CoCrFeNi
alloy, respectively. Komarasamy et al. (2019) chose the aging
condition based on the pseudo-binary phase diagram using the
PANDAT HEA database to develop the Ni3Al (L12-type), B2
(Al–Ni based), and Al3Ni particles to strengthen the Al0.
5CoCrFeNi alloy. The existence of B2 precipitates was
predicted for all heat treatment conditions except for 550°C,
where L12 phases formed. The experimental phase relationship
agreed well with the calculated result. To understand the phase
stability and transformation pathway of Al0.3CoCrFeNi alloy
under different thermal treatments, Gwalani et al. (2018)
calculated the molar fraction of equilibrium phases as a
function of the temperature for the alloy. Based on the
calculated equilibrium phase data, the fcc-based Al0.3CoCrFeNi
alloy was metastable at 620°C, and thus providing the possibility
for the formation of new phases. All of these suggest that this way
of calculating equilibrium phase diagrams provides useful
guidance for the prediction of phases in the AlxCoCrFeNi HEAs.

Mechanical Properties of AlxCoCrFeNi
HEAs
The Al content has a significant impact on the mechanical
properties of the AlxCoCrFeNi HEA system. With the Al
addition, the as-cast AlxCoCrFeNi alloys become much
stronger, arising from the formation of bcc structures. The
transition from fcc to bcc led to the hardness values varying
from ∼120 to ∼570 Hv (Wang et al., 2012). The as-forged
AlxCoCrFeNi alloys exhibited excellent mechanical properties
at both room and cryogenic temperatures. The yield strength and
tensile strength of the Al0.1CoCrFeNi alloy reached 412 and
1,042 MPa, while the yield strength and tensile strength of the
Al0.3CoCrFeNi alloy were 515 and 1,010 MPa at 77 K,
respectively. Different from conventional alloys, the plasticity
of HEAs increased significantly with the decrease of temperature
(Li and Zhang, 2016).

Optimizing the thermal-mechanical processing of the low-Al
AlxCoCrFeNi alloys is a promising method of enhancing
mechanical properties. Recent studies have indicated that the
combined strength-ductility results from the complex interplay
between multiple strengthening mechanisms, which are created
by cold rolling and subsequent annealing (Gwalani et al., 2020). A
strong Hall–Petch hardening effect with refining grains could be
obtained in single-phase Al0.3CoCrFeNi alloy (Gwalani et al.,
2017). Aging the alloy at 550–900°C led to the precipitation of
nano-scaled B2 and/or σ intermetallic precipitates. Complex
reinforcement effects resulting from fine fcc grains,
intermetallic B2, and/or σ grains resulted in the unusually
high strength of Al0.3CoCrFeNi HEA. Furthermore, the atomic
distribution of Al-rich nano-clusters within the fcc phase brought
about additional strength in the CR-550 condition (Gwalani et al.,
2020). The significant changes in the phase structure and
mechanical properties induced by the Al addition make this
alloy system a desirable candidate material for structural
materials with tunable strength.

THERMAL INDUCED PHASE TRANSITION
AND ITS EFFECT ON ALXCOCRFENI HEAS

Thermal Induced Phase Transformation
Thermodynamic Ways of Annealing
The fcc-type CoCrFeNi HEA was generally considered to be
thermally stable in the as-cast condition. However, after
annealing at 750°C for 800 h, composition decomposition
occurred and the minor addition of Al could further shorten
the duration (He et al., 2017). The annealing temperature is one of
the key factors that determine phase compositions. Prolonged
annealing could also promote the second phase to precipitate
from the matrix or along the grain boundary. Therefore, the
investigation for the phase equilibria and phase stabilities of a
series of AlxCoCrFeNi HEAs is significant, since they could
influence the material design for applications at an
intermediate temperature and expected component lifetime.

The room and high temperature XRD (from 573 to 1,373 K)
patterns of the AlxCoCrFeNi (x � 0–1.8) alloys demonstrated that
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crystal structure remained stable, except in Al0.9–Al1.2 alloys
(Wang et al., 2014). The (Ni, Al)-rich acicular precipitates
formed within the dendritic region of Al0.5, while Al0.3
remained a simple fcc phase with uniform composition after
aged at 1,173 and 1,373 K for 2 h. A spinodal formed two-phase
microstructure, consisting of disordered (Fe, Cr)-rich phase and
ordered (Ni, Al)-rich phase, was observed in both as-cast Al0.9
and Al1.5 alloys. For the Al0.9–Al1.2 alloys, in line with the DSC
analysis, the phase transition from bcc to fcc took place at 873 K
and the appearance of σ phase was also observed at the
temperature range of 873–1173 K, which depended on Al
content. Butler and Weaver (2017) investigated the phase

equilibria and phase stabilities of AlxCoCrFeNi HEAs through
methodically coupling the experimental results with predictions
based on CALPHAD models. The coarsening of microstructures
that consist of fcc, bcc, and/or ordered B2 phases occurred in all
the alloys after annealing at 1,050°C. Annealing at 700°C
conduced to stabilizing the mixed structure of fcc, bcc, B2,
and/or σ phases depending on the relative concentration of Al.
EDS analysis showed the Al depletion and Cr enrichment in fcc
and bcc phases, respectively, while the B2 phase was enriched in
Al and Ni, and the σ phase was enriched in Fe and Cr,
respectively. The phase prediction by modeling coincided
with the experimental results in Al10Co22.5Cr22.5Fe22.5Ni22.5

FIGURE 1 | TEM bright images (A) as-cast alloy, (B,C) corresponding selected electron diffraction imagem (D,G) heat-treated alloy at 1,123 K/8 h, and (E–H)
corresponding selected electron diffraction image (Wang et al., 2017a). (Reprinted from Journal of Alloys and Compounds, Vol 710, Wang et al., The FCC to BCC phase
transformation kinetics in an Al0.5CoCrFeNi high entropy alloy, Pages No.148, Copyright (2017), with permission from Elsevier).

Frontiers in Materials | www.frontiersin.org January 2021 | Volume 7 | Article 5856024

Li et al. Thermal–Mechanical Processing and Strengthening Effect

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


and Al30Co17.5Cr17.5Fe17.5Ni17.5 HEAs but failed in
Al15Co21.25Cr21.25Fe21.25Ni21.25 and Al20Co20Cr20Fe20Ni20 HEAs.
The discrepancies were mainly related to destabilized
components of the fcc phase at 700and 1,000°C. This indicated
that CALPHADbasedmodels were useful for predicting the phases
formed in HEAs with complex components, but that the current
thermodynamic database needs to be improved.

Nartu et al. (2020) investigated the effect of heat treatment
on the microstructural evolution and mechanical properties of
laser additively manufactured Al0.3CrFeCoNi HEA. The
formation of the nano-scaled (Al, Ni)-rich clusters resulted
from in-situ heat treatment during the part building and could
act as the heterogeneous nucleation sites for the precipitates
that form at high temperature aging. Nanometer-sized L12 or
c′ type precipitation with spherical or rod-like morphology
was predominantly revealed in the grain interior after being
aged at 620°C for 50 h. Larger precipitates were also found at
the grain boundaries of this condition and confirmed to be Al-
rich B2 and Cr-rich σ phases. Niu et al. (2017a) investigated the
influence of heat treatment on the microstructure of a fcc + bcc
dual-phase Al0.5CoCrFeNi alloy. The alloy changed from
dendritic into spherocrystal after being heat-treated at
650°C while rod-shaped phases and elliptoid phases rich in
Al–Ni were precipitated after heat treatment at 1,150°C. The
Al–Ni rich nano-sized B2 phase was also found to precipitate
from the interdendritic (bcc) region after heat treatment at
650°C (Niu et al., 2016). Grain coarsening occurred after heat
treatment at 850°C, and the fine bcc phase emerged and
distributed uniformly in the matrix, as seen in Figure 1
(Wang et al., 2017a). Another study reported the
precipitation of a plate-like hexagonal closed-packed phase
with high cobalt content located at the interdendritic region of
the Al0.5CoCrFeNi HEA after 650°C/8 h heat-treatment (Wang
et al., 2017b). Though a simple shear, the bcc phase could
transform into the hcp phase, and the crystal orientation
relationship between these two phases has also been to been
established as [11–20]hcp || [111]bcc (000–1)hcp || (10–1)bcc. Liu

et al. (2014) investigated the phase completion and stability of
the AlCoCrFeNi alloy. They observed the phase transition
from bcc and B2 to bcc and fcc after heat treatment at 950°C,
indicating that the solid-solution phases of the as-cast alloy
were unstable due to quenched-in chemical segregation. These
studies suggest that the phase stability of AlxCoCrFeNi HEA
should be carefully evaluated, especially at the intermediate
temperature.

Kinetic Way of Tailoring Phases
The kinetic way is also important to the mechanism of phase
evolution for HEAs. It is a way of establishing the reasonable heat
treatment parameters to enhance performance. Wang et al. have
inspected the phase transformation kinetics of the fcc
Al0.25CoCrFeNi (Wang et al., 2018b) and fcc + bcc
Al0.5CoCrFeNi (Wang et al., 2017a) HEAs during an
experiment on isochronal heating by thermal dilation. The
estimated activation energy and kinetic exponent were almost
stable, indicating a slow and steady phase transition in an
Al0.25CoCrFeNi HEA (Figure 2A). The phase transition was
also a growth-controlled process without nucleation during the
main transformation process, according to the decreasing trend
from 1.5 to one of the determined kinetic exponent. The ordering
transition from fcc to L12 occurred during the heat treatment at
650°C.

Compared with Al0.25CoCrFeNi HEA, three stages of phase
transformation were characterized in Al0.5CoCrFeNi during the
continuous heating process, and the third one corresponded to
the fcc-bcc phase transition. Careful research into the
microstructural evolution indicated that the first two stages of
phase transformation involved nanoparticle precipitation (Niu
et al., 2016; Niu et al., 2017a), whereas the transition from fcc to
bcc took place in the third phase transformation. The three stages
of the third phase transition were divided according to the
determined Avrami exponent n (Figure 2B). Note that the
third stage was divided into two parts, Ⅲ1 and Ⅲ2. The
decrease of n indicated a reduced nucleation rate in Ⅲ1. In Ⅲ2

FIGURE 2 | (A) The local Avrami exponent (blue circle) as a function of phase transformed fraction of Al0.25CoCrFeNi HEA (4 K/min). The green zone represents the
range of n from 1 to 1.5 (Wang et al., 2018b). (B) Variation in n with the increasing volume fraction of Al0.5CoCrFeNi HEA (3 K/min). (Wang et al., 2017a).
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the formation of bcc structure led to a decrease of the
concentration of bcc forming elements at the interface, thus
further lowering the nucleation rate. The activation energy for
Al0.25CoCrFeNi (198 ± 1 KJ/mol) and Al0.5CoCrFeNi
(144–284 KJ/mol) HEAs was quite different, mainly due to the
phase transition type differences between the two alloys, for the
former it was order-disorder transition while the latter was an fcc-
bcc transition. The kinetics of phase transformation in HEAs
requires further exploration in future studies. In particular, it
would be helpful to understand more about the phase selection
through kinetic phase transformation and how this relates to
annealing.

Mechanical Properties and
Precipitation-Strengthening in AlxCoCrFeNi
HEAs
Niu et al. (2016) reported that annealing at 650°C for 0.5 to 8 h of
Al0.5CoCrFeNi HEA had a significant hardening effect, exhibiting
the yield strength (YS) varying between 355 and 834 MPa
strongly depending on the annealing time. The excellent
tensile properties of alloy heat-treated for 8 h showed a YS of
∼834 MPa with an elongation of 25%, which could be ascribed to

the dispersed nano-sized B2 phase (∼70 nm). After heat
treatment at 850°C, the nano-sized B2 phase with a structure
of thick slat and bcc phase with a structure of thin slat was formed
in the fcc matrix. After heat treatment, a good combination of
strength and plasticity was obtained by increasing the ultimate
tensile strength up to 1,143 MPa and an elongation of 21.5%
(Wang et al., 2017a). In Al0.3CoCrFeNi HEA single crystals, only
coherent particles of the c′-phase were detected during aging
50 h at 893 K. The interaction of slip dislocations with c′-phase
particles occurred via a shearing mechanism and the contribution
to the hardening from c′-phase particles was 25–30 MPa. The
absence of grain boundaries also suppressed the formation of B2-
phase particles in Al0.3CoCrFeNi HEA single crystals (Kireeva
et al., 2020).

In another example for AlCoCrFeNi HEA, heat treatment at
850°C caused the phase transformation of the bcc matrix to the
σ phase, drastically increasing the micro-hardness of the
interdendritic region. The brittle σ phase then transformed
back to the bcc matrix when heat-treated at 975°C, causing the
alloy to soften, with lower micro-hardness but larger
elongation. Homogenization treatment was conducted at a
temperature above 1,200°C, leading to an increase both in
compressive strength and compressive contraction (Munitz

FIGURE 3 |Back-scattered election images of cracks after fracture in the compressive test at different processing temperatures (A–C) 950°C, (D–F) 1,200°C (Zhao
et al., 2020a). (Reprinted from Journal of Alloys and Compounds, Vol 820, Zhao et al., Effect of strong magnetic field on the microstructure and mechanical-magnetic
properties of AlCoCrFeNi high-entropy alloy, Pages No.5, Copyright (2020), with permission from Elsevier).
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et al., 2016). Zhao et al. (2020a) reported that with increasing
temperature from 950to 1,200°C, the increased bcc phase and
disappeared σ phase could improve the compressive properties
of AlCoCrFeNi with both the YS and strain increased from
∼1,069 to 1,254 MPa and ∼17–∼21%, respectively. Phase
distribution was found to strongly influence the initiation
and propagation of the cracks. They observed that cracks
could propagate and terminate in both the dendrite
(Figures 3B,C,E) and interdendritic region (Figures
3A,D,F) of the two samples. Besides, cracks changed the
propagation route and then terminated at grain boundaries
in the interdendritic region, which consisted of bcc matrix and
B2 precipitates (Figures 3A,F), rather than stopping at the fcc
grain boundaries.

THERMO-MECHANICAL COUPLING
EFFECT
Microstructure Evolution After
Thermo-Mechanical Treatment
Since the effect of heat treatment on mechanical properties was
limited, numerous methods including rolling, forging, tension,
compression and torsion, were then adopted to strengthen the
materials by inducing the plasticity of the HEAs (Yu et al., 2016;
Hou et al., 2017a; Guo et al., 2018). Optimized thermal-

mechanical processing by deformation and subsequent
annealing could lead to the grain refinement and formation of
the strengthening phase. Figure 4 exhibits the microstructures of
ultrafine grains and/or nanostructured precipitates generated
simply through cold deformation and annealing under
different conditions (Guo et al., 2018; Gwalani et al., 2018; Shi
et al., 2018; Hou et al., 2019;Wu et al., 2019; He et al., 2020). In the
meantime, Wang et al. (2018c) investigated the effect of cold
rolling on the fcc to bcc transformation kinetics of the
Al0.5CoCrFeNi HEA and concluded that pre-deformation
induced defects could facilitate the nucleation and growth
process during the phase transition compared with the as-cast
sample.

Effect of Cold Deformation and Annealing on the
Microstructure
In general, thermo-mechanical processing is usually used to break
and refine the coarse as-cast grains and/or second phases.
However, the increase in strength was almost always along
accompanied by decreased work hardenability due to the
reduced dislocation storage capability of the refined structure.
Therefore, a rational design of the thermo-mechanical processing
is needed, to improve both strength and ductility. This section
describes the effect of cold deformation and subsequent annealing
on the microstructure of AlxCoCrFeNi HEAs. It reviews the
recrystallization and grain growth of AlxCoCrFeNi alloys, and

FIGURE 4 | Example microstructures of AlxCoCrFeNi HEAs under different conditions (A) BSE image of the 873 K-annealed Al0.1CoCrFeNi HEA, showing the
microstructure composed of three types of grains: stretched original grains, partially recrystallized grains of large size, and completely recrystallized grains of fine size (Wu
et al., 2019). (B) Nanocrystalline Al0.25CoCrFeNi HEA generated by directly annealing after cold rolling (He et al., 2020). (C) Tri-phase Al0.3CoCrFeNi HEA consisting of
fcc, B2 and σ phases (Gwalani et al., 2018). (D) Ultrafine-grained Al0.45CoCrFeNi HEA generated in the recrystallization area after annealing at 800°C (Hou et al.,
2019). (E) Fully-recrystallized Al0.5CoCrFeNi HEA with refined grains (Guo et al., 2018). (F) Cuboidal participates with the side length ranging from 20 to 180 nm,
randomly distributed in the B2 matrix of Al0.7CoCrFeNi HEA (Shi et al., 2018).
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the effect of aging at an intermediate temperature phase
structures is presented afterward.

Yang et al. (2019c) reported the gradient effect on grain size in
cold-rolled and annealed Al0.1CoCrFeNi alloys. The yield
strength and grain size followed the classical Hall–Petch
relationship, exhibiting a grain boundary hardening efficient of
464 MPa μm1/2. Wu et al. (2019) have proposed a promising way
to enhance the comprehensive mechanical properties of bulk
high-entropy alloys by simple cold rolling and subsequent
annealing at an intermediate temperature of 873 K. A
heterogeneous structure with three types of grains was
successfully generated including deformed grains, partially
recrystallized grains (volume fraction of ∼37%), and fully
recrystallized-equiaxed grains, with a volume fraction of ∼10,
37, and 53%, respectively, as shown in Figure 4A. The phase
remained in a single fcc phase after the cold-rolled
Al0.25CoCrFeNi was annealed at 1,100°C for 10 h (Hou et al.,
2017b). The grain size was reduced from 230 to ∼13 μm through
multiple cold rolling and annealing processes (He et al., 2020), as
shown in Figure 4B. The grain size could also be adjusted in a
wide range in a single fcc phase Al0.3CoCrFeNi alloy (Gwalani
et al., 2017). The fcc-based Al0.3CoCrFeNi HEA was dramatically
transformed to a duplex fcc- ordered B2 (Choudhuri et al., 2018b)
and even a tri-phase consisting of fcc, B2, and σ phases
(Figure 4C) by tuning the cold rolling and annealing at a
temperature of 800°C and 620°C, respectively (Gwalani et al.,
2018). The strength enhancement due to grain boundary
strengthening obeyed the Hall-Petch relationship and the
Hall–Petch coefficient in Al0.25 and Al0.3 alloy was ∼784 and
824 MPa μm1/2, respectively. The high Hall–Petch coefficient
observed in the AlxCoCrFeNi (x � 0.1–0.3) alloy indicated that
dislocation motion is more difficult in AlxCoCrFeNi (x � 0.1–0.3)
HEA than conventional alloys.

Hou et al. (2019) investigated the grain growth behavior of
cold-rolled Al0.45CoCrFeNi alloy after heat treatment at
700–1,100°C. Shear bands could still be retained after
annealing at 800°C due to recrystallization. Ultrafine
recrystallized fcc grains with an average grain size of 0.62 μm
were generated, as shown in Figure 4D. The grain-growth
exponent (n) is estimated to be 3.4, which was attributed to
the fact that the grain corner-distributed B2 precipitation
effectively hindered grain growth. The microstructure of the
cold-rolling (Figure 4E) and subsequent annealing of
Al0.5CoCrFeNi HEA has also been investigated (Guo et al.,
2018; Yang et al., 2019a). The reported recrystallization
temperature (∼0.81 Tm; Tm referring to the melting point) in
the alloy was attributed to coarse as-cast grains, severe lattice
distortion effect, and sluggish diffusion effect. The dispersed bcc
particles at grain boundaries could effectively slow the grain
growth when annealing at 1,200°C with a holding time
extended to 16 h.

After cold rolling, a large number of crystal defects such as
dislocations are produced in the material, which store high
deformation energy. Through subsequent annealing, the stored
energy could be released and the deformed structure recrystallizes
to refine the grains. The ideal structures could be obtained via
reasonable heat treatment, i.e., ultrafine-grain structure, or

heterogeneous structure. Meanwhile, high-entropy alloys
exhibited a rather high recrystallization temperature and
strong resistance to grain growth during annealing, mainly
due to the precipitates in the vicinity of the grain boundaries
effectively suppressing the grain coarsening of the fcc matrix.

Effect of Hot Deformation and Annealing on the
Microstructure
The investigation of hot deformation and dynamic
recrystallization mechanisms in AlxCoCrFeNi alloys is vital,
considering the current interest in employing HEAs for critical
high temperature applications. Haghdadi et al. (2020b)
investigated the hot-worked microstructure of an
Al0.3CoCrFeNi alloy. Most deformation bands were poorly
developed even at high strains due to the intrinsic resistance
of the lattice to dislocation movement in HEA. The alloy softened
through dynamic recrystallization, mainly occurring at the initial
grain boundaries through the grain boundary migration caused
by strain then followed by multiple twinning chains and the
formation of micro-shear bands. Hot deformation at 1,030°C
under the strain rate of 0.1 s−1 was mainly conducted through the
matrix phase in Al0.6CoCrFeNi and Al0.9CoCrFeNi alloys
(Haghdadi et al., 2020a). Discontinuous dynamic
recrystallization (DDRX) occurred at the interphase boundary
mantle regions in the fcc matrix of Al0.6CoCrFeNi alloy, along
with local subgrain coalescence. With further deformation, the
DDRX regions expanded and covered most of the microstructure
at a strain of 1.5. While in the Al0.9CoCrFeNi alloy, the bcc matrix
mainly underwent continuous dynamic recrystallization. No
evidence of DDRX in the BCC phase of Al0.9CoCrFeNi was
observed even at the highest strain level of 1.5.

Rao et al. (2017) investigated the formation of the second
phase in the forged AlxCoCrFeNi (x � 0.3, 0.5, 0.7) alloys via an
in-situ TEM heating study. The forged alloys mainly consisted of
fcc and B2 phases (Ni, Al)-rich L12 nanoprecipitates were
observed in the fcc matrix of forged Al0.5CoCrFeNi, while the
Cr-rich bcc phase existed within the B2 phase. Many twins also
formed within the fcc phase in all the as-forged alloys due to the
low stacking fault energy (Kumar et al., 2015; Choudhuri et al.,
2019), whereas high local deformation was present in the B2
region. Two types of precipitates were observed using an in-situ
TEM study, a Cr-rich σ phase, and an Al-rich θ phase (an
Al45Cr7 type). They also described the σ phase precipitation in
detail using a thermodynamic calculation. One observation was
that the σ phase could nucleate at the bcc/B2 interface, where the
Cr-rich bcc phase forming in the B2 region would then
decompose. The other observation was that the σ phase
directly from the fcc matrix. The homogenization effect of
1,250°C heat treatment on the forged Al0.7CoCrFeNi HEA
was investigated by Shi et al. (2018). A net-like A2
(disordered) phase and nano-sized spherical A2 particles were
distributed in the B2 matrix in the as-forged Al0.7CoCrFeNi
alloy. After being heat-treated at 1,250°C for 1,000 h, the as-
equilibrated Al0.7CoCrFeN showed a morphological
transformation of the A2 phase, changing from being net-like
nano-particles to cuboidal participates that were randomly
distributed in the B2 matrix, as shown in Figure 4F.
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Research on the hot deformation of AlxCoCrFeNi high-
entropy alloys is still rare. The softening mechanism within
the fcc and/or bcc phases could be influenced by the varying
of Al concentration. Meanwhile, the heat treatment after hot
deformation at homogenization temperature was certified to have
a profound influence on simplifying the microstructure and
reducing the elemental segregation. Research exploring the hot
deformation behavior of high entropy alloy is at a preliminary
stage and further studies on the microstructure evolution and
property improvement of the alloy after deformation are needed.

Precipitation at Intermediate Temperatures
Recent studies indicate that AlxCoCrFeNi HEAs display a
significant age-hardening phenomenon. Precipitation at
intermediate temperatures of the famous fcc-based
Al0.3CoCrFeNi alloy has been reported by many researchers.
An aging treatment that was used to fully-recrystallize
Al0.3CoCrFeNi HEA at 550°C for 150 h and 700°C for 50 h,
resulted in the formation of ordered L12 Ni3(Ti,Al)-type
precipitates dispersed in the interior of the grains and B2
precipitates forming along the grain boundaries, respectively
(Gwalani et al., 2017). The lath-like B2 precipitates exhibited
an orientation relationship with the fcc matrix. The stable nano-
scale B2 precipitates were also found along the twin boundary in
close proximity to the fcc matrix (Wang et al., 2019b). A
combination of both nano-scaled ordered L12 precipitates and
grain boundary B2 precipitates were obtained after being aged at
620°C for 50 h (Gwalani et al., 2017).

Concurrent recrystallization and precipitation occurred after
being directly aged at 550°C for 24 h and 620°C for 50 h of 90%
cold-rolled Al0.3CoCrFeNi alloy and microstructures consisting

of tri-phase (fcc + B2 + σ) were obtained. A dual-phase (fcc + B2)
structure was produced after being aged at 900°C for 0.5 h, and
only the fcc phase was detected after being aged at 1,100°C
(Gwalani et al., 2020). The grain size had a significant impact
on the annealing-induced phase transformation in
Al0.3CrFeCoNi HEA. In the coarse-grained alloy, the fcc phase
transformed to the ordered L12 phase and finally to the B2 phase
with increasing temperature, while the No L12 phase formed
during the annealing process of the nanocrystalline alloy (Tang
et al., 2016). The grain boundaries in the nanocrystalline HEA
could provide a channel for the rapid diffusion of elements to
form the high-temperature stable B2 phase at a relatively low
temperature, thereby inhibiting the formation of the L12
ordering.

The fcc phase remained disordered after being heat treated at
1,100 °C in cold-rolled Al0.7CoCrFeNi HEA, while the B2 to
B2+bcc transformation occurred in the B2 lamellae.
Subsequent low temperature annealing treatment at 580 °C for
24 h introduced nano-scaled order L12 precipitates in the fcc
lamellae. B2/bcc phases were also found in the fcc + L12 region
(Gwalani et al., 2019). The formation of similar conjoint B2/bcc
phase during the process of annealing was also reported in
Al0.5CoCrFeNi alloy, as shown in Figure 5 (Yang et al., 2020).
The compositional differences are visible within the Al-Ni rich B2
regions (Figure 5A), suggesting the presence of Cr rich nano-
precipitates, resulting from the coherent interfaces between the
two phases and driven by the concentration profiles (Rao et al.,
2017).

In general, the low-Al CoCrFeNi-based high-entropy alloy
shows striking phase stability during annealing at an elevated
temperature after cold rolling for a long time. However,

FIGURE 5 | (A) the SADP image from the [001] bcc zone axis of the B2/bcc region with the image of HAADF-EDS (B,D) dark field images from the [001]B2/bcc zone
axis, and (C,E) the corresponding electron diffraction patterns of the CRSA-140 Al0.5CoCrFeNi alloy (Yang et al., 2020). (Reprinted from Journal of Materials Science &
Technology, Vol 72, Yang et al., Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy, Pages No.6, Copyright (2021), with
permission from Elsevier).
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intermediate temperature annealing for a long time could lead to
phase decomposition and then form a dual-phase or tri-phase
structure. During the thermo-mechanical processing of duplex
AlxCoCrFeNi alloys, the fcc grains show slow growth during
annealing for a long time, which is ascribed to the pinning effect
resulting from the precipitated bcc phase in the grain boundaries.
Besides, ordered phases are amenable to precipitation in fully
recrystallized AlxCoCrFeNi alloys after a prolonged annealing
time at an intermediated temperature. Prior deformation and
subsequent annealing could substantially alter the morphology
and distribution of precipitates. The dislocations introduced by
pre-deformation could also act as heterogeneous nucleation sites
for the secondary phase.

Mechanical Properties and Deformation
Behavior
The tensile yield strength of the fcc-based Al0.25CoFeCrNi and
Al0.3CoFeCrNi HEAs can be easily tuned via different thermal-
mechanical processes, e.g., cold rolling and subsequent annealing
(CRSA), as shown in Figure 6 (Gwalani et al., 2017; Hou et al.,
2017a; Gwalani et al., 2020; He et al., 2020). Hou et al. (2017a)
carried out cold rolling processing on Al0.25CoFeCrNi, resulting
in a substantial strengthening of the alloy, with yield strength
approaching 1,280 MPa (Figure 6A); however, this was at the
expense of low ductility (ε ∼2.3%). The annealing of the deformed

alloy triggered recrystallization of the alloy, introducing an
effective Hall-Petch strengthening (He et al., 2020). A further
increase in YS could result from the precipitation of L12, B2, and/
or σ nanoparticles. A high Hall-Petch strengthening, caused by
direct annealing after deformation, led to a high yield strength
(∼1,060 MPa) with acceptable ductility (∼19%) (Figure 6A). The
increase in YS of the fully crystallized Al0.3CoFeCrNi alloy after
the precipitation of the ordered phases is shown in Figure 6B,
comparing the CR-1150, CRSA-550, CRSA-620, and CRSA-700
conditions. The combination of both the L12 and B2 type
precipitates within the fcc matrix leading to optimal
enhancement, with strengthening contributions calculated as
∼126 MPa for the L12 precipitates, and ∼56 MPa for the B2
precipitates, respectively (Gwalani et al., 2017). The multiple
strengthening effects of grain boundary strengthening,
composite reinforcement effect caused by ultrafine B2 and σ
grains, and precipitation strengthening by Al–Ni rich
nanoclusters give the CR-550 alloy high strength (∼1,862 MPa)
(Gwalani et al., 2020).

Grain Boundary Strengthening
With the grain refinement in Al0.1CoCrFeNi alloy twinning in
recrystallized alloys could be severely inhibited, resulting in a
lower value of strain hardening rate compared to as-cast alloy
(Wu et al., 2019). The average grain size at a different scale (4.7,
7.5, 15.2, 32.5, and 59.5 μm) also affected the deformation
behavior of the Al0.1CoCrFeNi alloy. The alloy with fine grains
revealed a good balance of strength and ductility compared to
those with coarse grain size. A mixed deformation mode of
dislocation slip and twinning occurred in the alloys, certified
by the high density of dislocation entanglements in association
with the generation of deformation twin bundles (Figures
7A–F–F). However, more active twinning behavior was
observed in coarse grain alloys with wider twin thickness and
smaller twin spacing compared to the fine grain alloys during
tensile deformation (Figures 7G–I–I), which promoted the
hardening of the alloy and postponed the necking and thus
enhanced the ductility (Yang et al., 2019c).

Liu et al. (2019a) fabricated an ultra fine grained triplex
Al0.3CoCrFeNi high-entropy alloy through cold rolling and
annealing at 700°C for 36 h. The alloy exhibited an
extraordinary yield strength of 900 MPa and a total plastic
strain of ∼25%, as shown in Figure 8A. Grain boundary
strengthening was calculated to be ∼780 MPa, and the
difference between the computed and experimental value of
yield strength could be attributed to the fine B2 and σ
precipitates that formed at the grain interior and boundaries
during annealing treatment. The formation of extensive
deformation nano twins during plastic deformation gave rise
to the enhanced dislocation storage ability of the fcc phase and
thus led to large ductility (Figure 8B). Even though the
Hall–Petch strengthening contribution of Al0.3CoCrFeNi HEA
increased from ∼160 to ∼850 MPa can be attributed to the
extremely fine grains, the extent of Hall-Petch strengthening
could nevertheless be reduced after the precipitation of the B2
and σ phases (Gwalani et al., 2020). These results indicate that
subtle control of the grain size in high-entropy alloys is a strategy

FIGURE 6 | Comparison of yield strength of (A) Al0.25CoCrFeNi, and (B)
Al0.3CoCrFeNi alloys under different thermal-mechanical processing
conditions (Hou et al., 2017a; Gwalani et al., 2017; Gwalani et al., 2020; He
et al., 2020).
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FIGURE 7 | (A)Bright-field (BF) image with corresponding selected-area diffraction pattern (SADP), (B) dark-field (DF) image, and (C) high-resolution TEM (HRTEM)
image of FG (∼4.7 μm) HEA, (D) BF image with corresponding SADP, (E) DF image, and (F) HRTEM image of CG (∼59.5 μm) HEA; statistics of twin thickness (G), and
twin spacing (H), (I) schematic illustrations of the contribution of twin boundaries (TBs) and grain boundaries (GBs) to the tensile stress of FG and CG HEAs (Yang et al.,
2019c). (Reprinted from Journal of Alloys and Compounds, Vol 795, Yang et al., Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its
deformation mechanisms, Pages No.272, Copyright (2019), with permission from Elsevier).

FIGURE 8 |Mechanical properties of UFG Al0.3CoCrFeNi (A) Engineering stress-strain and true stress-strain curves, and (B) work hardening rate true strain curve
along with true stress-strain denoting the necking criterion (Liu et al., 2019a). (Reprinted from Scripta Materialia, Vol 158, Liu et al., NFatigue behavior of ultrafine grained
triplex Al0.3CoCrFeNi high entropy alloy, Pages No.118, Copyright (2019), with permission from Elsevier).
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of strengthening and toughening. However, the interplay of
multiple strengthening mechanisms should also be taken into
consideration to obtain the best performance.

Precipitation Strengthening
The fcc phase of Al0.3CoCrFeNi alloy was transformed into an
ordered B2 phase through tuning the cold rolling percentage and
subsequently annealing at 800°C. The B2 grains acted as Eshelby
type inclusion and could raise local stress levels during the
deformation to trigger twinning (Choudhuri et al., 2018b). The
yield strength of Al0.3CoCrFeNi could be enhanced from ∼260 to
490 MPa by introducing the c′ phase and grain boundary B2
phase. c′ precipitation led to a ∼78% enhancement in YS while B2
precipitation led to a ∼35% enhancement in YS (Gwalani et al.,
2017). The boundaries of coherent nano-scaled L12 precipitate
were inferred as thermal obstacles (Gangireddy et al., 2019).
Introduction of the L12 precipitate effectively strengthened the
dual-phase (fcc + B2) Al0.7CoCrFeNi alloy and the strengthening
contribution was modeled using Orowan bowing and by-pass
mechanism (Gwalani et al., 2019).

Komarasamy et al. (2019) modified the hot-rolled
Al0.5CoCrFeNi alloy via high-temperature severe plastic

deformation (HTSPD) and subsequent aging. The dissolution
of the thermodynamically stable B2 phase during HTSPD then
resulted in the precipitation of fine L12 and B2 phases as well as a
thermodynamically unfavorable Al3Ni phase, showing a
combination of high ultimate tensile strength (1,400 MPa) and
good elongation. Both the HTSPD and aged condition alloys with
hierarchical microstructural features exhibited increasing
strength and sustained work hardening, which were attributed
to the precipitation of the thin B2 phase and increased dislocation
storage caused by the Al3Ni phase, respectively. It has been
reported that the homogeneous distribution of the ordered L12
phase occurred at 650°C in fully-recrystallized Al0.5CoCrFeNi
alloy and that this can strengthen the fcc matrix by inducing
substantial low-misfit nanoscale interfaces that resist dislocation
motion effectively (Yang et al., 2019b). Heterogeneous plastic
strain could accumulate near the fcc–bcc/B2 phase boundaries in
Al-rich fcc-bcc AlxCoCrFeNi HEAs. B2/bcc precipitates could
prevent the formation of distinct deformation bands and their
propagation in the fcc region of heat-treated Al0.5CoCrFeNi alloy
during room temperature deformation. The work hardening rate
of the Al0.5CoCrFeNi alloy proved to be high, and a large number
of deformation twins were produced in the fcc matrix (Bonisch

FIGURE 9 |Microstructure of Al0.3CoCrFeNi HEA compressive samples (A) at 600°C, showing parallel nano-twins, (B) at 800°C, showing high density dislocations
(Zhang et al., 2018). HETEM image of sample compressed at 600°C, (C) a typical deformation twin, and (D) the enlarged image of the white dashed square (Zhang et al.,
2018).
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et al., 2018). A large number of deformation twins generated by
plastic deformation in hot-forged Al0.7CoCrFeNi alloys could
also be used for strengthening and toughing the alloy. However,
when the volume fraction of the second phase exceeds a specific
value, this could have a very obvious effect on the mechanical
properties of the alloy, making it high strength but low plasticity.

In summary, it is interesting that the alloying of Al to fcc-based
CoCrFeNi alloy could induce not only the transition from fcc to
bcc but also fascinating phase transitions, including the ordering
transition, bcc–hcp transition, and the formation of B2 and σ
phases. Such phase transitions usually contribute to the
substantial strengthening of the alloys. Synergy could be
achieved in a variety of strengthening–toughening mechanisms
through the appropriate thermal–mechanical process, which is
expected to obtain the desired mechanical properties.

Deformation Behavior
Most of the fcc-based HEAs are reported to have rather low
stacking fault energies (6–30 mJ/m−2), and can form extensive
twins during deformation at cryogenic temperature but minimal
twinning at room temperature (Otto et al., 2013; Zhang et al.,
2014; Choudhuri et al., 2019; Chen et al., 2020). For example, the
Al0.1CoCrFeNi alloy formed only a small fraction of nanoscale
(∼2 nm thick) deformation twins under quasistatic tension at
room temperature, which provided an additional plastic
deformation mode and improved the work hardening of the
Al0.1CoCrFeNi alloy (Choudhuri et al., 2018a). Deformation
twins, as another fundamental plastic deformation mode, are
relevant to internal and external factors such as crystal structure,
strain rate, and temperature (Wang et al., 2018d). Severe plastic
deformation could introduce higher internal stresses, which is
expected to promote the emergence of deformation twins (Kumar
et al., 2015; Choudhuri et al., 2018b; Chen et al., 2019). Choudhuri
et al. (2019) investigated the deformation mechanisms of
Al0.3CoCrFeNi HEAs. TEM observation of the deformed
behavior of the coarse-grained single-phase alloy indicated that
the formation of the {111} slip band and generation of the nano-
twin were the predominant deformation mechanisms. The
presence of the hard B2 and σ intermetallics directly
promoted the strain hardening of the fcc matrix phase. Within
the fcc-B2 clusters, thicker deformation twins and dislocation
plasticity were the main deformation mechanisms, while within
the fcc-B2-σ clusters, dislocation plasticity, nano-twinning, plus
limited crack formation in and around the σ grains were the
primary deformation mechanisms.

Zhang et al. (2016) explored the hot deformation behavior of
Al0.5CrFeCoNi HEA in both the as-cast and homogenized
conditions, where the flow stress heightened with increasing
strain rate and lower temperature. Moreover, under the same
deformation conditions, the flow stress in the homogenized state
was higher than that in the as-cast state. The average activation
energy was estimated to be∼300 KJ/mol. Serrations in flow
behavior have also been reported for a few HEAs. Zhang et al.
(2018) reported that an abnormal tendency happened in the
serration curves during hot compression, indicating a conversion
of the deformation mechanism at elevated temperatures. A large

number of parallel deformation twins formed in the
Al0.3CoCrFeNi HEA after being compressed at 600°C,
accounting for the continuous work-hardening phenomenon
that occurred below 700°C (Figures 9A,C,D). As the
temperature rose to 800°C, the escalation of dislocation
mobility and SFE led to the transformation of the deformation
mechanism from {111} <11–2> twinning to slip (Figure 9B). The
transformation of the serration type was also reported in
Al0.5CrFeCoNi HEA (Niu et al., 2017b). With increasing
temperature (200–500°C) and decreasing strain rate
(10−3–10–4 s−1), the serration type changed from type A to
type A+B, and finally to type B+C. The allow became brittle,
which was attributed to dynamic strain aging since solute atoms
could block the dislocation movement by interacting with
dislocations.

CONCLUDING REMARKS

This article reviewed the effect of thermal-mechanical processes
on AlxCoCrFeNi high-entropy alloys, emphasizing the
correlation of the microstructure and how this corresponds
to mechanical performance. There is tremendous scope to
further explore HEAs with hierarchical microstructure to
achieve enhanced mechanical properties. By controlling the
hierarchical grain structure or precipitation of various
intermetallic compounds, the complex interplay of various
strengthening mechanisms within the HEA results in a large
range of strength-ductility combinations. However, such
cumulative strengthening effects should be further
systematically quantified. In addition, the temperature has a
very significant impact on the stacking fault energy. Therefore,
an alloy with relatively low stacking fault energy regulates the
stacking fault energy, triggering the TWIP and trip effects of
alloys, which is also expected to play a guiding role in further
optimization of the strength and toughness of high-
entropy alloy.
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