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The essential properties of monolayer HfX2 (X � S, Se, or Te) are fully explored by first-
principles calculations. The optimal lattice symmetries, sublattice buckling, electronic
energy spectra, and density of states are systematically investigated. Monolayer HfS2,
HfSe2, and HfTe2, respectively, belong to middle-gap semiconductor, narrow-gap one and
semimetal, with various energy dispersions. Moreover, the van Hove singularities (vHs)
mainly arise from the band-edge states, and their special structures in the density of states
strongly depend on their two or three-dimensional structures and the critical points in the
energy-wave-vector space. The above-mentioned theoretical predictions are attributed to
themulti-orbital hybridizations of [dx2−y2 , dxy, dyz, dzx, dz2 ]–[s, px, py, pz] in the Hf-X chemical
bonds. The diversified physical phenomena clearly indicate a high potential for
applications, as observed in MoS2-related emergent materials ions.
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INTRODUCTION

In recent decades, two-dimensional (2D) materials, including metals, semiconductors, and
insulators, emerged as a focus of the scientific community because of a wide range of
properties (Novoselov et al., 2016). They can often present essential differences of properties
compared to their bulk phase (Kolobov, 2016). Since graphene was isolated from graphite in
2004, it has become an interesting and unique material, which is a gapless semiconductor
(Balandin et al., 2008; Castro Neto et al., 2009; Das et al., 2015; Novoselov et al., 2016).
Graphene exhibits noticeably essential properties, such as quantum Hall effect (Ma et al.,
2009; Zhang et al., 2011), magnetic quantization (Guinea et al., 2006; Huang et al., 2014; Lin
et al., 2015) and devoured optical selection (Chung et al., 2011). In order to extend the applications,
2D materials based on graphene have been investigated and offer a significant number of potential
candidates (Fiori et al., 2014; Das et al., 2015; Kim et al., 2015; Novoselov et al., 2016; Zhou et al.,
2018). Among these materials, 2D transition metal dichalcogenides (2D-TMDs) recently covered a
number of applications in optical and electronic devices (Lebègue et al., 2013; Kaul, 2014;
McDonnell and Wallace, 2016; Novoselov et al., 2016; Zhou et al., 2018). Although the bulk of
TMDs that have been constructed and explored (Kolobov, 2016) show various properties, the
electronic properties of layered TMDs are dominated by quantum confinement. It should be noted
that the geometry and the electron count play an essential role in their electronic properties
(Kolobov, 2016).
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HfX2 (X � S, Se, or Te) is a class in the group IV chalcogenides
of the 2D-TMDs family whose general properties were reported
in previous studies (Hussain Reshak and Auluck, 2005; Jiang,
2011; Abdulsalam and Joubert, 2016; Toh et al., 2016; Cheng
et al., 2018; Salavati, 2018). Experimental investigations (Roubi
and Carlone, 1988; Aretouli et al., 2015; Yue et al., 2015;
Aminalragia-Giamini et al., 2016; Kanazawa et al., 2016; Yin
et al., 2016; Mangelsen et al., 2017; Mleczko et al., 2017; Tsai et al.,
2018) on Hf-based have been conducted in bulk and monolayer.
HfS2 is anticipated to have high electron mobility and sheet
current density, proposing a candidate for electronic devices
(Fiori et al., 2014; Zhang et al., 2014). Moreover, HfS2 was
experimentally investigated in a flake form as promising for
use in transistors (Roubi and Carlone, 1988; Traving et al.,
2001; Xu et al., 2015; Kanazawa et al., 2016; Mirabelli et al.,
2016; Nie et al., 2017). Monolayer and bilayer HfSe2, exhibit low
lattice thermal conductivity, suggesting a great potential for
thermoelectric devices (Aretouli et al., 2015; Kang et al., 2015;
Yue et al., 2015; Mirabelli et al., 2016; Yin et al., 2016; Mleczko
et al., 2017). Epitaxial thin films of HfTe2 are grown in AlN
substrates using angle-resolved photoemission spectroscopy
provided that HfTe2/AlN is an epitaxial topological semimetal
(Aminalragia-Giamini et al., 2016).

Moreover, theoretical studies via first-principles calculations
on HfS2 show a slow increase in the bandgap with increasing
tensile strain and thickness (Kreis et al., 2003; Wu et al., 2017;
Salavati, 2018). Similar electronic characteristics are also observed
in HfSe2 (Yun et al., 2012; Setiyawati et al., 2019). In-depth
investigations of the electronic band structures of HfS2 and HfSe2,
reveal that sulfur and selenium atoms have a primary effect on the
valence band, while the hafnium atoms play a dominant role in
the conduction band (Zhao et al., 2017). The 1T phase structures
are found in among the possible phases HfX2 could exist in,
predict that T phase is the most favorable phase (Hussain Reshak
and Auluck, 2005; Jiang, 2011; Abdulsalam and Joubert, 2016;
Ding et al., 2016; Wu et al., 2017; Zhao et al., 2017; Nakata et al.,
2019; Yan et al., 2019). Previous studies show that monolayer 1T-
HfTe2 are metallic (Sun andWang, 2017), while those of 1T-HfS2
(Abdulsalam and Joubert, 2016; Wu et al., 2017; Zhao et al., 2017)
and 1T-HfSe2(Abdulsalam and Joubert, 2016; Ding et al., 2016;
Zhao et al., 2017; Setiyawati et al., 2019; Yan et al., 2019) are
indirect-gap semiconductors.

From a theoretical point of view, the first-principles
calculations for layered materials pose challenges in
investigating structural properties because of interactions
between layers that are dominated by van der Waals force.
Furthermore, the intra-layer chemical bonding (M-X bonding),
which is mainly covalent in nature, predicts that the interactions
play important roles in the structural features (Kumar and
Ahluwalia, 2012). Even though many three-dimensional TMDs
have been reported and numerous research papers published on
2D-TMDs, especially MoS2 (Xiao et al., 2012; Zeng et al., 2012; He
et al., 2014; Jiang et al., 2014; Zeng and Cui, 2015; Kang et al.,
2016; Kolobov, 2016; Lin et al., 2016; Mirabelli et al., 2016; Hu
et al., 2019), the available information on geometric and
electronic properties of layered group IV chalcogenides,
especially monolayer HfX2, severely limited. While most

numbers of the HfX2 family that have been constructed to
date show promise for applications, but the detailed
characteristics might be lacking.

In this work, the geometric and electronic properties of layered
HfX2 (X � S, Se, or Te) are investigated in the T and H phases
using first-principles calculations. The optimal lattice
symmetries, sublattice buckling, electronic energy spectra, and
the density of states are systematically calculated. HfS2, HfSe2,
and HfTe2 are respectively middle-gap semiconductor, narrow-
gap one and semimetal, with various energy dispersions. The
electronic properties strongly depends on the geometry and the
multi-orbital hybridizations in the Hf-X bondings. Besides, the
van Hove singularities mainly arise from the band-edges state.
These physical phenomena clearly indicate a high potential for
applications.

METHOD

The first-principles calculations based on the density functional
theory (DFT) framework (Hohenberg and Kohn, 1964) are
implemented in the Vienna Ab initio Simulation Package
(VASP) (Kresse and Hafner, 1993) emerged as a dominant
method in quantum mechanics simulation. In this work, the
essential properties are investigated by DFT using VASP with the
generalized gradient approximation (GGA) (Perdew et al., 1993;
Perdew and Wang, 2018) of the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional (Ernzerhof and Scuseria, 1999)
and projector-augmented-wave (PAW) potentials (Kresse and
Joubert, 1999). The kinetic energy cutoff is set to 400 eV. A
vacuum of 15 Å is added along the z-direction to avoid
interactions between layers due to the periodic boundary
condition. The structures are relaxed until the residual force is
less than 0.001 eV/Å, and the self-consistent electronic
convergence criterion is set at 10−6 eV. The Brillouin zone is
sampled by 21 × 21 × 1 within the Gamma scheme for geometric
optimizations and further calculations on electronic structures.

RESULTS AND DISCUSSION

Optimized Crystal Structures
Two-dimensional TMDs are characterized by layered structures
forming a hexagonal packing in which each layer has a sandwich-
like structure of transition metal and chalcogen atoms (Kolobov,
2016). Metal atoms are six-fold coordinated, as shown in
Figure 1. Depending on the relative position of the chalcogen
atoms, the coordination can be octahedral or trigonal prismatic
exhibiting various polymorphs. In their bulk phase, more than 16
polytypes have been defined (Kolobov, 2016; Zhou et al., 2018),
which suggests versatile and flexible applications. In the two kinds
of symmetry coordination, the two chalcogen planes form a
stagger in the octahedral arrangement (Figure 1A), while a
slab is directly stacked above each other in the trigonal
prismatic arrangement (Figure 1B). As a result, the cleavage
properties are caused by the lopsided coordination around the
chalcogens, which is perpendicular to the hexagonal or trigonal
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symmetry axis. Furthermore, the dangling bonds are absent,
which leads to the surface is very stable and nonreactive.

Monolayer TMDs have only two polymorphs, namely the T
and H phases (Kolobov, 2016), depending on their hexagonal or
trigonal prismatic coordination. In Figure 2, the crystal
optimization for three compounds in the monolayer HfX2

family is performed with the top (xy plane) and side (yz
plane) views. Hafnium (Hf) and two chalcogen atoms (X)
form the X-Hf-X layered unit per unit cell, where the Hf atom
is sandwiched between two X atoms referred to as a monolayer. In
other words, each layer consists of three atomic planes that
include one hafnium plane and two chalcogen planes through
ionic-covalent interaction (see side view). From the top view, the
spatial position of the chalcogen atoms is additionally filled with
the light yellow triangles that show the different stacking in the
two forms. The structural arrangements are constructed in the T
and H phases with the period layer and trigonal symmetry being
formulated by the octahedrally-coordinated stacking.

The formation energy is calculated using Eq. 1

Ef � Etot − nHf μHf − nXμX (1)

where Ef is the formation energy; Etot is the total energy of
monolayer HfX2 (see in Table 1); nHf and nX are, respectively, the

number of atoms of hafnium and chalcogen atoms per unit cell;
μHf and μX are, respectively, the chemical potential of hafnium
and chalcogen atoms in their bulk phases. As shown in Table 1
and Figure 3, the formation energy of the T phase is slightly
smaller than that of the H phase; this indicates that the T phase
structures are stable, while the H phase structures are metastable.
This finding is in good agreement with experimental studies
(Roubi and Carlone, 1988; Xu et al., 2015; Yue et al., 2015;
Aminalragia-Giamini et al., 2016; Kanazawa et al., 2016; Yin
et al., 2016; Mleczko et al., 2017; Tsai et al., 2018; Nakata et al.,
2019) that reveal most monolayer HfX2 exist in the T phase. To
give further information, we have calculated the formation energy
of monolayer MoS2 in both T and H phases (shown in Table 1).
In contrast to our materials, the total and formation energies in
the T phase are larger than the H phase shows that the H phase is
probably more stable. In addition, all formation energies of both
materials are negative indicating the probability to construct
them experimentally.

The calculated lattice constant, bond length, and buckling of
monolayer T and H phases are also shown in Table 1. As shown
in this table, the lattice constants of HfS2, HfSe2, and HfTe2 are,
respectively, 3.64, 3.75, 3.96�A in the T phase, and 3.55, 3.63,
3.92�Ain the H phase. These parameters in the T phase are lightly

FIGURE 1 | The local coordination of the two types (A) octahedral and (B) trigonal prismatic.

FIGURE 2 | The top (xy plane) and side (yz plane) views of HfX2 (X � S, Se, or Te) in the (A) T phase and (B) H phase.
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larger than those of the H phase. Compared to the experimental
lattice constants in previous studies (Greenaway and Nitsche,
1965; Bayliss and Liang, 1982) which are listed in Table 1, the
structure is changed from bulk to monolayer by adding the
vacuum, the lattice constant is insignificantly change. The
electronic configuration of Hf is 5d26s2, and that of the
chalcogens S, Se, and Te are respectively 3s (Kolobov, 2016),
3p4, 4s24p4, and 5s (Kolobov, 2016), 5p4. The formal charge of +4
and −2 can be respectively ascribed to the transition metal and
chalcogens. To fully fill the valence shell, the relatively ionic Hf-X
bond forces the four valence electrons of the Hafnium atom to
transfer to the two chalcogen atoms. The bond lengths are,
respectively, 2.55, 2.60, 2.87�A in the T phase and 2.57, 2.58,
2.91�A in the H phase for HfS2, HfSe2, and HfTe2. With varying
the chalcogen atoms going from sulfur to selenium and tellurium,
respectively, there is a gradation of increasing bond lengths that
anticipates the features of electronegativity and orbital radii. The
chalcogen pure p-orbital takes part in forming these bonds and
suggests that the lone-pair electrons (Kolobov, 2016) are located
on the sp (Balandin et al., 2008)-hybridized orbitals. In addition,
the d-orbital in hafnium plays an essential role in the energy
band, which is discussed in the electronic properties section.
Compared to graphene (Castro Neto et al., 2009), the distance
between hafnium atoms is larger than that of carbon atoms; it is
Hf-X interaction that suppresses the height fluctuation of

hafnium atoms. The chalcogen-metal (Hf-X) bonds are mainly
determined by both hafnium and chalcogen atoms.

Furthermore, monolayer HfX2 exists in a bucked form (Δ) (see
Figure 2) of approximate 2.89, 2.91, and 3.47�A, respectively, for
monolayer HfS2, HfSe2, and HfTe2 in the T phase. With the H
phase, for HfS2, HfSe2, and HfTe2, these values are respectively
3.12, 3.02, and 3.66�A. The Hf-X interaction suppresses the height
fluctuation of the hafnium atom in these monolayers. As a result,
the buckling in monolayer HfX2 is sharper than in silicene (Meng
et al., 2013), which can be attributed to the sandwiched structure
of these materials. Notice that the height fluctuations (buckling)
are presented at equilibrium that provides the broad distribution
of height displacement. This phenomenon predicts the
phenomenological theories of thermal fluctuations in flexible
membranes.

Electronic Properties
In the Brillouin zone, the electronic band structures have been
calculated along with the high symmetry point Γ-M-K-Γ
belonging to the hexagonal lattice. The system band gaps of
monolayer HfX2 with the T and H phases are shown in Table 2.
Both HfS2 and HfSe2 are semi-conducting with each material
exhibiting distinct properties. HfS2 shows a middle-gap of 1.2 and
0.92 eV in the T and H phases, respectively. HfSe2 with these
phases remains semi-conducting and belongs to a narrow-gap of
0.86 and 0.4 eV, respectively. In contrast, HfTe2 is semi-metallic.
The values of approximately zero reveal it to be a gapless
semimetal similar to graphene (Castro Neto et al., 2009). The
experimental gaps of the monolayer T phase are also listed in
Table 2. However, these values are smaller than the calculated
band gaps, in which respectively exists a difference of
approximate 0.6 and 0.3 eV for HfS2 and HfSe2. In this work,
the band gaps are obtained from PBE functional, which notes that
the approaches in calculating might cause the differences that are

TABLE 2 | The calculated band gap (Eg, eV) of monolayer HfX2 with the T and H
phases and experimental values of the bandgap in the T phase monolayer.

Chalcogen S Exp Se Exp Te Exp

T phase 1.2 1.866 0.86 1.1363 0.02 —

H phase 0.92 — 0.4 — 0.02 —

Note: —, no experimental report.

FIGURE 3 | Formation energy of HfX2 in the T (black line) and H (red line)
phases.

TABLE 1 | Total energy (Etot, eV), formation energy (Ef, eV), the lattice constant (a, Å), chemical bonding between hafnium and chalcogen atoms (dHf−X , Å), buckling (Δ, Å) of
monolayer HfX2 in the T and H phases.

X T phase H phase

Etot Ef a (Å) dHf −X (Å) Δ (Å) Etot Ef a (Å) dHf −X (Å) Δ (Å)

Cal Expa

S −22.92 −5.59 3.64 3.6363 2.55 2.89 −22.28 −4.94 3.53 2.57 3.12
Se −20.98 −4.06 3.75 3.7463 2.60 2.91 −20.4 −3.48 3.63 2.58 3.02
Te −18.66 −2.45 3.96 3.9564 2.87 3.47 −18.21 −2.01 3.92 2.91 3.66
MoS2 −21.01 −1.87 — — — — −21.84 −2.71 — — —

aThey all are experimentally the lattice constants in the bulk phase.
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significant when comparing them to experimental values.
Because most members of group IV (Ti, Zr, and Hf) TMDs
are experimentally found in the T phase (Greenaway and Nitsche,
1965; Terashima and Imai, 1987), there is no recorded
measurement for making a comparison for the H phase in
this work.

The system band energy spectra of monolayer HfX2 are shown
in Figure 4, which presents the atom dominances of hafnium and
chalcogens. The left panel (Figures 4A–C) describes the system
band of the T phase structures, and the right panel (Figures

4D–F) shows the system band of the H phase. All three materials
share as a common feature that the valence band maximum
(VBM) is located at Γ point (k � 0, 0, 0) and the conduction band
minimum (CBM) is at M point (k �½, 0, 0) of the high symmetry
k-points in the T phase. While those of the H phase have a VBM
between K and Γ point corresponding to the CBM is located
between Γ and M point. The unoccupied conduction bands are
asymmetric to the occupied valence bands about the Fermi level.
Most energy bands have a strong dispersion relation, with the
parabolic dispersion being exhibited in both the conduction and

FIGURE 4 | The band energy spectrum of monolayer (A) HfS2, (B) HfSe2, (C) HfTe2 with T phase, and (D) HfS2, (E) HfSe2, (F) HfTe2 with H phase. The red,
magenta, blue, and green circles describe the atom dominant in the band for Hf and chalcogen atoms in T and H phase, respectively.
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the valence bands. However, each material is predicted to have an
unusual energy band. There are many distinguishing features
between the T and H phases in the electronic band structures that
are discussed below.

As previously mentioned, monolayer HfX2 (X � S, Se, or Te)
are constructed with two phases that reveal distinct properties.
The electronic bands of the T phase with atom dominance are
described in Figures 4A–C (left panel). The red and blue circles
respectively represent the hafnium and chalcogen atoms. They all
show an indirect bandgap with the direction of the gap shifted
from Γ point to M point. The occupied hole band is strongly
asymmetric to the unoccupied electron band. The low-lying

valence bands exhibit valleys between Γ and M point, as well
as K and Γ point. The low-lying valence bands also change into
parabolic bands. The parabolic dispersions have band-edge states
at M point belonging to saddle points, which results in van Hove
singularities (vHs). In Figure 4A, the σ and σp bands (in the
valence and conduction bands) of HfS2 initiate from Γ point at
−2.5, 0 and 2 eV, while the σ and σp bands of HfSe2 are at −3, 0 and
1.5 eV (Figure 4B). The energy band of HfTe2 reveals contrasting
features compared to HfS2 and HfSe2, as shown in Figure 4C. A
semi-metallic property of HfTe2 has been shown, which is
investigated by the pressure-dependence conductivity and Hall
coefficient (Aminalragia-Giamini et al., 2016). Apart from the

FIGURE 5 | The density of states (DOS) in the (A) T and (B) H phase of monolayer HfX2.

Frontiers in Materials | www.frontiersin.org March 2021 | Volume 7 | Article 5697566

Huynh et al. Electronic Properties of Monolayer HfX2 (X � S, Se, or Te)

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


special valleys located in the low-lying valence band that is similar
to HfS2 and HfSe2, there exist flat bands in the low-lying valence
bands. There are σ and σp bands that initiate from Γ point at −3, 0,
and 0.5 eV. The difference between HfTe2 and both HfS2 and
HfSe2 is that all of the VBMs and CBMs are nearly at the Fermi
level, which presents a gapless material. With regard to atom
dominance in bands, the chalcogen atoms in all structures
dominate in valence band ranging from 0 to −4 eV, while the
contribution of hafnium atoms is smaller than in this band.
In contrast, hafnium contributes to the conduction band
more than the valence band. In valence band, this atom
dominates in bands of a scale of 0 to −2 eV. Both hafnium
and chalcogens contribute to the whole band with ranges from
−4 to 4 eV, but chalcogens show a sharper dominance compared
to hafnium.

In order to compare with the T phase structures, the band
energy spectra of the H phase are presented in Figures 4D–F
(right panel). The green and magenta circles represent chalcogen
and hafnium atoms. The occupied valence band and the
unoccupied conduction band are asymmetric. Both HfS2 and
HfSe2 still exhibit semiconducting with narrow-indirect gaps, but
the direction is shifted from between K and Γ point to the point
near M point. Similar to the T phase, HfTe2 remains semimetal
with the same bandgap value (see Table 2). All the H phase
structures exist in approximate flat bands near the Fermi level
while the degeneracy lies below it, this leads to additional valleys
in the low-lying valence bands. In Figure 4D, two σ bands of HfS2

initiate from Γ point at -1 and -2 eV in the valence band, while the
σ and σp bands of HfSe2 and HfTe2, respectively, are located at −1,
−2.5, 3.5 eV and −0.8, −2.2, 3.2 eV. Furthermore, all materials in
the H phase show the crossing dispersion in the valence band,
which is between Γ and M point. The most important atom
dominances are at low-lying valence bands, while those of the T
phase is at the edges of the valence band. The chalcogen atoms
also dominate in valence bands like in the T phase, but they
contribute in a lower energy range from −1 to −2 eV. In the
conduction band, the dominance of chalcogen atoms is almost
absent, while hafnium exists in both the valence and conduction
bands. Although all of the chalcogens control the valence bands,
they the different contributions in each band. The tellurium
atom in HfTe2 has the smallest contribution, followed by
Se and S.

In general, the band energy spectra exhibit a lot of asymmetric
peaks and few symmetric ones due to the parabolic form of
energy bands. A pair of asymmetric peaks exists near the Fermi
level that defines the indirect energy gaps. The bandgap opening
is associated with the quantum confinement effect. Although all
three materials are members of the same chalcogen group, HfS2,
HfSe2, and HfTe2 are different in their low-lying peaks and
degenerate with varying the stacking configuration between
the two phases. Moreover, most van Hove singularities (vHs)
come from the parabolic energy dispersions. The peaks near the
Fermi level are found to arise from the band-edge states mainly.
These peaks could be a signature feature unique to vHs.

FIGURE 6 | Local density of states (LDOS) of (A) hafnium and (B) chalcogen atoms with multi-orbital hybridization in the T phase.
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The density of states (DOS) is shown in Figure 5 for the T and
H phases, which directly reflect the main features of the band
structures. DOS is ranged from −4 to 4 eV and shows a pair of
asymmetric peaks centered at the Fermi level, which characterizes
the energy gap. The large energy difference between the valence
and conduction peaks obviously demonstrates the asymmetry of
the two bands. These structures originate from linear bands,
parabolic bands near saddle points, and initial band-edge states of
the parabolic bands. In the T phase structures shown in
Figure 5A, DOS exhibits a logarithmic divergence at middle
energy and shoulder structures at deeper and higher energy. Partially
flat energy is exhibited in the valence bands of all structures and in
the conduction bands of HfSe2 and HfTe2, while shoulder structures
evidently appear in the conduction band of HfS2. Moreover, the low
DOS at the Fermi level illustrates the low free carrier density. In
contrast, a linear energy dependence near the Fermi level is shown in
the H phase structures (Figure 5B). The DOS of the H phase is
much larger than that of the T phase at the Fermi level, indicating a
higher free carrier density. At deeper and higher energy, DOS reveals
peaks, as well as divergent and shoulder structures. Notice that the
peak and shoulder structures correspond to the 3pz, 4pz, 5pz, and
(3px,3py), (4px,4py), (5px,5py) of HfS2, HfSe2, and HfTe2,
respectively, dominating energy bands as indicated in the orbital-
projected DOS.

To further verify the various chemical bondings and examine
the curvature effect, the orbital-projected DOS could be used as

described in Figures 6 and 7. The figures show the local density
of states with multi-orbital hybridization in the T and H phases.
They show that the main contributions are due to two orbitals of
the hafnium and two orbitals of the chalcogens, corresponding
to the s, d orbitals of hafnium, and the s, p orbitals of chalcogens.
With the T phase structures, the local density of states with
multi-hybridization is shown in Figure 6, presenting the
dominance of the multi-orbital hafnium and chalcogen
atoms. At high energy, hafnium atoms are dominated by
5dz2 and 5dx2−y2 orbitals, as clearly indicated in Figure 6A.
But for low energy, DOS depends on the bondings of (3px,3py),
(4px,4py) and (5px,5py) of HfS2, HfSe2 and HfTe2, respectively
(Figure 6B).

Similar to the T phase, the H phase structures are shown in
Figure 7 and indicate that the d-orbitals of hafnium and the
p-orbitals of chalcogens, respectively, play essential roles in the
conduction and valence bands. The 5dz2 , 5dxy, and 5dx2−y2 orbitals
dominate at high energy but exist with different features in each
material (Figure 7A). HfS2 is dominated by 5dz2 at high energy,
while 5dx2−y2mainly dominates in the conduction band of HfSe2.
HfTe2 shows the dominance of all 5dz2 , 5dxy, and 5dx2−y2 orbitals.
With chalcogen atoms (Figure 7B), 3pz, 4pz, and 5pz respectively,
reveal a prominent dominance at low energy near the Fermi level
and lower energy in HfS2, HfSe2, and HfTe2. At middle energy in
the valence band, they are respectively based on the (3px,3py),
(4px,4py), and (5px,5py) orbitals. In summary, their contributions

FIGURE 7 | Local density of states (LDOS) of (A) hafnium and (B) chalcogen atoms with multi-orbital hybridization in the H phase.
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are comparable to each other in that the feature-rich energy bands
are mainly determined by the d and p orbitals. There exist strong
hybridizations of 5dz2 , 5dx2−y2 Hf-orbitals and (3px, 3py, 3pz),
(4px, 4py, 4pz), (5px, 5py, 5pz) chalcogen-orbitals. In addition, the
p-orbitals of the chalcogens make significant contributions to the
σ bonding. These orbitals are evident for the multi-orbital
hybridization in these materials.

CONCLUSION

The first-principles calculations are used to investigate the
geometric and electronic properties of monolayer HfX2 (X � S,
Se, or Te). Our calculated band structures in the T and H phases
can modulate their properties. All structures exist with a sharp
buckle that shows height fluctuations at equilibrium. The
d-orbitals and p-orbitals of the hafnium and chalcogen atoms,
respectively, take part in the chemical bondings of Hf-X. As
reported, both HfS2 and HfSe2 are semiconductors with an
indirect middle-gap and narrow-gap, respectively, while HfTe2
is a gapless semimetal. The energy gap trend suggests that the
atomic species play a dominant role. A lot of asymmetric peaks
and few symmetric ones due to the parabolic form are shown in
the energy bands and density of states. The van Hove singularities
mainly arise from the band-edge states in the DOS. The
logarithmic divergence at middle energy and shoulder
structures at lower and higher energy are exhibited in the
DOS corresponding to the 3pz, 4pz, 5pz and (3px,3py),
(4px,4py), (5px,5py) of HfS2, HfSe2 and HfTe2, respectively. In
addition, these orbitals demonstrate multi-orbital hybridizations,
as shown in the orbital-projected DOS. In summary, the
electronic properties of the monolayer HfX2 family are mainly

determined by their geometry, chemical bondings, and the
orbitals hybridization.
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