AUTHOR=Huynh Thi My Duyen , Nguyen Duy Khanh , Nguyen Thi Dieu Hien , Dien Vo Khuong , Pham Hai Duong , Lin Ming-Fa TITLE=Geometric and Electronic Properties of Monolayer HfX2 (X = S, Se, or Te): A First-Principles Calculation JOURNAL=Frontiers in Materials VOLUME=7 YEAR=2021 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2020.569756 DOI=10.3389/fmats.2020.569756 ISSN=2296-8016 ABSTRACT=

The essential properties of monolayer HfX2 (X = S, Se, or Te) are fully explored by first-principles calculations. The optimal lattice symmetries, sublattice buckling, electronic energy spectra, and density of states are systematically investigated. Monolayer HfS2, HfSe2, and HfTe2, respectively, belong to middle-gap semiconductor, narrow-gap one and semimetal, with various energy dispersions. Moreover, the van Hove singularities (vHs) mainly arise from the band-edge states, and their special structures in the density of states strongly depend on their two or three-dimensional structures and the critical points in the energy-wave-vector space. The above-mentioned theoretical predictions are attributed to the multi-orbital hybridizations of [dx2y2, dxy, dyz, dzx, dz2]–[s, px, py, pz] in the Hf-X chemical bonds. The diversified physical phenomena clearly indicate a high potential for applications, as observed in MoS2-related emergent materials ions.