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A crystal plasticity model of the creep behavior of alloys with lamellar microstructures is
presented. The model is based on the additive decomposition of the plastic strain into a
part that describes the instantaneous (i.e., high strain rate) plastic response due to loading
above the yield point, and a part that captures the viscoplastic deformation at elevated
temperatures. In order to reproduce the transition from the primary to the secondary creep
stage in a physically meaningful way, the competition between work hardening and
recovery is modeled in terms of the evolving dislocation density. The evolution model
for the dislocation density is designed to account for the significantly different free path
lengths of slip systems in lamellar microstructures depending on their orientation with
respect to the lamella interface. The establishedmodel is applied to reproduce and critically
discuss experimental findings on the creep behavior of polysynthetically twinned TiAl
crystals. Although the presented crystal plasticity model is designed with the creep
behavior of fully lamellar TiAl in mind, it is by no means limited to these specific alloys.
The constitutive model and many of the discussed assumptions also apply to the creep
behavior of other crystalline materials with lamellar microstructures.
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1 INTRODUCTION

In high-temperature applications, the resistance to creep and thermomechanical fatigue are the key
criteria for the choice of structural materials. After decades of intense research, the mechanisms
behind the creep behavior of the well-established high-temperature structural materials like, for
example, Ni-based super alloys are well understood, and as a result, their creep resistance has been
optimized to a great extent. As the weight of components and the resulting mass forces are highly
relevant in most high-temperature applications, there is, however, an ongoing search for lightweight
alternatives to these commonly used alloys. In this context, intermetallic titanium aluminide (TiAl)
alloys have frequently been discussed as promising candidates to replace the much heavier
conventional alloys (Appel et al., 2011). Due to their beneficial combination of high specific
strengths and good thermomechanical properties (Appel et al., 2011), TiAl alloys open up a
significant weight-saving perspective, provided they are used to their full potential. This does,
however, necessitate profound understanding of their high-temperature (creep) behavior ideally
manifested in a comprehensive constitutive model.

In TiAl alloys, creep becomes relevant, starting from 650°C to 700°C Appel et al. (2011) and is
influenced by many factors like composition, processing, or microstructure Appel et al. (2011), Zhang
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and Deevi (2003). When it comes to creep resistance, TiAl alloys
with fully lamellar microstructures have consistently been
reported to show the best properties with creep rates that are
at least one order of magnitude smaller than in duplex
microstructures Appel et al. (2011), Zhang and Deevi (2003),
Maruyama et al. (1997).

1.1 Fully Lamellar Microstructures in TiAl
In TiAl alloys, fully lamellar microstructures mainly consist of
two intermetallic phases, namely, the γ phase and to a minor
fraction of the α2 phase. Fully lamellar microstructures originate
from a eutectoid phase transformation during which the
globular parent grains become subdivided into thin straight
lamellae (see Appel et al. (2011) for details). The lamella
interfaces are strictly parallel so that these lamellar
grains—the so-called colonies—are distinguished by the
normal of their lamella interfaces.

Within each colony, there is a strict orientation relation
between the lattices of the γ and the α2 lamellae in which their
close packed planes are arranged strictly coplanar Inui et al.
(1992a), Appel et al. (2011). As illustrated in Figure 1, several
orientations of the γ lattice fulfill the respective orientation
relation with respect to the α2 lattice. Therefore, the γ lamellae
are further subdivided into the so-called domains of different
crystal orientation Appel et al. (2011), Inui et al. (1992a). Figure 1
illustrates these coexisting types of microstructural interfaces
with their corresponding spacing.

Due to the strict orientation relation between the lattices of
the γ and the α2 lamellae, it is possible to uniquely categorize
their slip and twinning systems based on their slip/twinning
direction s and the slip/twinning plane normal n (Lebensohn
et al., 1998):

• longitudinal (s ‖ lamella interface; n⊥ lamella interface),
• mixed (s ‖ lamella interface; n⊥/ lamella interface), and
• transversal (s ¤ lamella interface ; n⊥/ lamella interface).

FIGURE 1 | Left: Schematic depiction of the coextisting microstructural interfaces in fully lamellar TiAl. λL: lamella thickness; λD: domain size; λC: colony size; λα2 :
distance between α2 lamellae. Right: Orientation relation between the hexagonal D019 lattice of the α2 phase and the face-centered tetragonal L10 lattice of the γ phase in
lamellar colonies. cI−IIIM : matrix orientations; cI−IIIT : twin orientations. Figure taken from Schnabel (2018).

TABLE 1 | Slip and twinning systems in the tetragonal γ and hexagonal α2 phase
with morphological classification according to Lebensohn et al. (1998).
Although both phases exhibit a c

a ratio ≠1, standard Miller index, respectively,
Miller-Bravais index notation is used for a better readability. Throughout this article,
the index α is used for slip systems, whereas the index β is used for twinning
systems.

γ phase

System Mechanism Morphology Index

1/2[110](111) Ordinary slip Longitudinal 1
[011](111) Super slip Longitudinal 2
[101](111) Super slip Longitudinal 3
1/2[110](111) Ordinary slip Mixed 4
[011](111) Super slip Mixed 5
[101](111) Super slip Mixed 6 }α1/2[110](111) Ordinary slip Transversal 7
1/2[110](111) Ordinary slip Transversal 8
[011](111) Super slip Transversal 9
[101](111) Super slip Transversal 10
[011](111) Super slip Transversal 11
[101](111) Super slip Transversal 12
1/6[112](111) Twinning Longitudinal 1
1/6[112](111) Twinning Transversal 2 }β1/6[112](111) Twinning Transversal 3
1/6[112](111) Twinning Transversal 4

α2 phase

System Mechanism Morphology Index

1/3〈1120〉(0001) Basal slip Longitudinal 1–3
1/3〈1120〉{1100} Prismatic slip Mixed 4–6 }α
1/3〈1126〉{1121} Pyramidal slip Transversal 7–12
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Table 1 summarizes all slip and twinning systems in the γ and
the α2 lattice with their corresponding morphological
classification.

Figure 2 illustrates the deformation modes that correspond to
the different morphological classes.

1.1.1 Polysynthetically Twinned Crystals
Investigating the plastic deformation of fully lamellar
microstructures and in particular the underlying
micromechanics is a cumbersome task and often suffers from
problems in separating the contributions of different
microstructural boundaries or deformation mechanisms/
systems. In fact, most of the understanding of the
micromechanics of fully lamellar TiAl has been gained from
experiments with the so-called polysynthetically twinned (PST)
crystals. PST crystals are macroscopic specimens that only
contain lamellae of one specific orientation, that is, they
basically represent a single colony without the influence of
the neighboring colonies. First reported in Fujiwara et al.
(1990), PST crystals helped to reveal many of the intricate
details of the highly anisotropic, plastic deformation of the
lamellar colonies in fully lamellar TiAl (see, e.g., Kishida
et al. (1998), Umakoshi and Nakano (1992, 1993), Fujiwara

et al. (1990), Inui et al. (1992b), Yao et al. (1995), Umeda et al.
(1997), Uhlenhut (1999), Bartels and Uhlenhut (1998)) and
served as the starting point for most micromechanical modeling
efforts (see, e.g., Lebensohn et al. (1998), Zambaldi et al. (2011),
Roos et al. (2004), Parteder et al. (1995), Schlögl and Fischer
(1996, 1997b, 1997a), Grujicic and Batchu (2001), Werwer and
Cornec (2000, 2006)).

1.2 Creep Characteristics of Fully Lamellar
TiAl
Throughout this article, creep is discussed in terms of the
commonly observed three creep stages Kassner (2009), which
are schematically shown in Figure 3.

During primary creep, the density of stored dislocations ρdis

increases. As a result of the corresponding work hardening, the
creep rate in the primary creep stage decreases over time/plastic
strain. With increasing dislocation density, the recovery/
annihilation of dislocations increases until it eventually catches
up with the dislocation generation resulting in an effectively
constant dislocation density. Once the dislocation density
reaches its saturation value ρdissat , there is effectively no
additional work hardening, and the creep rate remains
constant. This stage is known as secondary or steady-state

FIGURE 2 | Schematic illustration of the morphological deformation modes of the lamellae. The morphological classification was introduced in Lebensohn et al.
(1998). λL: lamella thickness; λD: domain size. Figure taken from Schnabel (2018); following Werwer (2005).

FIGURE 3 | Illustration of a creep curve with the three typically observed creep stages.
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creep. After a certain time/creep strain, damage sets in and leads
to a drastic increase of the strain rate and ultimately to failure of
the specimen/component. This stage of accelerating the creep rate
is termed tertiary creep.

1.2.1 Frequent Absence of Secondary Creep Stage
Most of a component’s life is usually spent in the secondary creep
stage. Therefore, the creep resistance of different alloys is often
compared in terms of their steady-state creep rates _εss where the
creep resistance is said to be higher when _εss is lower . However, in
TiAl alloys, a pronounced secondary creep stage is often not
observed Appel et al. (2011), Kassner (2009). Instead, primary
creep is often directly followed by tertiary creep, that is, by an
increasing creep rate Appel et al. (2011). As illustrated in
Figure 4, this manifests in an inflection point (instead of a
plateau) in the creep rate vs. creep strain plot. As this
inflection point—per definition—appears before the saturated
state is reached, the respective experiments are regularly
compared/quantified in terms of their minimum creep rate
_εmin (i.e., the creep rate at the inflection point) instead of _εss.

As it will become clear in the course of this article, the frequent
absence of a pronounced secondary creep stage has led to some
misconceptions in the theoretical assessment and comparison of
creep experiments with fully lamellar TiAl.

1.2.2 Gradually Changing Stress Exponent
The stress dependence of the creep behavior is commonly
discussed in terms of the creep law which relates the steady-
state creep rate _εss to the applied stress σ and absolute temperature
θ via an Arrhenius type equation Kassner (2009).

_εss � Aσnexp(− Qc

kBθ
). (1)

In this, A is a material constant and n is the stress exponent. Qc

denotes the activation energy for creep and kB is the Boltzmann’s
constant. As Eq. 1 is used to describe the steady-state creep rate, it
is implicitly assumed that the dislocation density has reached its
saturation value ρdissat and that the strength of the material

consequently does not change anymore. Therefore, Eq. 1 can
conveniently be evaluated for a given stress and temperature
without the need to consider any evolution equation(s). However,
Eq. 1 does neither allow any assessment of the primary creep
stage nor of the onset of creep damage and is thus only of limited
use for predicting the creep behavior.

For TiAl alloys, Eq. 1 has frequently been used to evaluate and
discuss the stress dependence of their steady-state or minimum
creep rates (see, e.g., Appel et al. (2011), Wegmann et al. (2000),
Zhang and Deevi (2003), Marketz et al. (2003)). The
experimentally determined stress exponents do, however, show
a significant scatter and often are much higher than the values of
3< n< 5 that are typically expected for dislocation creep Appel
et al. (2011), Kassner (2009). In fact, the stress exponent itself has
regularly been found to be stress dependent increasing from
1< n< 2 at very low stresses to 7< n< 9 at high stresses Zhang
and Deevi (2003), Appel et al. (2011). This contradicts the whole
idea of the existence of a single, constant stress exponent and
questions the suitability of Eq. 1 to generally describe the creep
behavior of fully lamellar alloys over a broad range of stresses
Zhang and Deevi (2003), Appel et al. (2011). Therefore, the
experimentally observed stress exponents are termed apparent
stress exponents in the following.

The gradual change in the apparent stress exponent is most
likely associated with the transition between different rate-
limiting creep mechanisms. For very low stresses (and
reasonably high temperatures), there is evidence that interface
glide is the dominant creep mechanism Zhang and Deevi (2003),
Appel et al. (2011) with apparent stress exponents of 1< n< 2. At
intermediate stresses, the apparent stress exponents of 3< n< 5 fit
the expected values for dislocation creep Kassner (2009). The
cause of the apparent stress exponents of n> 5 that have
frequently been observed for high stresses does, however,
appear to be not yet clear.

A possible explanation for the unusually high apparent stress
exponents may be found in the frequent absence of a secondary
creep stage or more precisely in the fact that the respective
experiments are compared in terms of their minimum creep
rate. The direct transition from primary to tertiary creep as it is

FIGURE 4 | Illustration of a creep curve that does not show a secondary creep stage.
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illustrated in Figure 4—per definition—appears before a
saturation state has been reached. Else at least a short steady-
state plateau would occur in the creep rate vs. strain graph.
Consequently, the corresponding minimum creep rate is higher
than the creep rate that would occur in the saturated state if
damage would not have set in already. Thus, it is to be expected
that the stress exponent of the minimum creep rates is higher
than the maximum value n � 5 for dislocation creep.
Consequently, the apparent stress exponents of n> 5 that have
been observed for high stresses are not related to another creep
mechanism but most likely describe the stress dependence of the
onset of tertiary creep which gradually reduces the extent of the
secondary creep stage with increasing stress until it finally
disappears completely.

1.2.3 Influence of Microstructural Interfaces
While it is well accepted that the strengthening by the different
microstructural boundaries in fully lamellar TiAl can be
described by a Hall–Petch type relation Appel et al. (2011),
Umakoshi and Nakano (1993), Dimiduk et al. (1998), their
influence on the creep resistance has only been reported
qualitatively Zhang and Deevi (2003), Maruyama et al.
(1997), Chatterjee et al. (2002), Marketz et al. (2003). In
general, it has been stated that the creep resistance increases
with decreasing lamella thickness λL, while the colony size λC

appears to only affect the creep resistance for λC < 100 μmAppel
et al. (2011), Maruyama et al. (1997), Zhang and Deevi (2003).
However, as there is evidence that for high temperatures and
very low stresses the creep rate is determined by interface glide,
the microstructural interfaces can—contrary to their overall
beneficial effect—also become the carriers of creep
deformation for certain specific load cases Maruyama et al.
(1997), Appel et al. (2011).

Experiments with PST crystals—as quasi prototypes of single
isolated colonies—revealed a strong anisotropy in their creep
behavior, that is, for a given stress, the minimum/steady-state
creep rates vary with the angle between lamella plane and loading
direction Parthasarathy et al. (2000), Wegmann et al. (2000), Asai
et al. (2002), Kim et al. (2002). The anisotropy in the creep
resistance of PST crystals shows characteristics that are similar to
what has been observed for their yield stress. For the yield stress,
there is a region of intermediate loading angles around 45° w.r.t.
the lamella plane for which it is significantly lower than in the
extreme loading angles near 0° and 90° Fujiwara et al. (1990),
Uhlenhut (1999), Umeda et al. (1997), Yao et al. (1995), Inui et al.
(1992b), Umakoshi and Nakano (1992). Analogously, the creep
resistance of PST crystals has been found to be low for
intermediate loading angles around 45° and significantly
higher for loading angles near 0° and 90° Parthasarathy et al.
(2000), Wegmann et al. (2000), Asai et al. (2002), Kim et al.
(2002). This anisotropy is directly related to the influence of the
lamella boundaries which are strong barriers to dislocation
motion and twin propagation. In terms of the morphological
classification, this means that mixed and transversal slip/
twinning systems are generally much stronger than
longitudinal systems which are only strengthened by the weak
and widely spaced domain boundaries.

1.3 Modeling Creep of Fully Lamellar
TiAl—State of the Art
So far, remarkably few studies have dealt with modeling creep of
fully lamellar TiAl alloys. Depending on the level of pragmatism,
the reported models followed a more phenomenological
approach by relating the minimum/steady-state creep rate to
the applied stress without considering the details of primary creep
and its transition to secondary creep Marketz et al. (2003), Zhang
and Deevi (2003) or were designed to explicitly consider the
underlying micromechanics Chatterjee et al. (2002), Estrin and
Mecking (1984). To the best of the authors’ knowledge, the onset
of tertiary creep in TiAl alloys has not been modeled at all so far.

1.3.1 Marketz et al. (2003)
In order to capture the anisotropy in the creep behavior of single
colonies and the influence of the lamella boundaries, in Marketz
et al. (2003), the material coefficient A of the classical model
(i.e., Eq. 1) has been defined to be a function of the lamella
thickness λL and the loading angle φ. With constant stress
exponents and activation energies taken from γ and α2 single
crystal creep experiments, _εcmin and _εα2min were set up separately for
both phases. The model was then calibrated against
experimentally determined minimum creep rates for
differently oriented PST crystals reported in Wegmann et al.
(2000). From this, a polynomial fit for A(φ, λL � const.) was
obtained. The dependence of A on λL was fitted against
experiments with polycolony sheet material, while reasonably
assuming that the relation A(φ) of the lamella colonies within a
polycolony microstructure is the same as for PST crystals.
Subsequently, the resultant model was applied to an RVE of a
polycolony microstructure and was successful in reproducing the
corresponding minimum creep rates for different lamella
thicknesses.

While certainly being a pragmatic and to an extent successful
approach, the model from Marketz et al. (2003) still lacks some
generality as it largely relies on phenomenological fits. In
particular, the choice of a constant stress exponent of n � 7
for creep in the γ lamellae is questionable as comprehensively
described above. As the model fromMarketz et al. (2003) is based
on Eq. 1, it naturally suffers from the same restrictions, that is, it
does not allow any statements on the extent of primary creep and
the onset of tertiary creep.

1.3.2 Zhang and Deevi (2003)
In order to phenomenologically capture the observed increase in
the stress exponent with increasing stress, Zhang and Deevi
(2003) replaced the power law relation in Eq. 1 by the
hyperbolic sine relation

_εmin � Asinh( σ

σ0
)exp( − Qc

kBθ
). (2)

In this, σ0 is a fitting constant that represents a back-stress for
dislocation motion. With this model, the steady-state/minimum
creep rates of a broad variety of experimental results have been
fitted reasonably well. Only for the low stress regime, Eq. 2 failed
to reproduce the experimental data. Thus, in this regime, the
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steady-state/minimum creep rates have been fitted using a
variation of Eq. 1 with a stress exponent of n � 2 in order to
represent interface sliding.

As opposed to the classical creep law, Eq. 2 relates the applied
stress to a back-stress σ0. From the fitting procedure in Zhang and
Deevi (2003), it has been found that σ0 generally increases with
decreasing λL. This has qualitatively been associated to the
strengthening effect by lamella interfaces.

From an engineering point of view, the model presented in
Zhang and Deevi (2003) suffers from the same lack of generality
as the model fromMarketz et al. (2003). While successfully fitting
the steady-state/minimum creep rates of a variety of experimental
studies including the gradual change in the apparent stress
exponent, the model from Zhang and Deevi (2003) does not
allow any statements on the extent of the primary or the onset of
the tertiary creep stage and is thus only of limited use for
predictive purposes.

1.3.3 Chatterjee et al. (2002)
In order to overcome the limitations of classical creep laws to only
model the constant creep rate in the secondary creep stage (or the
minimum creep rate respectively), the model from Chatterjee
et al. (2002) explicitly takes into account the competititon
between work hardening and recovery, which causes the
transition from primary to secondary creep stage.

In order to model the gradual change of the strain rate from
primary to secondary creep stages, in Chatterjee et al. (2002), an
evolution equation for the stored dislocation density
_ρdis � f (ρdis, _ε, θ) is combined with an equation that describes
the strain rate dependence of the flow stress σ � f (ρdis, _ε, θ) for a
given ρdis. In this, the evolution of ρdis with plastic strain has been
modeled in a generation–recovery format Estrin and Mecking
(1984), Chatterjee et al. (2002).

_ρdis � _ρdisgen − _ρdisdynrec � [ 1
bL

− Rdynρ
dis]_ε (3)

with _ρdisgen denoting the rate at which dislocations are immobilized

and _ρdisdynrec describing the dynamic recovery of dislocations.
Furthermore, b is the magnitude of the Burgers vector and L
corresponds to the free path length of dislocations. Rdyn is the
dynamic recovery coefficient.

Evolution equations in the form of Eq. 3 have been
successfully applied in many dislocation density–based models
(see, e.g., Anand et al. (2015), Evers et al. (2004), Beyerlein and
Tomé (2008)). As their mutual interaction is one of the main
causes for dislocations to get immobilized, the free path length L
in Eq. 3 is commonly assumed to be correlated to the dislocation
spacing Ldis:

Ldis � ζ���
ρdis

√ (4)

with ζ being a fitting constant.
The hybrid one parameter model from Estrin and Mecking

(1984) on which the model from Chatterjee et al. (2002) is largely
based does, however, take into account that in most materials there
are additional obstacles for dislocationmotion such as point defects

or grain boundaries all with their own spacing L. These different
coexisting obstacles all increase the rate at which dislocations
become immobilized, that is, contribute to _ρdisgen in Eq. 3.

Consequently, the influence of the lamella interfaces on the
dislocation storage was modeled in Chatterjee et al. (2002) by
introducing an additional free path length LL

LL � ξλL (5)

with ξ again being a fitting constant.
Following Estrin and Mecking (1984),

1
L
� 1
Ldis

+ 1
LL

(6)

has been introduced into Eq. 3 in order to model the combined
effect of dislocation interaction and lamella interfaces on the
dislocation storage.

In addition to Eq. 3, the kinetic equation

σ

σY(ρdis) � ⎡⎢⎣ _ε
_ε0
⎤⎥⎦1/ninst (7)

has been set up in Chatterjee et al. (2002), where σY denotes the
current yield strength that is modeled to evolve as a function of
ρdis via a classical Taylor hardening law:

σY � Mμb
2

���
ρdis

√
. (8)

In this, _ε0 is a reference strain rate and ninst is the instantaneous
strain rate sensitivity exponent.M denotes the Taylor factor, and
μ denotes the shear modulus.

Combining Eqs. 3, 7, and 8, integrating the resultant equation
and solving for σ � const.1, yields an analytical relation between
the creep rate and the creep strain which has subsequently been
calibrated against experimental creep curves obtained from sheet
material of fully lamellar TiAl.

As the model explicitly considers the evolution of the
dislocation density toward the saturated state, it is capable of
reproducing the transition from primary to secondary creep stage
and thus is—from an engineering point of view—of much more
relevance than the classical creep laws.

Unfortunately, the model was calibrated in such a way that
the saturation state coincides with the minimum creep rates that
have been found in the respective experiments. As discussed
earlier, this is not physical as the minimum creep rate occurs at
the onset of tertiary creep and is thus not related to the saturated
state. Furthermore, neither interface glide nor the tertiary creep
stage is considered in Chatterjee et al. (2002), so that the model
consequently fails to describe the respective deformation
regimes.

However, the model from Chatterjee et al. (2002) still
represents an important step toward a comprehensive model
of the creep behavior of fully lamellar TiAl, and many of the

1see Chatterjee et al. (2002) and Estrin and Mecking (1984) for details and further
assumptions regarding the temperature dependence.
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underlying assumptions will be adopted in the course of the
present article.

1.3.4 Conclusion
In the context of the frequent absence of a secondary creep stage
and the gradual change in the apparent stress exponent, classical
creep models that are based on Eq. 1 are not well suited to
describe the creep behavior of fully lamellar TiAl. While to a
certain extent being successful in describing the stress
dependence of the minimum creep rates by using different
stress exponents for different stress regimes, these models miss
some vital details of the creep behavior. Even if correctly
predicting the minimum creep rate for a given stress, the
corresponding creep strain is not known from models based
on Eq. 1. As the minimum creep rate does, however, occur at the
onset of tertiary creep and thus marks a deformation state the
occurrence of which has to be avoided by any means in
engineering design, such models are of little use for
engineering purposes. Thus, a precise description of the
primary creep stage is vital for modeling the creep behavior of
fully lamellar TiAl.

2 CRYSTAL PLASTICITY MODEL

As the micromechanics of fully lamellar TiAl alloys largely
determines their macroscopic behavior, micromechanical and
in particular crystal plasticity–based models have been very
successful in describing and investigating the intricate details
of their plastic deformation Kad et al. (1995b, 1995a), Kad and
Asaro (1997), Parteder et al. (1995), Schlögl and Fischer (1996,
1997b, 1997a), Lebensohn et al. (1998), Uhlenhut (1999), Grujicic
and Batchu (2001), Grujicic et al. (2003), Grujicic and Zhang
(1999), Grujicic and Cao (2002), Brockmann (2003), Werwer and
Cornec (2000), Werwer (2005), Werwer and Cornec (2006), Roos
et al. (2004), Kowalczyk-Gajewska (2011), Zambaldi et al. (2011),
Chen et al. (2019), Chowdhury et al. (2018). However, to the best
of the author’s knowledge, the creep behavior of fully lamellar
TiAl has not yet been modeled by crystal plasticity.

Thus, some of the ideas of the previously reported models
(especially Chatterjee et al. (2002), Estrin and Mecking (1984))
will be picked up in the following and extended to a crystal
plasticity framework in order to model the creep behavior of fully
lamellar TiAl in a microstructure sensitive way.

2.1 Base Model
In previous works, Schnabel and Bargmann (2017), Schnabel
et al. (2019), a thermomechanically coupled, defect density-
based crystal plasticity model has been set up with the focus on
precisely capturing the microstructure sensitivity of the yield
and work hardening behavior of fully lamellar TiAl. This model
incorporates the Hall–Petch strengthening effect of the
different coexisting microstructural boundaries as well as the
work hardening interactions between twins and dislocations in
the γ phase. Furthermore, the evolution of the dislocation
density in this model takes into account dynamic and static
recovery.

As this model has been extensively discussed elsewhere
(Schnabel and Bargmann (2017), Schnabel et al. (2019)), the
governing equations are just briefly summarized in the following.
The meaning of the used symbols can be found in Table 2.

Kinematics:
Split of deformation gradient

F � FE · FP. (9)

Plastic deformation gradient

_FP � LP · FP. (10)

Plastic velocity gradient2

TABLE 2 | Declaration of symbols that are used in the base model (i.e., Eqs. 9–28).

FE Elastic deformation gradient
FP Plastic deformation gradient
Ntw Number of twinning systems
Nsl Number of slip systems
cT Twinning shear (� 1�

2
√ for γ-phase)

s Slip/twinning direction
n Slip/twinning plane normal
JE � detFE >0 Jacobian of elastic deformation gradient
σ Cauchy stress
_c0 Reference shear rate
n Strain rate sensitivity exponent
τYα,0 Initial slip system strength
τTβ,0 Initial twinning system, strength
τR Lattice resistances to slip/twinning
kHPi Hall–Petch coefficient for microstructural boundaries of

type i
λi Spacing of microstructural boundaries of type i
bα Magnitude of the Burgers vector
ρdis � ∑αρ

dis
α Total dislocation density

hαβ Interaction coefficients between slip system α
And non-coplanar (ncp) twinning systems β

hββ′ Interaction coefficients between twinning system β
And non-coplannar (ncp) twinning systems β′

Cβα Interaction coefficients between twinning system β
And dislocations on slip systems α

Aα,0 Dislocation accumulation coefficient
Rstat Static recovery coefficient
QR Activation energy for static recovery
ρdisα,min Minimum dislocation density
ρdisα,ref Normalization parameter
ρ0 Mass density in reference configuration
λ � ]E

(1+])(1−2]) First Lamé constant
μ � E

2(1+]) Second Lamé constant
K � E

3−6] Bulk modulus
E Young’s modulus
] Poisson’s ratio
αt Thermal expansion coefficient
S0 Absolute entropy density
cp Heat capacity
Q � −κGradθ Heat flux vector
κ Thermal conductivity
r External heat supply per unit mass

2cf. Rice (1971), Kalidindi (1998). Note that as opposed to the original model from
Kalidindi (1998), no reorientation of the twinned region and subsequent slip within
the twins is considered here. This assumption is reasonable as long as the twins
remain very thin as it is the case in lamellar microstructures.
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LP � ⎡⎢⎢⎣1 −∑Ntw

β

fβ⎤⎥⎥⎦∑Nsl

α

_cα[sα⊗nα]
︷����������︸︸����������︷slip

+∑Ntw

β

cT _gβ[sβ⊗nβ]︸������︷︷������︸
twinning

(11)

Elastic right Cauchy-Green tensor

CE � FT
E · FE. (12)

Stress measures:

2nd Piola-Kirchhoff stress

SE � JEF
−1
E · σ · F−T

E . (13)
Mandel stress

ME � CE · SE. (14)
Resolved shear stress

τ � s ·ME · n. (15)
Flow/twinning rule:
Slip shear rate3

_cα � _c0

∣∣∣∣∣∣∣∣τατYα
∣∣∣∣∣∣∣∣
n

sign(τα). (16)

Twinning rate4

_gβ �
⎧⎪⎪⎨⎪⎪⎩

_c0
cT

⎡⎣τβ
τTβ
⎤⎦n for τβ > 0 and∑Ntw

β fβ < 1

0 otherwise

. (17)

CRSS/Work Hardening (WH):

CRSS of slip systems

τYα � τR + τHP
α︸���︷︷���︸

τYα,0

+τWH
α . (18)

CRSS of twinning systems

τTβ � τR + τHP
β︸���︷︷���︸

τT
β,0

+τWH
β . (19)

Hall–Petch for slip systems

τHP
α � ∑i ∈ {L,D,C}

i

kHP
i

1��
λi

√ . (20)

Hall–Petch for twinning systems

τHP
β � ∑i ∈ {L,D,C}

i

kHP
i

1��
λi

√ . (21)

WH of slip systems5

τWH
α � μbα

2

���
ρdis

√
︸���︷︷���︸

slip−slip

+ ∑  ncp
β hαβfβ

1 − ∑ ncp
β fβ︸����︷︷����︸

slip−twin

. (22)

WH of twinning systems6

τWH
β �

∑ ncp
β′

hββ′ fβ′

1 − ∑ ncp
β′

fβ′︸����︷︷����︸
twin−twin

+ μbβ∑Nsl

α

Cβαbαρ
dis
α︸������︷︷������︸

twin−slip

. (23)

Defect density evolution:
Dislocation densities7

_ρdisα � Aα,0[1 − [ ρdisα

ρdisα,sat

]pα]∣∣∣∣∣∣∣∣∣ _cα|
− Rstatexp( − QR

kBθ
)〈ρdisα − ρdisα,min

ρdisα,ref
〉2 (24)

Twinned volume fractions8

_f β � _gβ. (25)

Thermomechanical coupling
Helmholtz free energy9

ρ0ψ � μ/2[trCE − 3] + λ

2
ln2JE − μ ln JE

− 3αtK[θ − θ0] ln JEJE

+ ρ0cp[θ − θ0 − θ ln
θ

θ0
] − [θ − θ0]S0

+ μ

2
∑Nsl

α

b2αρ
dis
α︸����︷︷����︸

plastic

(26)

2nd Piola-Kirchhoff stress

SE � μ[I − C−1
E ]

+ [λ ln JE − 3αtK
JE

[θ − θ0][1 − ln JE]]C−1
E

(27)

Temperature evolution

ρ0cp
_θ � −DivQ +ME : LP

− 1
2
∑Nsl

α

[μ − θ
dμ
dθ
]b2α _ρdisα + ρ0r

+ 1
2
θ
zS
zθ

: C
.

E.

(28)

As the α2 phase only constitutes few Vol.-% (usually less than
10%) in commercial TiAl alloys, its contribution to the plastic

3cf. Pierce et al. (1983).
4cf. Kalidindi (1998).
5cf. Kowalczyk-Gajewska (2011).

6cf. Beyerlein and Tomé (2008), Kowalczyk-Gajewska (2011).
7cf. Anand et al. (2015), McBride et al. (2015).
8cf. Kalidindi (1998).
9cf. Anand et al. (2015), McBride et al. (2015).
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deformation is hard to assess from experiments with two-phase
alloys. Therefore, the α2 phase is modeled in a simplified way, by
using the (temperature dependent) initial critical resolved shear
stresses from single crystal experiments and neglecting
Hall–Petch strengthening effects as described in Butzke and
Bargmann (2015).

The model that is described by Eqs. 9–28 has been successfully
applied to investigate different aspects of the plastic deformation
of fully lamellar TiAl alloys from room to operating temperature
Schnabel and Bargmann (2017), Schnabel et al. (2019), Schnabel
(2018). However, in order to capture the creep behavior of fully
lamellar TiAl, this model needs to be extended as it will be shown
in the following.

2.2 Model Extension to Creep
Most equations and assumptions of the base model are valid also
for modeling creep deformation. It has to be noted, however, that
in Equation (11), the kinematics of dislocation climb is neglected.
This appears reasonable as long as the creep deformation is
dominated by (climb-assisted) glide. In line with the
arguments of the one-parameter model from Chatterjee et al.
(2002) and Estrin and Mecking (1984), the work hardening
behavior only depends on the dislocation densities and the
twinned volume fractions, that is, the respective work
hardening model Eqs. 18–23 is applicable without any changes.
The same holds for the thermomechanical coupling and the
resultant stress as well as the temperature evolution.

The only parts of the model that will be altered/enhanced in
the following are the flow rule (Eq. 16 in the base model) and the
dislocation density evolution model (Eq. 24 in the base model).

2.2.1 Shear Rates
In crystal plasticity, the kinematics of the plastic deformation of a
crystal’s lattice is described in terms of shear (rates) on its
crystallographic slip and twinning planes; cf. Eq. 11. In this,
the shear rates _cα and cT _g

β
are the continuum representation of

the collective shear deformation of a crystal by all dislocations/
twins on its slip/twinning systems α/β. The actual motion of
dislocations does, however, take place in a successive sequence of
mobilization of pinned line segments which then glide on their
slip plane until being pinned once again. Once mobilized,
dislocations move with a velocity that is close to the speed of
sound. Thus, the effective shear rate on a slip system is essentially
determined by the rate at which dislocations are mobilized.

In order for a dislocation to become mobile, there has to be a
sufficient driving force (stress and/or thermal activation) that
supports the dislocation to overcome obstacles and/or the local
stress field that hinders its motion. Depending on the
combination of stress and temperature, different characteristic
types of dislocation mobilization can become rate limiting. The
intricate details of the discrete motion of dislocation line
segments and their interactions with point defects and the
surrounding dislocation network are naturally beyond the
scope of continuum mechanics. However, it is still possible to
incorporate different rate-limiting micromechanical effects into a

crystal plasticity model by additively decomposing the shear rate
_cα on slip system α, that is, by expressing it as the sum of the shear
rates that correspond to different mobilization mechanisms as
proposed in Staroselsky and Cassenti (2008, 2011).

In the context of creep, essentially two different strain rate
limiting mechanisms of dislocation mobilization occur:

• Instantaneous plasticity: If the applied (macroscopic)
stress is above the (macroscopic) yield stress at the given
temperature, the resolved shear stress on at least one slip
system is sufficiently high to force the dislocations on that
slip system to move through/past any obstacles or local
stress fields. This (yield) deformation takes place with a—in
the context of creep—very high strain rate and is thus
referred to as instantaneous plasticity in the following.

• Viscous glide: If the (macroscopic) stress is below the yield
point, the resolved shear stress on neither of the slip
systems is sufficient for the dislocations to break free
from any pinning points or local stress fields. If the
temperature is, however, sufficiently high, pinned
dislocations may climb to parallel slip planes to bypass
obstacles or escape local stress fields. Once a dislocation has
climbed to a slip plane above the obstacle or with a (locally)
relaxed stress field, it may glide even under the given
resolved shear stress until getting pinned again. The
strain rate of this climb-assisted glide is thus limited by
the diffusion kinetics.

Considering these two rate limiting cases, the slip shear rates
are written as the sum (cf. Staroselsky and Cassenti (2008, 2011))

_cα � _cinstα + _cviscα . (29)

As twinning partial dislocations are bound to their glide plane,
the corresponding twinning rates do not have a viscoplastic creep
part and thus simply read

_gβ � _g instβ . (30)

2.2.2 Instantaneous Plasticity
Instantaneous plasticity occurs whenever the resolved shear stress
τ on a slip or twinning system approaches its current strength.
This behavior is modeled by Eqs. 16 and 17 in the base model,
which are consequently adapted here to model the instantaneous
shear rates for slip

_cinstα � _cinst0

∣∣∣∣∣∣∣∣τατYα |ninst sign(τα) (31)

and twinning

_g instβ �
⎧⎪⎪⎨⎪⎪⎩

_cinst0

cT
⎡⎣τβ
τTβ
⎤⎦ninst for τβ > 0 and∑Ntw

β fβ < 1

0 otherwise.

. (32)

Unless stated otherwise, _cinst0 � 0.001 and ninst � 50 are assumed
throughout this work.
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2.2.3 Viscoplastic Response
The viscous shear rates on slip systems α are modeled by (cf.
Staroselsky and Cassenti (2008, 2011))

_cviscα � _cvisc0 exp(− Qc

kBθ
)∣∣∣∣∣∣∣∣τατYα |nvisc sign(τα) (33)

in order to represent the temperature-dependent climb behavior
which is rate limiting for the viscoplastic response. In this, _cvisc0
denotes a reference creep rate. The strain rate sensitivity
exponents should generally obey nvisc ≪ ninst with 3≤ nvisc ≤ 5
for climb-assisted glide.

2.2.4 Defect Density Evolution
The work hardening relations, that is, Eqs. 22 and 23, describe
the strength of slip and twinning systems as a function of their
current surrounding microstructure. As this microstructure
evolves with plastic strain, temperature, and time, an evolution
model for the corresponding internal variables—namely, the
dislocation densities ρdis

α
and twinned volume fractions fβ—is

required.
In the following, the evolution of the dislocation density

on a slip system α is modeled by the generation recovery
format

_ρdisα � _ρdisα,gen − _ρdisα,dynrec − _ρdisα,statrec. (34)

As opposed to the dislocation density evolution models in, for
example, Chatterjee et al. (2002), Estrin and Mecking (1984),
Evers et al. (2004), Beyerlein and Tomé (2008) which
incorporate the accumulation of dislocations _ρdis

α,gen and their
dynamic (i.e., the deformation dependent) recovery _ρdisα,dynrec, Eq.
34 also considers the static (i.e., the time dependent) recovery
behavior via _ρdisα,statrec.

The dislocation accumulation term _ρdisα,gen is modeled as in Eq.
3, but in a slip system resolved form,

_ρdisα,gen �
1

bαLα

∣∣∣∣ _cα∣∣∣∣. (35)

In the following, some of the ideas from Estrin and Mecking
(1984), Chatterjee et al. (2002) are adapted in order to make
Eq. 35 microstructure sensitive. In the model from Chatterjee
et al. (2002), Estrin and Mecking (1984), the free path length L
was defined by combining the dislocation spacing and the
obstacle/lamella interface spacing as shown in Eq. 6. While
this is an inevitable (and by no means bad) assumption to
combine both effects in an analytical, macroscopic model,
crystal plasticity models allow the individual definition of the
spacing of obstacles for every slip system (thus the subscript α
in Lα).

The free path length Lα in Eq. 35 depends on the orientation of
the respective slip system w.r.t. the lamella interfaces, i.e., on its
morphological class. Slip systems whose slip plane crosses the
lamella interface (mixed and transversal) are restricted by the
lamella thickness λL, while for slip systems with slip direction and
slip plane parallel/co-planar to the lamella interfaces

(longitudinal systems), the free path length is given by the
domain size λD.

10

Following Eq. 5, the free path length of longitudinal slip
systems is thus defined as

LD � ξDλD, (36)

while the free path length of mixed and transversal systems reads

LL � ξLλL. (37)

However, the free path length is only defined by the domain or
lamella boundaries as long as the dislocation density on the
respective slip system is low. With ongoing plastic
deformation, dislocations begin to pile up against these
boundaries, steadily reducing the free path length. This effect
is modeled in a continuum sense by adapting the dislocation
spacing from Eq 4, that is,

Ldis � ζ���
ρdis

√ , (38)

and evaluating the free path length Lα in Eq. 35 via

Lα � min(LL/D, Ldis) (39)

for each slip system α in each time step of the simulation.
The stored dislocation density may also decrease by

dynamic and static recovery (see Eq. 34). Dynamic recovery
describes the recombination of dislocations that move on the
same slip plane and thus only takes place for a non-zero slip
shear rate _cα. Static recovery, on the other hand, describes the
recombination of dislocations on different slip planes by
diffusion-assisted climb and is thus highly temperature
dependent.

The dynamic recovery rate _ρdisα,dynrec is modeled following the
well-established formulation from Estrin and Mecking (1984) (cf.
Eq. 3)

_ρdisα,dynrec � Rdynρ
dis
α

∣∣∣∣ _cα∣∣∣∣. (40)

As the recombination of dislocations can only take place between
dislocations on the same slip system, the dislocation density ρdisα

was chosen to be the relevant measure for dynamic recovery on
slip system α in Eq. 40.

The static recovery behavior is modeled according to the base
model (cf. Anand et al. (2015) and Roters et al. (2010), Ma et al.
(2006))

_ρdisstatrec � Rstatexp( − QR

kBθ
)〈ρdisα − ρdisα,min

ρdisα,ref
〉2. (41)

The expression 〈•〉 in Eq. 41 takes a value of x for 〈x〉> 0 and of 0
for 〈x〉< 0 and thus ensures that static recovery only takes place
when the dislocation density ρdisα is above a minimum threshold

10In the α2 phase, obviously no domain boundaries exist, so that the corresponding
free path length would be the colony size in case of polycolony microstructures.
However, most of the statements presented here refer to the γ phase as the α2 phase
only constitutes several Vol.-% and is thus of minor interest.
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ρdis
α,min. The normalization parameter ρdis

α,ref is chosen as 1 mm− 2 in
the following.

Throughout this work, the dislocation density is assumed to

evolve starting from an initial value of ρdis
α,init � 105 [ 1

mm2] for all

slip systems α which corresponds to a total dislocation density of

ρdis � 1.2 × 106 [ 1
mm2]. This is also assumed tomark the minimum

dislocation density, that is, ρdis
α,min � ρdis

α,init.

3 APPLICATION TO PST CRYSTALS

In the following, the modified thermomechanically coupled,
defect density–based crystal plasticity model is applied to
reproduce and discuss some aspects of the creep deformation
of PST TiAl crystals.

3.1 Simulation Setup
As in previous studies Schnabel and Bargmann (2017), Schnabel
et al. (2019), a simplified representative volume element (RVE) of
a PST crystal is set up (see Figure 5).

In this, the thickness of the single modeled α2 lamella is
adjusted while fixing the RVE’s length in x-direction in order
to fit the reported α2 volume fraction of the experiments to which
the simulations are compared. The six different γ orientation
variants are assumed to all have the same volume fraction. The
orientation relation between the crystal lattices of the α2 phase
and the different γ orientation variants are set according to
Figure 1 with the [110] direction of the cIM domains either in

y- or z- direction according to the experimental characterization
in each case.

The geometry is meshed using 42 linear hexahedral finite
elements. The RVE is subjected to periodic boundary conditions
in order to mimic an infinite repetition of the RVE in all
directions.11, The periodic RVE is then embedded into a
dummy element with negligible stiffness. The displacements of
the periodic RVE’s master nodes are coupled to the averaged
deformation of the dummy element via a rotation relation as
introduced in Werwer and Cornec (2000), Werwer (2005) and
described in Schnabel (2018). This rotation relation allows the
investigation of the RVE’s constitutive response as a function of
the loading angle φ (i.e., its anisotropy in the xz-plane) by
applying a uniaxial deformation to the dummy element.

3.2 Thermoelasticity
Although the elastic deformation is usually not discussed in detail
in the context of plasticity, the (thermo-) elastic model
parameters still have to be chosen properly as they, e.g., occur
in the work hardening relation via the shear modulus μ. The
thermoelastic parameters (i.e., E(θ), ](θ), ca (θ), ρ0(θ), cp(θ), κ(θ),
and αt(θ)) that are used throughout this article are extracted from
the literature as indicated in Table 3.

3.3 Instantaneous Plasticity
As discussed earlier, the constitutive response is dominated either
by instantaneous or by viscoplastic deformation depending on
stress level, applied strain rate, and temperature. Instantaneous
plasticity occurs whenever the resolved shear stress on any slip/
twinning system is above its current strength. Thus,
instantaneous plasticity dominates the deformation behavior
for experiments with applied stresses above the yield stress
and constant strain rate experiments with strain rates that are
above typical creep rates at the given temperature. Furthermore,
the instantaneous plastic deformation depends on temperature
only through the temperature dependence of the yield stress and
the thermoelastic parameters.

Making use of this fact, it is possible to separately calibrate and
evaluate the parts of the model that describe the instantaneous
plasticity by only considering load scenarios that favor this
deformation behavior.

3.3.1 Constant Strain Rate Room Temperature
Experiment
Classical uniaxial tensile/compression tests at room temperature
are naturally dominated by instantaneous elastic–plastic
deformation. Correspondingly, such room temperature
experiments are a good starting point to calibrate the
respective parts of the discussed model.

At room temperature, static recovery and viscoplastic (creep)
deformation are negligible. Consequently, _ρdisstatrec in Eq. 41 and
_cvisc
α

in Eq. 33 can be neglected. This basically reduces the model
to the state of the base model from Schnabel and Bargmann
(2017), Schnabel et al. (2019) inwhich creep deformation has not yet

FIGURE 5 | RVE of PST crystal. φ: angle between uniaxial load and
lamella plane; cI−IIIM/T : six orientation variants of γ phase according to Figure 1
(three matrix and three twin orientations). Figure taken from Schnabel and
Bargmann (2017).

11Note that this simplifies the RVE to a columnar structure in y-direction.
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been considered. However, the enhanced dislocation density evolution
model requires the newly introduced model parameters (i.e., ξD, ξL, ζ,
and Rdyn) to be identified, and also necessitates a (slight) adjustment of
previously identified work hardening interaction coefficients.

The parameters for the work hardening model (Eqs. 22 and
23) and the dislocation density evolution (Eq. 34) are calibrated
against the room temperature compression tests with differently
oriented PST crystals that are reported in Uhlenhut (1999). The

corresponding calibration procedure has extensively been
discussed before Schnabel and Bargmann (2017), Schnabel
et al. (2019) and will therefore not be revisited here. A
summary of the corresponding simulation results can,
however, be found in the Supplementary Material, and some
details about the identified parameter set are given in the
following.

The work hardening due to the interaction of slip dislocations
is modeled by classical Taylor hardening (cf. Eq. 22), and thus do
not require any model parameters to be identified. The work
hardening interaction between slip and twinning systems does,
however, require the calibration of the corresponding interaction
coefficients in Eqs. 22 and 23 (i.e., hαβ, hββ′ and Cβα). In the most
general case, there are different hardening interaction coefficients
for all possible combinations of slip and twinning systems.
However, when applying crystal plasticity models to specific
materials, the slip/twinning systems can naturally be
categorized into groups of systems with the same behavior
(e.g., based on crystallography), which consequently can be
described by the same set of model parameters.

TABLE 3 | Thermoelastic model parameters used in this study. The reported experiments were carried out in the indicated temperature range. Where necessary, the linear
approximations of the temperature dependences are extrapolated to the temperatures of interest. If no parameters for the single phases are available, the parameters of
two phase alloys were used instead. The lattice constants a and the c

a ratios of the unit cells are necessary to calculate the (temperature dependent) magnitude of the Burgers
vectors and the corresponding slip/twinning directions s and slip/twinning plane normals n as described elsewhere Schnabel (2018).

γ phase

Symbol Value Temp. range [°C] Composition Ref

E 173.59GPa − 0.0342[T − T0] GPa
+C T0 � 25< T < 935 Ti-50Al Schafrik (1977)

] 0.234 + 6.7 · 10−6[T − T0] 1
+C T0 � 25< T < 847 Ti-50Al Schafrik (1977)

c
a 1.00356 + 7.2 · 10−6[T − T0] 1

+C T0 � 20< T < 1450 Ti-46Al-1.9Cr-3Nb Novoselova et al. (2004)
a 0.3997 nm Appel et al. (2011)

α2 phase

Symbol Value Temp. range [°C] Composition Ref

E 147.05GPa − 0.0525[T − T0] GPa
+C T0 � 25< T < 954 Ti-27.6Al Schafrik (1977)

ν 0.295 − 5.9 · 10−5[T − T0] 1
+C T0 � 25< T < 954 Ti-27.6Al Schafrik (1977)

c
a 0.804 ≈ const. T0 � 20< T < 1450 Ti-46Al-1.9Cr-3Nb Novoselova et al. (2004)
a 0.5765 nm Appel et al. (2011)

γ/α2 phase combined

Symbol Value Temp. range [°C] Composition Ref

ρ0 4.219 g
cm3 − 1.579 · 10− 4[T − T0] g

cm3 +C T0 � 25<T <1150 Ti-45.5Al-8Nb Egry et al. (2007)
cp 0.6207 J

g +C + 1.5897 · 10− 4[T − T0] J
g[+C]2 T0 � 20<T <900 Ti-45.5Al-8Nb Zhang et al. (2001)

κ 15.35 W
m +C + 1.364 · 10− 2[T − T0] W

m[+C]2 T0 � 100<T <900 Ti-47Al-4(Nb,W,B) Zhang et al. (2001)
αt 8.936 · 10−6 1

+C + 3.4 · 10− 9[T − T0] 1
[+C]2 T0 � 100<T <900 Ti-47Al-4(Nb,W,B) Zhang et al. (2001)

TABLE 4 | Identified model parameters for the work hardening interaction model
between slip and twinning systems.

γ phase (slip–twin interaction)

Parameter Unit ls (α � 1–3) ms (α � 4–6) ts (α � 7–12) Interaction

hαβ [MPa] n.a. n.n. n.n. lt (β � 1)
1,500 1,500 n.n. tt (β � 2 − 4)

γ phase (twin–twin interaction)

Parameter Unit lt (β � 1) tt (β � 2–4) Interaction

hββ′ [MPa] n.a. n.n. lt (β′ � 1)
1,500 n.n. tt (β′ � 2 − 4)

γ phase (twin–slip interaction)

Parameter Unit lt (β � 1) tt (β � 2–4) Interaction

Cβα [–] 700 n.n. ls (α � 1 − 3)
700 n.n. ms (α � 4 − 6)
700 n.n. ts (α � 7 − 12)

ls: longitudinal slip, ms: mixed slip, ts: transversal slip, lt: longitudinal twinning, tt:
transversal twinning, n.a.: not applicable, n.n.: not needed (i.e., � 0). Indices α and β

according to Table 1.

TABLE 5 | Model parameters of the dislocation density evolution model. These
parameters are used irrespective of the morphological class of the slip system
at hand. Due to previous arguments concerning the contribution of the minor α2
phase to the overall plastic deformation, the same parameters were used for the
dislocation density evolution in the γ and the α2 phase.

Symbol Value

ξD � ξL � ξ 10
ζ 35
Rdyn 10
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For fully lamellar TiAl, it has been shown by several studies
that the number of model parameters of the crystal plasticity
formulation can be drastically reduced by making use of the
morphological classification (see, e.g., Lebensohn et al. (1998),
Werwer and Cornec (2006), Zambaldi et al. (2011)). By assuming
that the hardening interaction between all slip/twinning systems
of one morphological class with all slip/twinning systems of
another morphological class can be described by the same
coefficient, the number of parameters reduces to the
interaction matrix that is shown in Table 4. The calibration
against the experiments from Uhlenhut (1999) (cf.
Supplementary Material) moreover reveals that only 6 of the
16 remaining work hardening interaction coefficients are actually
needed (i.e., have values ≠ 0) to reproduce the room temperature
work hardening behavior. Having a closer look at the
corresponding parameters in Table 4, it becomes clear that it
is the Hall–Petch type hardening effect of emerging transversal
twins on longitudinal and mixed slip/twinning systems that
dominates the slip-twin work hardening interaction (cf.
Schnabel and Bargmann (2017), Schnabel et al. (2019)). In
addition, only longitudinal twins appear to be significantly
hardened by an increasing number of slip dislocations
(i.e., Cβα ≠ 0 in Table 4).

The parameters of the dislocation density evolution (i.e., ξD, ξL,
ζ, and Rdyn) were identified from the same simulations and take
values that are comparable to what has been reported in
Chatterjee et al. (2002). The results are given in Table 5.

3.3.2 Constant Strain Rate High Temperature
Experiment
Although thermally activated processes become increasingly
relevant with increasing temperature, uniaxial tensile/compression
tests at elevated temperatures are still dominated by instantaneous
elastic–plastic deformation as long as the strain rate is sufficiently
high. Therefore, the viscoplastic (creep) deformation remains
negligible and is thus again set to _cvisc

α
� 0 in the following.

As discussed above, instantaneous plastic deformation occurs
as soon as the resolved shear stress on any deformation system
reaches its current strength. In preparation for the next section in
which the creep behavior of differently oriented PST crystals will
be discussed at the example of the experiments from
Parthasarathy et al. (2000), it is thus crucial to capture the
temperature dependence of the model parameters that
determine the current strength of deformation systems.

The work hardening as described by Eqs. 22 and 23 is not
explicitly depending on temperature. Equations, 22 and 23 are
only indirectly depending on temperature through the shear
modulus μ and the magnitudes of the Burgers vectors bα/β.
Therefore, the work hardening parameters identified from room
temperature simulations/experiments (see Table 4) are applicable
to high temperature problems without any changes. The same
holds for the parameters of the dislocation generation and dynamic
recovery model, that is, Eqs. 35 and 40 (see Table 5).

The yield stress of PST crystals and thus the initial slip/twinning
system strengths τYα,0 and τTβ,0 (cf. Eqs. 18 and 19) are highly
temperature dependent and exhibit a temperature anomaly as it
frequently occurs in intermetallic alloys Appel et al. (2011),

Veyssière (2001). This means that the yield stress counterintuitively
increases with increasing temperature up to a certain peak strength.
Above the corresponding peak temperature, the yield stress
decreases drastically with further increasing temperature.

In Butzke and Bargmann (2015), this yield stress anomaly of
PST crystals has been modeled according to the experimental
findings from Umakoshi and Nakano (1992) by making the
Hall–Petch coefficients kHP

i in Eqs. 20 and 21 temperature
dependent. Following the same line of arguments, the critical
stress concentration that needs to be exceeded by a dislocation
pileup in order to overcome lamella respectively domain
boundaries has been modeled as a function of temperature just
recently in Ilyas and Kabir (2020). However, the temperature at
which the anomalous peak occurs as well as the height of the peak
varies from study to studyUmakoshi andNakano (1992), Inui et al.
(1995), Parthasarathy et al. (2000). Thus, the models from Butzke
and Bargmann (2015) and Ilyas and Kabir (2020) cannot generally
be applied to any experimental study without recalibration.

Thus, the temperature-dependent initial critical resolved shear
stresses τYα,0 and τTβ,0 (cf. Eqs. 18 and 19) are calibrated as a whole
to match the experimental results from Parthasarathy et al. (2000)

FIGURE 6 | Yield stress (σ0.2) of differently oriented PST crystals.
Comparison of simulation results to experiments from Parthasarathy et al.
(2000).

TABLE 6 | Identified initial critical resolved shear stresses in the γ phase as a
function of temperature for the PST crystals tested in Parthasarathy et al.
(2000).

Initial critical resolved shear stresses in the γ phase

Parameter Unit ls (α � 1–3) ms (α � 4–6) ts (α � 7–12) Temperature

τYα,0 [MPa] 55 110 145 20°C
45 130 130 700°C
40 140 115 760°C
40 165 95 815°C

Parameter Unit lt (β � 1) tt (β � 2–4) Temperature

τTβ,0 [MPa] 55 145 20°C
45 130 700°C
40 115 760°C
40 95 815°C

ls, longitudinal slip; ms, mixed slip; ts, transversal slip; lt, longitudinal twinning; tt,
transversal twinning. Indices α and β according to Table 1.
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for different characteristic loading angles. As the evolution of the
dislocation density does not play a significant role at the onset of
yield (even at the σ0.2 yield point), the static recovery behavior is
neglected here (i.e., _ρdisstatrec � 0 is assumed again) for the sake of
simplicity. Furthermore, the initial strengths of all slip/twinning
systems of the same morphological class is assumed to be the
same because of their identical free path lengths. Thus, only three
initial critical resolved shear stresses remain to be identified as a
function of temperature; one for longitudinal, one for mixed, and
one for transversal slip/twinning systems each.

Figure 6 shows the simulated yield stresses of PST crystals
under the characteristic loading angles of 0°, 45°, and 90° over
temperature in comparison to the experimental results from
Parthasarathy et al. (2000). The corresponding initial critical
resolved shear stresses for the γ phase are gathered in Table 6.

Although only covering the discrete temperatures from the
creep experiments in Parthasarathy et al. (2000), Figure 6 clearly
shows the yield stress anomaly of PST crystals. While for a
loading angle of 90°, the peak respectively plateau temperature
has obviously been already reached below 700°C (cf. Umakoshi
and Nakano (1992), Inui et al. (1995)), the yield strength for
loading angles of 0° is still increasing even at 815°C. For loading
angles of 45°, the yield stress basically remains constant over
temperature, as it has been found in other studies Umakoshi and
Nakano (1992), Inui et al. (1995).

3.4 Viscoplastic Creep Deformation
In the following, the presented model is applied to reproduce the
creep experiments from Parthasarathy et al. (2000). In
Parthasarathy et al. (2000), PST crystals of the characteristic
orientations 0°, 45°, and 90° were subjected to compressive stresses
at temperatures of 700°C, 760°C, and 815°C.

As the dislocation density evolution (and thus the work
hardening rate) has been modeled in a microstructure sensitive
way (cf. Eqs. 36 and 37), the microstructural parameters λL and λD

need to be set according to the microstructure characterization in the
experiments. The lamella thickness has been reported to be
λL � 0.37μm in Parthasarathy et al. (2000). The γ domain size has
not been reported in Parthasarathy et al. (2000) and is thus chosen to
be λD � 50λL � 18.5μm which corresponds to typically observed

aspect ratios of the γ domains (cf., e.g., Umakoshi and Nakano
(1992, 1993)).

The instantaneous shear rates _cinst
α

are modeled via a
viscoplastic power law (cf. Eq. 31). While this formulation
ensures a unique identification of active slip/twinning systems,
it comes at the expense of introducing artificially high strain rate
dependence if ninst in Eq. 31 is chosen too low. In order to
minimize the unwanted contribution of _cinstα to the viscoplastic
deformation (i.e., in order to really separate the two deformation
regimes), ninst � 200 is chosen for the creep simulations.

With these assumptions, only the viscoplastic shear rates _cvisc
α

from Eq. 33 and the static recovery rate _ρdisstatrec from Eq. 41 remain
to be identified in order to reproduce the creep behavior of
differently oriented PST crystals.

In the creep experiments from Parthasarathy et al. (2000), PST
specimens have been subjected to a constant creep load until the
strain rate vs. time plots reached a plateau. Once such a plateau
has been reached, the load was increased. By repeating this
stepwise stress increase procedure, it has been possible to
extract the creep rates that correspond to the observed
plateaus as a function of applied stress by using the same
specimen. By applying different stress series to different
specimens, it has further been shown in Parthasarathy et al.
(2000) that the creep rates that correspond to the observed
plateaus only depend on the applied stress irrespective of the
load history. From this experimental procedure, a stress exponent
of n � 5 has been identified for all orientations and temperatures
for which the PST crystals have been tested Parthasarathy et al.
(2000). This is reasonable in the context of dislocation creep and
suggests that a steady state (i.e., saturation of the dislocation
density) has in fact been observed in the respective experiments as
claimed by the authors. In consequence of the findings from
Parthasarathy et al. (2000), the stress exponent in Eq. 33 is thus
set to nvisc � 5 in the following.

With the stress exponent at hand, only the two Arrhenius type
terms _cvisc0 exp ( − Qc

kBθ
) from Eq. 33 and Rstatexp( − QR

kBθ
) in Eq. 41

remain to be identified in order to reproduce the creep behavior. As
the creep behavior has been found to be insensitive to the α2

volume fraction Appel et al. (2011) which is either way quite low,
no viscoplastic deformation is considered in the α2 phase.

FIGURE 7 | Steady-state creep against stress. Comparison of simulations to experiments from Parthasarathy et al. (2000).
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In the simulations, the creep load is applied via a linear
ramp over a time of 1 s in order to facilitate numerical
handling of the load jump. As soon as the simulations
reached the creep strain that corresponds to the primary

creep strain that has been reported in Parthasarathy et al.
(2000), the load has been increased to the next level, again over
a period of 1 s. If for a given creep load, the simulation did not
show saturation behavior up to the experimentally determined
primary creep strain, the load was kept on the respective level
until a plateau appears in the strain rate vs. time plot. Figure 7
shows the steady-state creep rate vs. stress plot as extracted
from the respective simulation results in comparison to the
experimental results from Parthasarathy et al. (2000) for
different lamella orientations and temperatures.

Figure 8 shows the simulated strain rate vs. time plots that
have been used to identify the steady-state creep rates in
Figure 7 as well as the corresponding strain rate vs.
strain plots.

The parameters that were applied to produce the simulation
results from Figures 7, 8 are gathered in Table 7.

3.5 Discussion
In the following, the simulation results that have been shown in
the previous section will be critically discussed and compared to

FIGURE 8 | Simulation results for differently oriented PST crystals at the temperatures and stress levels from the experimental results in Parthasarathy et al. (2000).
Symbols: experimentally determined steady-state strain rates at the corresponding strain, that is, at the end of primary creep stage. Solid lines: simulations.

TABLE 7 | Viscoplastic shear rates and static recovery rates that have been
identified to reproduce the PST crystals tested in Parthasarathy et al. (2000) as
a function of temperature.

Viscoplastic shear rates in the γ phase

Parameter unit ls (α � 1–3) ms (α � 4–6) ts (α � 7–12) Temperature

_cvisc0 exp(− Qc
kBθ
) [1s] 2 × 10−10 4 × 10−10 4 × 10−8 700°C

4 × 10−9 8 × 10−9 6 × 10−7 760°C
5 × 10−7 1 × 10−7 6 × 10−6 815°C

Static recovery in the γ/α2 phase

Rstatexp(− QR
kBθ
) [ 1

mm2s] n.n. n.n. 4 × 10−12 700°C
n.n. n.n. 3 × 10−11 760°C
n.n. n.n. 2 × 10−10 815°C

ls: longitudinal slip; ms: mixed slip; ts: transversal slip; lt: longitudinal twinning; tt:
transversal twinning. Indices α and β according to Table 1. n. n.: not needed.
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the experimental findings from Parthasarathy et al. (2000) and
other literature.

3.5.1 Creep Simulations
The comparison of the creep simulations to the experimental
results from Parthasarathy et al. (2000) allows two observations:

(1) The presented model is capable of reproducing the steady-
state creep rates of differently oriented PST crystals
reasonably well as a function of stress, loading angle, and
temperature for the identified set of model parameters (see
Figure 7).

(2) For certain load cases and orientations, the primary creep
strain is significantly overestimated by the model (see
Figure 8).

Having a closer look on the load cases/orientations for which
the model overestimates the primary creep strain (i.e., the strain
at which the saturation state is reached), it becomes apparent that
a significant part of the estimated primary creep strain
accumulates within the 1 s in which the load is applied/
increased in the simulations. In all cases for which the
primary creep strain is overestimated, the applied stress
exceeds the current yield strength in the model; that is, the
resolved shear stress on at least one slip/twinning system is

FIGURE 9 | Simulation results for differently oriented PST crystals at the temperatures and stress levels from the experimental results in Parthasarathy et al. (2000).
Second simulation series, that is, the creep strain that accumulates during the 1 s loading periods is subtracted. Symbols: experimentally determined steady-state strain
rates at the corresponding strain, that is, at the end of primary creep stage. Solid lines: simulations.
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higher than its current strength. Thus, the overestimated primary
creep strain is closely related to the occurrence of instantaneous
plasticity in the model.

In order to identify/quantify the contribution of the
instantaneous strain to the primary creep strain, an
additional series of simulations is set up. For these
simulations, the model set up as well as all identified model
parameters remain unchanged. Only the strain that accumulates
during loading, that is, during the 1 s linear load increase, is
subtracted when plotting the simulation results. The simulation
times at which the load is increased are adjusted accordingly so
that the load increase is again taking place once the primary
creep strain from the experiments in Parthasarathy et al. (2000)
has been reached.

The corresponding strain rate vs. strain and strain rate vs. time
plots are shown in Figure 9. The secondary creep rates of this
second series of simulations essentially remain the same as in the
first series of simulations (cf. Figure 7) and are therefore not
plotted here again.

By the results in Figure 9, that is, by subtracting the
instantaneous strain that accumulates during the time span in
which the load is applied, most of the differences between the
primary creep strain in the simulations and the experiments can
be rationalized without a negative effect on the predicted steady-
state creep rates and the simulation results for the load cases/
orientations for which the primary creep strain was correctly
predicted in the first place.

Obviously, the occurrence of instantaneous plasticity in the
model could also be reduced/suppressed by increasing the
initial yield strength (and thus the creep stress to yield
strength ratio) or by increasing the work hardening rate (and
thus the creep stress to current strength ratio). The former
approach is, however, not reasonable as the model has been
calibrated to match the yield strengths of the PST crystals tested
in the same study (i.e., Parthasarathy et al. (2000)) at the
temperatures that have also been used for the creep
experiments (see Figure 6). The (athermal) work hardening
behavior on the other hand has been calibrated against results
from a different experimental study (see Supplementary
Material). However, the drastic increase of the work
hardening rate that would be necessary to sufficiently reduce
the instantaneous plastic response for the load cases in which
the model overestimates the primary creep strain would in turn
negatively affect the simulation results for the majority of load
cases for which the model estimates the primary creep strains
reasonably well.

The fact that the discrepancy between the experimentally
determined and the simulated primary creep strain can largely
be eliminated by subtracting the instantaneous strain does suggest
that there is systematic cause.

Although not frequently discussed in the literature, much of
the information on the instantaneous deformation is probably
lost in typical creep experiments due to apparative limitations
(Estrin andMecking, 1984). First, the instantaneous strain during
loading accumulates with a strain rate that is several orders of
magnitude higher than the viscoplastic creep rates and is thus not
detectable with equipment that is optimized for measuring creep

strain rates. This does, however, not explain why the
instantaneous strain might not be captured in creep
experiments. Instead, this may result from the typical loading
procedure. The disturbance of the sensitive strain measurement
during manually applying dead loads impedes a precise
determination of the strain during loading. In the context of
the long duration of creep measurements, it is thus a pragmatic
approach to start the measurement only after the load has been
applied, consequently losing all information on the instantaneous
deformation.

The instantaneous strain that accumulates during the load
application is the sum of elastic strain and instantaneous
plastic strain. While losing the information of the elastic
part of the instantaneous strain is justifiable because the
elastic strains remain small and can be estimated
analytically, not detecting potentially occurring
instantaneous plastic strains can lead to dramatic
misinterpretation of the experimental results and in worst
case leads to a drastic overestimation of the time that is
needed to reach the admissible creep strain for a given
stress. As many experimental studies (including the study
discussed here (i.e., Parthasarathy et al. (2000))) did,
actually, not exclusively apply creep stresses below the yield
point, this hypothesis even rationalizes the frequent
occurrence of mechanical twins in creep experiments Appel
et al. (2011), Wegmann et al. (2000) as twins do naturally
evolve when the load exceeds the yield strength (i.e., in the
instantaneous plastic deformation regime).

In the end, this hypothesis cannot be unambiguously proven
without further experimental investigation. However, the
occurrence of (undetected) instantaneous plastic strains would
rationalize many of the observed discrepancies and is supported
by the fact that even the (analytically determined) elastic strain
due to a load increase would in many cases be higher than the
primary creep strains for the reported load cases in Parthasarathy
et al. (2000).

3.5.2 Activation Energy for Creep
Numerous experimental studies reported the activation energy
for creep in polycolony fully lamellar TiAl, however, with a
significant scatter between 320 kJ/mol <Qc < 450 kJ/mol
Appel et al. (2011). In the modeling part of Zhang and
Deevi (2003), it has been shown that the temperature
dependence of the creep behavior of different experiments
with polycolony fully lamellar TiAl can be reproduced for an
activation energy ofQc �375 kJ/mol which is well in the middle
of the reported values. While confirming the findings for
polycolony TiAl by reporting an activation energy of
Qc �382 kJ/mol, the authors of Parthasarathy et al. (2000)
found that for PST crystals, the activation energy varies
with the loading angle from Qc � 532 kJ(/mol) at 0° over
Qc � 398 kJ/mol at 45° to Qc � 432 kJ/mol at 90°. In
combination with the anisotropy of the creep resistance
which has consistently been reported to be lowest for PST
crystals under loading angles of 45° Asai et al. (2002),
Wegmann et al. (2000), Parthasarathy et al. (2000), Marketz
et al. (2003), these (apparent) activation energies give a sound
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picture. As the creep deformation of polycolony microstructures is
naturally determined by the colonies that have the lowest creep
resistance with respect to the (local) stress, it appears reasonable
that polycolony microstructures show activation energies that
are comparable to the ones of PST crystals under loading angles
of 45°.

However, these activation energies are determined from
Arrhenius graphs, that is, by plotting the minimum/steady-
state creep rate against the (inverse) temperature. Thus, the
reported activation energies can be called apparent in the sense
that they represent the macroscopic result of the thermally
activated micromechanisms that lead to creep. The plotted
macroscopic minimum/steady-state creep rates are, however,
related to the creep shear rates on the slip systems via the
Schmid/Taylor factor so that the slope in the Arrhenius plot
(and thus the activation energy) is different when resolved to
the single slip systems. Thus, the experimentally determined
apparent activation energies and especially their apparent
anisotropy for PST crystals may be rationalized by taking
the crystallography into account. While this is obviously not
easily done or even impossible in experiments, the simulation
results presented here can help to relate the apparent
macroscopic activation energies to their slip system resolved
representation.

Therefore, the Arrhenius term _cvisc0 exp (− Qc
kBθ

) from Eq. 33 was

purposely treated as a single parameter and separately identified
for longitudinal, mixed, and transversal slip systems during the
model calibration (cf. Supplementary Material).

A detailed discussion of the dislocation mobilization
mechanisms that are reflected in the activation energy for
creep of PST crystals is naturally beyond the scope of
continuum mechanics. However, plotting the identified

_cvisc0 exp (− Qc
kBθ

) values for longitudinal, mixed, and transversal

slip systems over the temperature (see Figure 10) still allows
the following phenomenological observations:

• All identified values _cvisc0 exp (− Qc
kBθ

) fall within the

boundaries defined by activation energies between 375 kJ/

mol <Qc < 425 kJ/mol for _cvisc0 � 1013.

• Longitudinal and mixed slip systems can be described by

nearly the same choice of _cvisc0 exp (− Qc
kBθ

), indicating that

they have a similar activation energy.
• The activation energy for transversal slip systems is much

lower than the one for longitudinal and mixed slip systems.

The fact that the identified _cvisc0 exp (− Qc
kBθ

) values in Figure 10

can be fitted using activation energies between 375 kJ/mol and
425 kJ/mol is in good agreement with experimental findings.

As the predominantly activated deformation systems in PST
crystals vary with the loading angle, it is possible to
phenomenologically relate the identified viscoplastic model
parameters (and thus the tendencies in the activation energies)
for longitudinal, mixed, and transversal slip systems to the
observed creep behavior of PST crystals.

For a loading angle of 45°, mainly longitudinal deformation
systems become active (even under creep conditions) as they have
the highest Schmid factors and the lowest strength. For a loading
angle of 90°, only transversal deformation systems have Schmid
factors ≠ 0 so that longitudinal and mixed slip systems do not
contribute to the plastic deformation. For 0°, longitudinal
deformation systems have a Schmid factor of 0. Thus, mainly
mixed and transversal deformation systems contribute to plastic
deformation.

At first glance, the identified _cvisc0 exp (− Qc
kBθ

) values do not

reflect the experimentally observed anisotropy in the creep
resistance as longitudinal and mixed slip systems can be
described by nearly the same parameters although the creep
resistance of PST crystals under loading angles for which these
deformation systems dominate (i.e., 45° and 0°) differs

significantly. The same holds for the _cvisc0 exp (− Qc
kBθ

) values of

transversal slip systems which correspond to low activation
energy and thus do not fit the high creep resistance that has
been observed for PST crystals under loading angles of 90°.

However, in the current model, the viscoplastic creep
behavior has been described by Eq. 33, that is, in a slip
system resolved manner in which the viscoplastic shear rate
on a slip system is determined by normalizing the classical

FIGURE 10 | Identified Arrhenius terms _cvisc0 exp(− Qc
kBθ
) for the viscoplastic shear rates of longitudinal, mixed, and transversal slip systems (cf. Supplementary

Material).
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creep model (i.e., Eq. 1) by the slip system strength. Thus, the
creep resistance of longitudinal, mixed, and transversal
deformation systems is in fact not given solely by the
activation energy but also incorporates the slip system
strengths and is related to the experimentally observed
values via the Schmid factors as already mentioned above.

Thus, the identified _cvisc0 exp (− Qc
kBθ

) values do not contradict the
experimental findings but instead represent the slip system
resolved, micromechanical interpretation of the creep law in Eq.
1. In fact, the activation energies for which the _cvisc0 exp (− Qc

kBθ
) can

be fitted (cf. Figure 10) may even be interpreted in the context
of the yield stress temperature anomaly shown in Figure 6.
While the yield stress for a loading angle of 90° (and
correspondingly the critical resolved shear stresses of the
predominantly activated transversal deformation systems)
monotonically decreases, the yield stresses for 0° and 45°

(and correspondingly the critical resolved shear stresses for
mixed and longitudinal deformation systems) show a plateau
or even increase in the range of tested temperatures (see
Figure 6). Thus, longitudinal and mixed slip systems can be
said to show a temperature anomaly in the indicated
temperature range (700°C–815°C). Consequently, the

activation energy that successfully fits the _cvisc0 exp (− Qc
kBθ

)
values of both the longitudinal and mixed slip systems (cf.
Figure 10) can be interpreted to be related to the mechanisms
that cause the temperature anomaly. In the line of these
arguments, it is reasonable that the activation energy that
fits the _cvisc0 exp (− Qc

kBθ
) values for transversal slip systems is

lower because the experiments in which transversal
deformation systems are predominantly activated (i.e., for
a loading angle of 90°) show no anomaly in the yield stress
between 700°C and 815°C.

3.5.3 The Role of Static Recovery
As opposed to other alloys for which static recovery can often be
neglected Estrin and Mecking (1984), TiAl alloys have been
found to exhibit a fast static recovery behavior Paul and Appel
(2003), Lindemann et al. (2006), Schnabel et al. (2019), Appel
et al. (1999). In Paul and Appel (2003), Appel et al. (1999), the
fast static recovery kinetics of TiAl has been associated to the
annealing-out of dipoles and debris. In fact, it has been shown in
Lindemann et al. (2006) that these defects even recover during
constant strain rate deformation at sufficiently high temperatures.
Thus, the recovery of these thermally unstable defects can be
considered as instantaneous in the context of creep deformation
so that these defects do not contribute to the work hardening during
primary creep. A possibility to model the additional work hardening
that is provided by dipoles (and consequently their separate, fast
recovery) is introduced via a separate dislocation evolution term in
Ma et al. (2006). However, in the present work, dipoles are not
modeled separately as they do not contribute to the work hardening
in primary creep. Still, the static recovery behavior is not neglected
here as the thermally more stable defect structures may also recover
although with a significantly slower recovery kinetics.

Interestingly, the recovery term Rstatexp(− QR
kBθ
) had to be

chosen ≠ 0 only for transversal slip systems during the model
calibration (see Supplementary Material). This shows that the
static recovery behavior of the dislocation network is in fact
negligible for longitudinal and mixed slip systems. A possible

explanation for the necessity to choose Rstatexp(− QR
kBθ
)≠ 0 for

transversal slip systems may be found in the dislocation pile
up against the lamella boundaries which results in a high density
of immobile dislocations on parallel slip planes potentially
facilitating recombination by climb. However, this surely needs
further investigation.

4 CONCLUSION AND OUTLOOK

The results that are shown in the present work lead to the
following conclusions regarding the creep behavior of PST
crystals and the presented model:

• The climb-assisted glide model from this work is able to
reproduce the creep experiments with differently
oriented PST crystals from Parthasarathy et al. (2000)
reasonably well for a viscoplastic stress exponent of
nvisco � 5.

• The results of the presented numerical study indicate that
the instantaneous (plastic) strain that accumulates during
application of the creep load may not be captured in creep
experiments due to apparative limitations.

• The apparent anisotropy of the activation energy for creep
that has been observed in experiments with differently
oriented PST crystals changes its characteristics when
resolving the shear rates to the predominantly activated
deformation systems and normalizing the results to the
different strengths of deformation systems.

• Differences in the identified activation energies for creep of
deformation systems from different morphological classes
can potentially be rationalized in the context of the yield
stress temperature anomaly of PST crystals.

• The role of the fast static recovery kinetics in creep of TiAl
alloys needs further experimental investigation in order to
backup or—if necessary—refine the model.

In consequence, the present study shows that interpreting/
modeling the steady-state/minimum creep rates of PST crystals
using models in the form of Eq. 1 leads to misconceptions in both
the stress exponents n and the activation energies Qc.

In its present form, the derived model is capable of
reproducing the transition from primary to secondary
creep stage for PST crystals of TiAl12 in a microstructure
sensitive way. However, the modeled processes of dislocation creep
only describe the bulk creep behavior. For very low stresses, the

12Or potentially any other crystalline material with lamellar microstructure, that is,
with microstructural features with extreme aspect ratios like, for example, lamellae,
layered platelets, or even rolling textures.
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present model will thus underestimate the secondary creep rate as
under this conditions interface glide may become the dominant
creep mechanism. In addition, the steady state is not reached for
certain load cases in fully lamellar TiAl due to the early onset of
damage/tertiary creep.While the presented evolutionmodel for the
dislocation density is not invalidated in the tertiary creep stage, the
creep rate for the respective deformation state will still be
underestimated as damage is not yet incorporated in the model.
Thus, in a next step, the here presented model may be extended to
account for damage in the bulk of the lamellae. The interface
related effects, that is, interface glide and interface damage, cannot
be reasonably captured in the context of crystal plasticity. In order
to incorporate these interface related effects, the cohesive element
formulation presented in Scheider et al. (2020) can be introduced
to the RVE of the lamellar microstructure.
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