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Titanium (Ti) is an ideal structural material whose use is gradually emerging in civil
engineering. Regular defect evaluation is indispensable during the long-term use of Ti
sheets, which can be performed effectively using eddy current (EC) imaging, a method of
visualizing defects that is convenient for inspectors. However, as EC scan images contain
abundant information and have discrepancies in terms of their quality, it is difficult to extract
effective features, thus affecting the evaluation results. In this article, we propose a method
that combines the EC imaging technology with a quantitative evaluation method for Ti
sheet defects based on the deep belief network (DBN) and least squares support vector
machine (LSSVM). Amultilayer DBN is constructed to extract the effective features from EC
scan images for Ti sheet defects. Based on the extracted feature vectors, a multi-objective
regression model of defect dimensions is established using the LSSVM algorithm. Then,
the dimensions of Ti sheet defects such as length, diameter, and depth are quantitatively
evaluated by the effective features and the efficient regression model. The experimental
results show that the evaluation errors for the defect lengths and depths tested are less
than 3 and 5%, respectively, confirming the validity of the proposed method.

Keywords: titanium sheet, eddy current scan image, feature extraction, defect quantitative evaluation, deep belief
network

INTRODUCTION

Titanium (Ti) is an ideal structural material with excellent all-round properties, such as low density,
high specific strength, and excellent corrosion resistance (Cui et al., 2011). For decades, Ti was mainly
used in the aerospace and defense industries (Malwina, 2016). Later, as its production increased, it was
also gradually applied to other fields, such as the chemical and medical industries, and ocean and civil
engineering (Gurrappa, 2003; Veiga et al., 2012; Bayrak and Yilgor Huri, 2018). In civil engineering, Ti
sheets can be safely connected with ceramics, glass, and concrete because all of these materials have
similar thermal expansion coefficients (Winowiecka and Adamus, 2016). As a result, the Ti sheet
structures constructed are not only light and beautiful but can also be made resistant to chemical
pollution, acid rain, and marine corrosion (Adamus, 2014); this construction method has been
successfully applied to marine buildings and earthquake-proof constructions around the world
(Adamus, 2014; Malwina, 2016). Despite the excellent all-round properties of Ti sheets, defects are
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inevitably produced during long-term use. In order to ascertain the
remaining life of the Ti sheets, it is important to characterize the
dimensions of Ti sheet defects. Therefore, a method for effectively
detecting and evaluating Ti sheet defects is indispensable.

Eddy current testing (ECT) is a nondestructive testing method
based on electromagnetic induction (Sophian et al., 2001), which has
been widely used for detecting and evaluating defects in conductive
parts of engineered structures. Compared with other nondestructive
testing methods, ECT has many advantages, such as no contact, low
cost, and no pollution (Fan et al., 2016). In ECT, the characterization
of a material defect is considered to be an inverse problem, in which
the defect dimensions are retrieved from the detected signals (Tian
et al., 2005). Traditionally, the dimensions of a defect have been
estimated by visual judgment of ECT detection signals by an
inspector. This method usually requires highly trained personnel,
and the results are usually influenced by the subjectivity of the
inspector (Fan et al., 2016). Thus, some researchers have turned to
machine learning methods to deal with the ECT inverse problem. In
these methods, defect feature extraction mainly relies on a manual
design or simple signal processing methods, such as principal
component analysis (PCA) and independent component analysis
(ICA) (Tian et al., 2005; Sophian et al., 2003; He et al., 2013; Daura
and Tian, 2019), while the quantitative evaluation of defects mainly
employs conventional machine learning methods, such as artificial
neural network (ANN) and Bayesian network (Wrzuszczak and
Wrzuszczak, 2005; Khan and Ramuhalli, 2008). In recent years,
improved visualization methods for ECT have been developed that
can accurately and intuitively reflect the shape, degree, and position
of defects, while keeping the original advantages of ECT.
Bodruzzaman et al. reported a neural network–based method for
estimating the dimension of cracks in metal plates using eddy
current (EC) scan images (Bodruzzaman and Zein-Sabatto, 2008).
Diraison et al. presented an EC imager designed for defect evaluation
of aeronautical lap joints, with PCA used to extract the EC image
features for defect characterization (Diraison et al., 2009). He et al.
investigated pulsed EC (PEC) imaging, with defect evaluation
performed based on the morphological features of EC scan
images (He et al., 2011). Ye et al. used a giant magnetoresistance
(GMR) array to image crack defects in the inner wall of a steam
generator tube and evaluated the crack depth using the amplitude of
the defect area in the EC image (Ye et al., 2016). Nafiah et al. used
PEC testing to obtain an EC scan image of an inclined crack, and
then, three image-based features were designed to characterize the
inclination and depth of the crack (Nafiah et al., 2019). With
improvements in ECT scanning speed, the EC image
contains more information, and there are discrepancies in
image quality under different working conditions.
Therefore, extracting effective features using an artificial
design or simple signal processing becomes difficult, which
affects the efficacy of quantitative evaluation.

To solve the above problem, deep learning seems to be a good
solution. Because deep learning methods have powerful nonlinear
characterization and self-learning capabilities, they are very useful for
extracting essential features from high-dimensional nonlinear data
(Cheng et al., 2019). In 2006, Hinton et al. discussed the deep
learning theory for the first time and proposed a deep belief network
(DBN) built from multiple stacked restricted Boltzmann machines

(RBMs) to solve the difficulty of deep network training and
optimization (Hinton et al., 2006; Hinton and Salakhutdinov,
2006). To date, deep learning has achieved good performance in
many fields, such as image recognition, voice detection, and fault
diagnosis (Zhang and Wu, 2013; O’Connor et al., 2013; Chen and
Li, 2017; Wu et al., 2020). These valid theoretical foundations and
successful applications provide new ideas for the ECT field.
Currently, combining deep learning with the ECT technology is
a trend in the future development of modern civil engineering
material testing. Therefore, in this article, we propose a method that
combines the EC scan imaging technology with a quantitative
evaluation method for Ti sheet defect evaluation based on DBNs
and least squares support vector machine (LSSVM). First,
unsupervised self-learning was conducted on multiple RBMs
layer by layer, and the trained RBMs were stacked to construct a
multilayer DBN, before conducting supervised fine-tuning. Then,
defect features were extracted from the EC scan images of Ti sheets
using the trained DBN. Finally, based on the extracted feature
vectors, a multi-objective regression model of defect dimensions
was established using the LSSVM algorithm. This combination of
effective features and an efficient regression model was used to
perform the quantitative evaluation of Ti sheet defects. Detection
and evaluation experiments were conducted on Ti sheets with
different degrees of defects to confirm the validity of the
proposed method. The proposed method does not require
manually design features, avoiding inspector subjectivity.
Furthermore, the deep learning method provides essential and
concise features, leading to higher accuracy and reliability for the
proposed method than for conventional methods.

The remainder of the work is arranged as follows: the DBN
used for feature extraction and LSSVM used for multi-objective
regression of defect dimensions are briefly introduced in Section
2; then, the experimental setup and materials are described in
Section 3; in Section 4, the experimental results are described and
discussed; and finally, conclusions and further potential work are
outlined in Section 5.

METHOD

Restricted Boltzmann Machine
An RBM (Hinton, 2012) is a basic unit constituting the DBN and
can be regarded as a neural network containing a visible layer and
a hidden layer, with the number of neurons in the hidden layer

FIGURE 1 | Structure of an restricted Boltzmann machine.
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usually being smaller than that in the visible layer. Themain purpose
of an RBM is to compress a given data set and to minimize the
reconstruction error so as to obtain the effective features of the
original data set. The structure of an RBM is shown in Figure 1.

According to Figure 1, combined with EC scan imaging, the
visible layer represents a column vector of a rearranged EC image,
while the hidden layer represents the features after dimension
reduction. There is a bidirectional symmetric connection between
the two layers of the RBM, with no connections within each of the
layers. An RBM is an energy-based model (Zhang andWu, 2013),
with the layer-by-layer learning process following the energy
function expressions:

E(v, h|θ) � −∑m
i�1

aivi−∑n
j�1

bjhj −∑m
i�1
∑n
j�1

viWijhj, (1)

where θ � {W � (Wij)m × n, a � (aij)1 × m, and b � (bi)1 × n} are the
model parameters; vi and ai are the state and bias of the ith neuron
in the visible layer, respectively; hi and bi are the state and bias of
the jth neuron in the hidden layer, respectively; Wij is the
connection weight between the ith visible neuron and the jth
hidden neuron; and m and n are the number of neurons in the
visible and hidden layers, respectively.

Based on the above energy function, the joint probability
distribution of the RBM over the visible and hidden neurons
is defined as follows:

P(v, h|θ) � e−E(v,h|θ)∑
v
∑
h
e− E(v,h|θ). (2)

Due to the structure of the RBM model (full connectivity
between layers and no connectivity within layers), when the state
of visible neurons is given, the activation state of each hidden
neuron is conditionally independent, and vice versa (Chen and Li,
2017). Therefore, the conditional probabilities over hidden and
visible neurons are given by

P(hj � 1
∣∣∣∣v, θ) � sig(bj +∑

i
viWij)

P(vi � 1|h, θ) � sig(ai +∑
j
Wijhj) ,

⎧⎪⎨⎪⎩ (3)

where sig(x) is a sigmoid function, which is selected as the
activation function in this study.

RBM training involves adjusting the parameter θ. The
training objective is to maximize the likelihood function
L(θ|v̂) � P(v � v̂|θ) using the gradient descent algorithm
(O’Connor et al., 2013). Suppose the input data are vt �
(vt1, vt2,/, vtm)T , t � 1, 2,/,N , the calculation of gradients is
performed according to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zln L(θ|vt)
zWij

� P(hj � 1
∣∣∣∣vt)vti −∑ v

P(v)P(hj � 1
∣∣∣∣v)vi,

zln L(θ|vt)
zai

� vti −∑ v
P(v)vi, and

zln L(θ|vt)
zbj

� P(hj � 1
∣∣∣∣vt) −∑

v
P(v)P(hj � 1

∣∣∣∣v).
(4)

The calculation of P(v) in Eq 4 is very complicated. In this study,
contrastive divergence (CD) (Hinton, 2002) is used to provide an
approximate estimation. During training, the parameter θ is
updated according to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wij � Wij + ϵ zln L(θ|v
t)

zWij

ai � ai + zln L(θ|vt)
zai

bj � bj + ϵ zln L(θ|v
t)

zbj

, (5)

where ε > 0 is the learning rate.

Deep Belief Network
A DBN is a deep network composed of multiple RBMs and is a
feedforward neural network algorithm with the advantages of
multiple hidden layers and fast training (Hinton et al., 2006). Due
to a large number of pixels and discrepancy in quality of EC scan
images, it is difficult to obtain effective defect features via self-
learning using only one RBM. Therefore, in this study, a DBN
containing multiple hidden layers is constructed by stacking
multiple RBMs, which realize self-learning of effective features
layer by layer. Figure 2 shows a DBN comprising three stacked
layers of RBMs. The training process for a DBN consists of two
stages (Hinton et al., 2006): the unsupervised pretraining stage
and the supervised fine-tuning stage:

(1) Pretraining uses the layer-by-layer greedy algorithm (Bengio
et al., 2007) to train each RBM separately. When the training
of the first layer of an RBM is completed, its output is taken as
the input of the next layer of the RBM, and then, this process
of transmission continues layer by layer. During the training
of each layer of an RBM, the gradient is calculated according
to Eq 4 and the parameters are updated according to Eq 5.

(2) After pretraining, multiple RBMs are stacked, and a logic
layer is added as the top layer to construct a DBN containing
multiple hidden layers. The stacking of RBMs described
above can be understood as initializing a deep neural
network with the connection weights of multiple RBMs as
an initial weight of the deep neural network. Then, the back
propagation (BP) algorithm and the batch gradient descent
method are used to fine-tune the network. During the
training process, the error is back-propagated to each
layer of the RBM from high to low, with the parameters
between each layer adjusted until the maximum number of
iterations is reached, to achieve the optimal DBN model

Least Squares Support Vector Machine
The LSSVM (Suykens and Vandewalle, 1999) is an improved
version of the general SVM. It transforms the quadratic
programming problem arising from the constraint conditions
of the traditional SVM to the problem of solving linear equations,
which greatly improves the solution speed (Haifeng and Dejin,
2005). In many cases, the relationship between defects and
features is very complex and nonlinear, making it difficult to
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build an effective mathematical model. Therefore, the LSSVM
algorithm is used in this study to establish a multiple-objective
regression model using the extracted features, allowing for the
quantitative evaluation of defects.

For the input sample set (xi, yi), i � 1, 2, . . . , l, xi and yi indicate
the feature vector and defect parameters of the ith EC scan image,
and l is the total number of samples. The nonlinear mapping Φ
maps the features to a feature space, with the regression model
expressed as

y � f (x) � ωTΦ(x) + b. (6)

Determining unknown parameters ω and b is equivalent to
solving the following optimal problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

1
2
⎛⎝‖ω‖2 + c∑l

i�1
e2i⎞⎠

s.t.ωTΦ(xi) + b + ei � yi, i � 1, 2,/, l

, (7)

where c is the regularization parameter controlling the penalty
degree of error, ω is the weight vector, Φ is a kernel function, b is
the bias, and ei is the error variable. To solve this optimization
problem, the Lagrange multiplier is introduced to construct a
Lagrange function:

L(ω, b, e, α) � 1
2
⎛⎝‖ω‖2 + c∑l

i�1
e2i⎞⎠

−∑l
i�1

αi(ωTΦ(xi) + b + ei − yi).
(8)

According to the Karush–Kuhn–Tucker (KKT) condition for
solving the nonlinear programming problem, the equation for
solving ω and b is obtained as follows (Suykens and Vandewalle,
1999):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0 0 −Z
0 0 0 L
0 0 cI −I
ZT LT I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω
b
e
α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

where I is an unit vector of l order, L � [1,1, . . . ,1], α � [α1,α2, . . .
,αl]

T, and Z � [Φ(x1), Φ(x2), . . ., Φ(xl)]. By eliminating ω and e, Eq 8
can be simplified as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 0 L

LT ZTZ + 1
c
I
⎤⎥⎥⎥⎥⎥⎥⎥⎦[ bα] � [ 0

y
], (10)

where ZTZ � k(xi, xj), with k being the kernel function of LSSVM.
Since the quantitative evaluation of defects in Ti sheets has

obvious nonlinear characteristics, the radial basis kernel function
was chosen as k:

k(xi, xj) � exp( − ‖x − xi‖
2δ2

), (11)

where δ
2 is the kernel parameter. Support vector coefficients α and

bias b can be obtained by solving the above linear equations to
determine the regression model as follows:

y � f (x) �∑l
i�1

αik(x, xi) + b. (12)

Quantitative Evaluation of Ti Sheet Defects
Based on Deep Belief Network and Least
Squares Support Vector Machine
Considering the high information content and discrepancy in
quality of EC scan images, we propose a method for the
quantitative evaluation of Ti sheet defects based on the
DBN and LSSVM combined with EC scan imaging. This
method stacks multiple RBMs to construct a DBN with
multiple layers, with the deep network being trained via
unsupervised self-learning and supervised fine-tuning. The
trained DBN can fit nonlinear functions well, so it is used
to extract the potential high-order features from EC scan
images. Based on the extracted features, a multi-objective
regression model of defect dimensions (length, diameter,
and depth) is established using the LSSVM. The effective

FIGURE 2 | Deep belief network structure.
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features and efficient regression model are then combined to
achieve the quantitative evaluation of Ti sheet defects. In line
with the description given above, the specific steps of the
quantitative evaluation method are shown in Figure 3.

As shown in Figure 3, the main steps carried out to implement
this method are as follows:

(1) EC imaging testing is performed on different Ti sheet defects
to obtain EC scan images. After preprocessing (such as de-
noising), the training and testing samples are constructed.

(2) Multiple RBMs are initialized, and the training samples are
input into the first-layer RBM for training. After the training
of the first-layer RBM is complete, its output is used as the
input for the next-layer RBM, and the training is continued.
This process is repeated until the training of all of the RBMs
is complete.

(3) Multiple trained RBMs are stacked, and a logic layer is added
to construct a DBN containing multiple hidden layers, which
is then fine-tuned using the labels of the training samples.

(4) The trained DBN is used to extract features from the training
samples; based on these features, a regression model of defect
dimensions is established using the LSSVM algorithm.

(5) The above methods are then tested by using the DBN to
extract features of the testing samples, which are input into
the LSSVM model to obtain quantitative evaluation results.
Finally, error analysis is conducted on the results.

EXPERIMENTAL SETUP AND MATERIALS

The entire detection system used in this study is shown in
Figure 4, consisting of a programmable scanning stage, a stage
controller, an EC probe, a host PC, and an electromagnetic (EM)
instrument. The EM instrument was developed by the Sensing,
Imaging, and Signal Processing Group at the School of Electrical
and Electronic Engineering at the University of Manchester (Yin
and Peyton, 2006; Yin et al., 2011). The EM instrument can
operate at frequencies of 5–200 kHz and can perform digital
demodulation at a rate of 100 k/s (Yin et al., 2019).

The probe used in the above system is a transmitter–receiver
(T-R)–type probe composed of two coils: one for excitation and
the other for pickup. A schematic of the T-R probe is shown in
Figure 5. Compared with absolute probes with a single coil, T-R
probes have a higher gain, have a wider frequency range, and are
unaffected by thermal drift (Cao et al., 2018). In addition, the
spatial resolution of T-R probes along a scan line is almost twice
as high as that of absolute probes with the same coil size. These
characteristics make the T-R probes more suitable for imaging
applications (Cheng et al., 2017). Although the T-R probes have
good performance, their detection effect is also affected by coil

FIGURE 3 | Flowchart of the proposed method.

FIGURE 4 | Experimental detection system. FIGURE 5 | Structure of eddy current probe.
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parameters such as coil radius, coil gap, and lift-off of the probe.
The parameters of T-R probes should be selected as needed.

The larger the coil, the lower the working frequency required
for maximum sensitivity; however, it also results in a reduction in
spatial resolution (Xu et al., 2018). Considering the dimensions of
the smallest defect in the specimen used in this study, the inner
radius of the coils was chosen to be 0.75 mm. The outer radius of
the coils is related to coil turns to ensure sufficient signal strength.
After coil processing, the outer radius of transmitter and receiver
coils was 1.25 and 1.50 mm, respectively. In addition, the
sensitivity decreases and the lift-off resistance increases with
the increase in coil gap (Ona et al., 2019). After testing, the
receiving coil voltage was greatest at the smallest coil gap of
2.75 mm and almost zero when the coil gap was greater than

10.00 mm. Following consideration of the balance of sensitivity
and lift-off resistance, a median value of 3.50 mmwas taken as the
coil gap. With a decided coil gap, the voltage variation in the
receiver coil will be maximized at a certain lift-off. For the above
coil gap, the voltage variation achieves its maximum at a lift-off of
0.50 mm. According to the above analysis, the parameters of the
T-R probe used in this study are determined and listed in Table 1.

In order to simulate defects of different types and degrees, two
representative types of defects were selected for processing in two
Ti specimens. As shown in Figure 6, cracks and holes were
machined in two 3.0-mm-thick Ti (TA2) sheets via electrical
discharge machining, respectively. Each specimen contained nine
defects of different dimensions. From Figure 6A, the width of all
cracks was 1.0 mm, while the length of each row was 4.0, 8.0, and
12.0 mm, respectively, and the depth of each column was 0.5, 1.5,
and 2.5 mm, respectively; from Figure 6B, the hole diameter of
each row was 1.0, 2.0, and 3.0 mm, respectively, and the depth of
each column was 0.5, 1.5, and 2.5 mm, respectively. The numbers
and parameters of defects are listed in Table 2.

The T-R probe used in this study is a directional sensor, and
the detection mainly relies on the coupling of coils and eddy
current, which are predominant in the middle part of two coils.
During the scanning process, to facilitate the description, the
direction of the connection line between the two coil centers is

TABLE 1 | Probe parameters.

Probe parameter Value

Excitation coil outer/inner radius (re1/re2) 0.75 mm/1.25 mm
Pickup coil outer/inner radius (rp1/rp2) 0.75 mm/1.50 mm
Height of coil (l2−l1) 3.00 mm
Lift-off (L1) 0.50 mm
Gap of two coils (w) 3.50 mm
Excitation/pickup coil turns (N1/N2) 160/200

FIGURE 6 | Machined specimen: (A) specimen #1; (B) specimen #2.
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defined as the probe direction, as shown in Figure 7A. When the
transmitter coil of the T-R probe approaches a defect, the EC is
cut off by the defect, as shown in Figure 7B. The severed EC is
concentrated at the edge of the crack, and the EC density in the
middle part of the two coils is stronger than that in the other
areas. If the probe direction is along the scan direction, the
concentrated EC in the middle of the two coils is propitious to
strengthen the coupling between the transmitter and receiver
coils. If the probe direction is perpendicular to the scan direction,
as shown in Figure 7C, the T-R probe is under completely
different operation conditions. The receiver coil is away from
the area where the EC is concentrated. Thus, the mutual coupling
between the transmitter and receiver coils was significantly
reduced under the influence of eddy current, and the
sensitivity of the receiver coil, which is in the perpendicular
direction, decreases significantly.

According to the above discussion, the scan mode used in the
experiments is shown in Figure 8. Better performance of scan
detection can be obtained if the scan direction is along the probe
direction, which makes the voltage variation in the receiver coil to
be greater when the T-R probe moves to a defect. In this way,
defects in the EC scan image will also be better represented. From
Figure 8, during the experimental measurement, the scan stage
was driven by the stage controller to move the probe to scan the
specimen: the steps in the X and Y directions were 0.40 and
1.25 mm, respectively, and the scanning points for each defect
were arranged in a 40 × 20 grid (covering a 15.60-mm area ×
23.75-mm area).

During the scanning process, the EM instrument provided a
sine voltage output to the excitation coil of the T-R probe, thereby
generating an alternating magnetic field over the specimen. The
induced EC generates a magnetic field opposite to the original
magnetic field, and the pickup coil receives the resultant magnetic

flux. The resultant magnetic flux varies in the presence of a defect,
thus changing the induced voltage in the pickup coil. Then, the
pickup coil voltage was sampled by the analog-to-digital
converter (ADC) in the EM instrument. At the same time,
two quadrature reference signals with the same frequency as
excitation were generated in the processor of the EM instrument.
The two reference signals were input into the digital phase-
sensitive detection (PSD) module together with the sampling
signal. The real and imaginary parts of the sampling signal were
obtained by mixing and integrating the sampling signal and each
reference signal. Finally, the real and the imaginary parts of the
signals were transmitted to the host PC via an Ethernet interface.

In addition, the working frequency of ECT determines the skin
depth and detection accuracy. Generally, the lower the working
frequency, the greater the skin depth, but the smaller the
detection precision. The selection of working frequency
depends on the thickness and electromagnetic characteristics
of the measured material. The expression of the standard skin
depth δ is given as follows:

δ � 1/ �������
πf μ0μrσ
√

, (13)

where f is the working frequency; σ and μr are the conductivity and
relative permeability of the measured material, respectively; and
μ0 is the permeability of free space.

In the experiment, the thickness of the Ti (TA2) specimen is
3.0 mm, the conductivity is 1.8 MS/m, and the relative
permeability is 1. The standard skin depth was selected as
0.7 times the thickness of the specimen to prevent EC from
appearing on the other side of the specimen and to ensure the
depth and accuracy of the detection. According to Eq 13, the
working frequency used for the EM instrument in the experiment
carried out in this study was 30 kHz.

TABLE 2 | Parameters of defects.

Crack no Length (mm) Width (mm) Depth (mm) Hole no Diameter (mm) Depth (mm)

C1/C2/C3 4.0/8.0/12.0 1.0 0.5 H1/H2/H3 1.0/2.0/3.0 2.5
C4/C5/C6 4.0/8.0/12.0 1.0 1.5 H4/H5/H6 1.0/2.0/3.0 1.5
C7/C8/C9 4.0/8.0/12.0 1.0 2.5 H7/H8/H9 1.0/2.0/3.0 0.5

FIGURE 7 | Influence of T-R probe direction: (A) probe direction definition; (B) probe direction is along the scan direction; (C) probe direction is perpendicular to the
scan direction.
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EXPERIMENTAL RESULTS

A defect in a Ti sheet causes a change in the voltage of the pickup
coil. However, for different materials, the sensitivity of the real
and imaginary parts of the voltage differs. In order to determine
the more sensitive signal components, we first carried out a line
scanning along the vertical direction of three defects. Defects with
the minimum length and different depths were selected as
examples (C1, C4, and C7 defects in specimen #1) and

referenced to Ti sheets without defects; the differences in the
pickup coil voltages are shown in Figure 9.

From Figures 9A–C, it can be seen that the real and imaginary
parts of the coil voltage difference reach the peak value at the
defect center and that the trend of the change is opposite to this.
However, the peak-to-peak value of the real part is much larger
than that of the imaginary part. As shown in Figure 9D, the peak-
to-peak value of the real part is on average five times greater than
that of the imaginary part. From this, it can be concluded that the
real part of the peak-to-peak value is more sensitive at detecting
defects in Ti sheets. According to the preliminary testing
mentioned above, visualization of defects can be improved by
using the difference in the real part because the stronger signals
are not as easily drowned out by environmental noise.

The scan mode described in Figure 8 was adopted to scan the
different defects in the two specimens. However, in actual
detection, differences in manual operations will result in
discrepancies in the quality of the scan images. Such situations
were simulated by scanning each defect at different angles and
from different start positions to provide experimental samples for
subsequent evaluation, where the angle refers to the angle
between the specimen and the scan direction, from 0 to 25°

with an interval of 5°, and the X and Y axis coordinates of the start
position change in the range of −2 to 2 mm with an interval of
2 mm.With six angles and nine start position combinations, each
scan was repeated five times. In total, 270 samples were obtained
for each defect: 200 samples of each defect were randomly
selected as the training data, and the remaining 70 samples

FIGURE 9 | Signal strength comparison: (A) real and imaginary parts of voltage difference for C1 notch; (B) real and imaginary parts of voltage difference for C4
notch; (C) real and imaginary parts of voltage difference for C7 notch; (D) comparison of peak-to-peak values.

FIGURE 8 | Scan mode.
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were used as the testing data. Finally, for each specimen, the total
number of training samples was 1,800 and the number of testing
samples was 630. After the above scan process was completed,
taking the scanning image with the start position of (0,0) and
scanning angle of 0° as an example, the imaging effect of the two
specimens is shown in Figure 10.

Figures 10A,B show the nine crack defects and nine hole
defects in specimens #1 and #2, respectively. In Figures
10A,B, each panel represents the imaging effect of the
defect of the corresponding number, allowing the shape
and depth of defects to be intuitively assessed in EC scan

images. For the defects with the same shape, the defect regions
in EC scan images had relatively similar contours. For the
defects with the same depth, the defect regions in EC scan
images had similar pixel value distribution, and as the defect
depth increases, the color value of the defect region in EC scan
image gradually decreases.

Before the experiments of feature extraction and quantitative
evaluation, how the parameters in the DBN and LSSVM affect the
performance of the proposed method was first discussed and
analyzed. The network structure is the most important factor for
the DBN and is related to the number of hidden neurons and the

FIGURE 10 | Imaging effect: (A) specimen #1 (crack defects); (B) specimen #2 (hole defects).

FIGURE 11 | Mean square error (MSE) curves of different numbers of
hidden neurons.

FIGURE 12 | Mean square error curves of different numbers of hidden
layers.
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number of layers. Since each RBM in the DBN is independently
trained, taking the first RBM to construct a DBN as an example,
an experiment was conducted to determine the appropriate
number of hidden neurons. The input layer and the output
layer were set to 800 and nine neurons, respectively,
representing the input data dimension and the binary-coded
defect type. The hidden neurons were set to 50–700 at a step
of 50. The mean square error (MSE) between output code and
actual code is used to evaluate feature characterization ability of
the DBN. The mean results of two specimens are shown in
Figure 11. It is noted that the feature characterization results
seem to be satisfactory when the number of neurons in the hidden
layer is less than 1/4th that in the previous layer.

Based on the analysis above, the number of hidden layers in the
DBN was set to 1–3, and their network structure was 800/200/9,
800/200/50/9, and 800/200/50/12/9, respectively. An experiment
was conducted to analyze the influence of the number of hidden
layers on the deep learning structure. The results for each
experimental condition are shown in Figure 12. It is noted that
the results seem to be best when the number of hidden layers is 2.

Learning rate plays an important role in the DBN to determine
whether andwhen the objective function converges to theminimum;
momentum factor determines the direction and efficiency of

gradient descent. So, a suitable learning rate and momentum
factor could not only improve the learning ability but also
enhance the computing efficiency. Taking all of the above results
together, further experiments of the learning rate and momentum
factor were conducted. In the experiments, the learning rate was set
to 0.05–1.00 in the pretraining and fine-tuning stages; when one
stage was analyzed, the learning rate of the other stage remained
unchanged, which was 1.00; the momentum factor was set to
0.05–1.00 in pretraining and fine-tuning stages. The results of the
experiments above are shown in Figures 13 and 14, respectively.

From Figure 13, in the pretraining stage, the MSE increases
with the increase in the learning rate, and the MSE becomes
stable gradually after the learning rate is greater than 0.35. In
addition, theMSE achieves its minimum of 0.01 at a learning rate
of 0.10. In the fine-tuning stage, the MSE decreases with the
increase in the learning rate. As the learning rate varies from 0.70
to 1.00, the MSE clearly decreases, with a result of 0.037–0.049,
and the MSE shows little variation when the learning rate
continues to increase. From Figure 14, when the momentum
factor was taken as an intermediate value, the MSE is the
smallest, and the MSE achieves its minimum of 0.021 at a
momentum factor of 0.50.

After the above analysis and preliminary experiment, the DBN
used in this experiment was set to contain two hidden layers, and
the outputs of the last hidden layer were the extracted features.
Detailed parameters of the DBN are listed in Table 3.

In LSSVM algorithm, the regularization parameter and kernel
parameter directly affect the learning and generalization ability.
Besides, there is no necessary relationship between the

FIGURE 13 | MSE curves of different numbers of learning rate.

FIGURE 14 | MSE curves of different numbers of momentum factor.

TABLE 3 | Parameters of deep belief network model.

Parameter Value

Network structure 800/200/50/9
Activation function Sigmoid
Learning rate (pretraining/fine-tuning) 0.10/1.00
Momentum factor 0.50
Batch size 100
Epoch number (pretraining/fine-tuning) 350/150

FIGURE 15 | Defect evaluation results of different regularization
parameters.
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regularization parameter and kernel parameter. Thus, they can be
analyzed and discussed independently. A DBN model with the
parameters inTable 3was trained by training samples. The trained
DBN model was used to extract features from the training and
testing samples. The features from the training samples were used
to establish the LSSVM regressionmodel, and the features from the

testing samples were used to analyze how the parameters affect the
LSSVM. The regularization parameter was set to 0.1–20.0, and the
kernel parameter was set to 0.05–2.50. According to the above
parameter settings, the relative errors of defect evaluation by using
the LSSVM are shown in Figures 15 and 16.

From Figure 15, the relative error of defect evaluation
decreases with the increase in the regularization parameter.
For both crack and hole defects, the relative error decreases
obviously in the range of the regularization parameter from
0.5 to 12.0, and the relative error shows little variation when
the regularization parameter continues to increase. From
Figure 16, the variation in relative error with the kernel
parameter is similar to the above description of the
regularization parameter. The relative error shows little
variation when the kernel parameter is greater than 1.00 and
achieves its minimum at a kernel parameter of 1.50. So, we
determine that the regularization parameter and kernel
parameter of the LSSVM are 10.0 and 1.50, respectively.

After the above preliminary experiments, we analyzed the
effects of parameters in the DBN and LSSVM on the
performance of the proposed method and determined the
optimal parameters. Next, the feature extraction and defect
quantitative evaluation experiments were carried out. A

FIGURE 16 | Defect evaluation results of different kernel parameters.

FIGURE 17 | Comparison of feature extraction effects: (A) PCA; (B) ANN; (C) RBM; (D) DBN.

Frontiers in Materials | www.frontiersin.org September 2020 | Volume 7 | Article 57680611

Bao et al. Evaluation of Titanium Sheet Defect

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


trained DBN model was used to extract features from the EC
scan images in the testing samples. In addition, in this
experiment, PCA, ANN, and single-layer RBM were used
for comparison, where the number of neurons in each layer
of the ANN was set to 800/200/50/9 and the structure of the
RBM was set to 800/50, with the other parameters being the
same as those in the DBN. To visualize the distribution of
features, the obtained features were mapped to 3D feature
vectors, taking specimen #1 as an example, and the results are
shown in Figure 17.

From Figure 17, it can be seen that the defect features
extracted by PCA were relatively mixed, which shows that
this method has difficulty in processing high-dimensional
nonlinear data. The features of the same defect extracted by
the ANNwere obviously clustered, but for different defects, there
were some overlaps of between-class features. The features
extracted by the RBM formed a curve-like distribution, also
with some overlaps of between-class features when there were
too many defect types. The performance of the DBN model was
better than that of the other models; this is mainly because the
unsupervised self-learning of the DBN (based on its deep
structure) is conducive to characterizing the essential and
concise high-order features, while the supervised learning of
the DBN improves the clustering of inner-class feature sets.
Therefore, the features extracted by the DBN are more suitable
for the quantitative evaluation of defects.

The extracted features from EC scan images of two specimens
were input into the previously established LSSVM regression
model to quantitatively evaluate the Ti sheet defects. This
experiment involved performing a multi-objective regression
task to evaluate the lengths and depths of the crack defects,
and the diameters and depths of the hole defects. Table 4 shows
the relative errors of the estimation results.

As shown in Table 4, the relative errors of estimation of crack
length were between 0.047 and 4.020%, and those of crack depth
were between 0.322 and 2.931%; the relative errors of estimation of
hole diameter were between 0.180 and 0.997%, and those of the hole
depth were between 0.212 and 2.551%. Overall, larger deviations
were observed in the estimation of smaller degrees of defects
(smaller in length/diameter and depth), and the mean relative
errors of the above estimations were 1.233, 1.233, 0.619, and
0.920%, respectively; all errors are very small and within a
reasonable range. Then, the above method was compared with
other methods. In the comparison experiments, the four types of
features (PCA, ANN, RBM, and DBN) described in Figure 17 were
used, and two regressionmethods, multiple linear regression (MLR)
and LSSVM, were used to reconstruct the defect dimensions.
Table 5 shows the mean relative errors of the evaluation results
for a total of eight groups of comparison experiments.

As shown in Table 5, in terms of the features used in these
methods, the performance of the methods using PCA or ANN
features is similar. Compared with the above features, the

TABLE 4 | Relative error of the defect evaluation of deep belief network–least squares support vector machine.

Defect parameter of specimen #1 Relative error of the corresponding defect (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9 Mean

Crack length 4.020 1.844 0.477 1.434 0.086 0.510 2.242 0.047 0.439 1.233
Crack depth 2.931 2.609 2.236 0.355 0.579 0.479 0.873 0.717 0.322 1.233

Defect parameter of specimen #2 Relative error of the corresponding defec (%)

H1 H2 H3 H4 H5 H6 H7 H8 H9 Mean

Hole diameter 0.657 0.722 0.986 0.997 0.257 0.407 1.058 0.180 0.305 0.619
Hole depth 1.987 2.067 2.551 0.212 0.355 0.283 0.296 0.306 0.219 0.920

TABLE 5 |Mean relative error of the defect evaluation of the comparison methods.

Comparison
method

Defect parameter relative error (%)

Crack
length

Crack
depth

Hole
diameter

Hole
depth

PCA–MLR 20.006 16.871 13.515 20.776
ANN–MLR 12.423 9.358 7.984 17.779
RBM–MLR 23.091 9.69 6.540 23.649
DBN–MLR 5.477 10.522 3.302 8.561
PCA–LSSVM 3.041 3.893 0.959 1.376
ANN–LSSVM 2.543 2.884 1.008 1.560
RBM–LSSVM 18.164 3.707 1.637 16.991
DBN–LSSVM 1.233 1.233 0.619 0.920

PCA, principal component analysis; MLR, multiple linear regression; ANN, artificial neural
network; RBM, restricted Boltzmann machines; DBN, deep belief network; LSSVM, least
squares support vector machine.

TABLE 6 | Repeatability of the evaluation methods.

Comparison
method

Defect parameter standard deviation (mm)

Crack
length

Crack
depth

Hole
diameter

Hole
depth

PCA–MLR 1.274 0.334 0.195 0.212
ANN–MLR 0.900 0.201 0.199 0.276
RBM–MLR 0.917 0.178 0.148 0.145
DBN–MLR 0.556 0.195 0.097 0.131
PCA–LSSVM 0.218 0.054 0.010 0.009
ANN–LSSVM 0.285 0.045 0.013 0.013
RBM–LSSVM 1.009 0.047 0.054 0.154
DBN–LSSVM 0.116 0.018 0.010 0.009

PCA, principal component analysis; MLR, multiple linear regression; ANN, artificial neural
network; RBM, restricted Boltzmann machines; DBN, deep belief network; LSSVM, least
squares support vector machine.
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performance of RBM features is relatively weak, which indicates
that the single-layer RBM is difficult to approximate high-order
functions and extract effective features. In addition, the DBN
feature has the best performance, and the errors of reconstructed
defect dimensions are the smallest, no matter which regression
algorithm was used. In terms of the regression algorithm used in
these methods, the LSSVM is much better than MLR, and the
average error is one order of magnitude smaller, which indicates
that the LSSVM is more suitable for dealing with the nonlinear
relationship between high-dimensional features and defect
dimensions.

These results were further analyzed to evaluate the
repeatability of the proposed method. The experiments were
repeated under identical conditions, with the standard
deviation used to evaluate the repeatability of the proposed
method, and the results are shown in Table 6.

As shown in Table 5, the standard deviations of the
experimental results for the DBN–LSSVM method ranged from
0.009 to 0.116 mm for the different defect parameters. These values
are far below those of other comparison methods, demonstrating
that the results of the proposedmethod do not readily fluctuate and
show better repeatability. All in all, the above experiments prove
the validity of the proposed method from the two aspects of
accuracy and repeatability. The proposed method can be applied
to perform effective detection and quantitative evaluation of Ti
sheet defects, providing a novel way of combining deep learning
with the EC scan imaging technology.

CONCLUSION

This study proposed a method for quantitatively evaluating Ti
sheet defects based on the DBN and LSSVM combined with the
EC scan imaging technology. The proposed method utilizes a
trained DBN to extract effective features from the EC scan
images of Ti sheet defects. Then, based on the extracted feature
vectors, the LSSVM algorithm was used to establish a multi-
objective regression model of the dimensions of the Ti sheet
defects. The combination of effective features and an efficient
regression model was used to perform the quantitative
evaluation of Ti sheet defects. The main conclusions of this
study are as follows:

(1) For defects in Ti materials, the strength of the real part of
the detection signal is on average five times greater than
that of the imaginary part. Therefore, the real part of the
signal is not easily drowned out by environmental noise
and can therefore achieve better imaging results.
Furthermore, it is also better suited to the quantitative
evaluation of defects based on features extracted from
EC scan images.

(2) The proposed method does not require manually
designed features, thus avoiding the problem of the
subjectivity of the inspector. In addition, compared
with feature extraction by conventional methods, the
proposed method stacks multiple RBMs and combines

unsupervised and supervised learning, giving it a
stronger ability to characterize features.

(3) The proposed method utilizes the LSSVM algorithm to
transform the complex ill-posed ECT inverse problem to a
simple problem of solving linear equations. The final
experimental results showed that the maximum relative
error and standard deviation of the defect evaluation were
less than 4.1% and 0.12 mm, respectively, and the proposed
method yielded a higher accuracy and repeatability than the
other conventional methods tested.

In addition, due to limitations in our capacity to process the
specimen, the defects studied in this research were all regular,
ideal defects. However, defects often have more complex shapes
in actual situations. We hope that future work will be able to
extend the proposed method to investigate more complex defects.
Second, the method should not be limited to the detection of Ti
sheets in civil engineering but can also be extended to other ECT
applications, such as reinspection and quality monitoring in the
manufacturing of various metal sheets. In industrial production,
with the accumulation of EC image data, the training samples will
be enriched and the generalization capability of the proposed
method will be further improved. We hope that future work will
also focus on how to extend the proposed method to more ECT
applications.
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