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Compressive strength is probably one the most crucial properties of concrete material. For
existing structures, core samples are drilled and tested to obtain the concrete compressive
strength. Many times, taking core samples is not feasible, and as a result, nondestructive
methods to examine the concrete are required. The rebound hammer test is one of the
most popular methods to estimate concrete compressive strength without causing
damage to the existing structure. The test is inexpensive and can be easily conducted
compared to other nondestructive testing methods. Also, concrete compressive strength
estimations can be obtained almost instantly. However, previous results have shown that
concrete compressive strength estimations obtained from rebound hammer tests are not
very accurate. As a result, this research attempts to apply artificial intelligence prediction
models to estimate concrete compressive strength using data from in situ rebound
hammer tests. The results show that artificial intelligence methods can effectively
improve in situ concrete compressive strength estimations in rebound hammer tests.

Keywords: artificial intelligence, non-destructive test, concrete strength, rebound hammer test, artificial neural
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INTRODUCTION

Concrete is a man-made composite material, consisting mainly of aggregate, water, and cement.
Because it is relatively cheap and provides high compressive strength, concrete is one of the most
commonly used materials in the construction industry. It is extensively used in buildings, bridges,
roads, and many other structures. To ensure the safety of the structures, the quality of the concrete
material, especially the concrete strength, is of great concern to the construction industry. One of the
most popular ways to assess the performance of concrete is to measure its compressive strength.
Compressive strength is one of the most important criteria used to examine whether a given concrete
mixture will fulfill its design requirements. Compressive strength is typically measured by breaking
cylinder concrete samples in a compressor machine. These specimens are randomly sampled from
different ready-mixed concrete batches delivered to the construction site. Nevertheless, for existing
structures, it is necessary to drill core samples in order to obtain concrete compressive strength in the
field. Taking core samples causes certain damage to existing structures, and sometimes, it is not
feasible to take core samples (for example, when you cannot obtain the owner’s consent). Under such
circumstances, alternative testing methods, such as nondestructive tests, are desirable for assessing
concrete compressive strength. Among the nondestructive concrete compressive strength tests,
rebound hammer (RH) and ultrasonic pulse velocity (UPV) tests are commonly seen in the industry.
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The major benefits of RH and UPV tests are their abilities to
examine the condition of a concrete structure without causing
damage (Shariati et al., 2011).

In the RH test, a spring-loaded steel hammer is pushed against
the surface of the concrete. When released, the hammer impacts
the concrete with a predetermined amount of energy. The
hardness of the concrete affects the extent of the elastic mass
rebound. This rebound distance is measured and used to estimate
the concrete strength (ASTM C805 / C805M – 18, 2020). In the
UPV test, first, the propagation velocity of longitudinal stress
wave pulses through concrete is measured. Then, the compressive
strength of the concrete is estimated using the measured UPV.
The UPV test is conducted by transmitting ultrasonic pulses
through the test specimen, and then, the time taken by the pulse
to pass through the concrete is measured. Higher velocities
indicate good quality and continuity of the material, and lower
velocities may indicate cracks or voids in the concrete (ASTM
C597 – 16, 2020). Compared to other nondestructive methods,
RH tests are cheaper (in terms of test equipment), faster, and
easier to conduct (Hamidian et al., 2012). In addition, RH tests
are adopted in the American Society for Testing and Materials
(ASTM 805) (ASTM C597 – 16, 2020) and Chinese National
Standards (CNS 10732) as an alternative way to assess concrete
compressive strength. Therefore, this research utilizes RH tests to
estimate concrete compressive strength.

Typically, the rebound distance measured is used to estimate
concrete compressive strength either using the conversion table
or equations provided by the manufacturer. Nevertheless, despite
its convenience, compressive strength estimations from RH tests
are not very accurate, and an average of more than 20% mean
absolute percentage error (MAPE) is reported (Huang et al.,
2011). In light of this, this research attempts to further examine
the relationship between RH measurements and actual
compressive strength.

Previous research has attempted different approaches to
investigate the relationship between RH measurements and
actual compressive strength. To achieve this goal, many
researchers adopt linear and nonlinear statistical regressions to
improve the concrete compressive strength estimation in the RH
test (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and Nehme,
2017; Xu and Li, 2018; Kocáb et al., 2019). In addition, some
researchers have successfully adopted nontraditional statistical
methods, such as artificial neural networks (ANNs), to improve
concrete compressive strength estimations in RH tests (Yılmaz
and Yuksek, 2008; Iphar, 2012; Asteris and Mokos, 2019).
Nevertheless, most research uses new cube or cylinder samples
produced in the laboratory. As a result, there might be some
limitations when applying these research findings to in situ RH
tests. In light of this, this research intends to investigate the
relationships between RH measures and actual compressive
strength for existing structures. In situ RH tests and core
sampling are conducted on a large residential complex
building. Both traditional (linear/nonliner regression) and
nontraditional (artificial intelligence or AI) statistical analyses
are conducted to develop concrete compressive strength
prediction models. The research results show that, by
introducing the AI methods into the RH tests, concrete

compressive strength estimations can be improved for in situ
test objects. It should be noted that the emphasis of this research
is on examining the relationships between in situ RH
measurements and concrete strength; therefore, the nature of
the RH test itself is not discussed in this research.

LITERATURE REVIEW

By adopting AI methods, this research intends to investigate the
relationships between in situ RH test measurements and actual
concrete compressive strengths. First, previous research related to
RH tests and concrete compressive strength estimation are
reviewed. Then, literature related to AI methods are reviewed.

Rebound Hammer Test
When destructive test measures are not feasible, nondestructive
testing methods have been adopted as an alternative to examine the
properties of construction materials. Over the years, successful
results have been obtained by researchers using nondestructive
methods to estimate material properties (Kumar et al., 2019). For
concrete material, the RH test is often chosen as an alternative
nondestructive testing method to estimate compressive strength.
RH test standards have been established in different countries and
regions, such as ASTM 805 in the United States (ASTM C805 /
C805M – 18, 2020), BS 1881: part 202 in the United Kingdom
(British Standards Institution (BSI), 1986), EN 12504-2 in Europe
(European Normalization Committee (En), 2012), and CNS 10732
in Taiwan The National Standards of the Republic of China, 1986.
The RH test is easy to conduct, and the test results can be obtained
almost instantly. RH measurements can be used to estimate
concrete compressive strength either using a conversion table or
a conversion equation provided by the instrument manufacturer.
However, these concrete compressive strength estimations are not
very accurate when using RH test measurements (Huang et al.,
2011). Some researchers have attempted to improve concrete
compressive strength estimations by introducing factors other
than RH value, such as water:cement ratio, age, and types of
admixture (Atoyebi et al., 2019). Others have attempted
different prediction methods to better correlate the RH value
with actual compressive strength. Among them, traditional
statistical regressions are the most popular methods adopted by
the researchers (Hajjeh, 2012; Rojas-Henao et al., 2012; El Mir and
Nehme, 2017; Xu and Li, 2018; Kocáb et al., 2019). In recent years,
nontraditional statistical regression methods, such as ANNs, are
reported to have better compressive strength estimations when
compared to traditional regression methods (Yılmaz and Yuksek,
2008; Iphar, 2012; Asteris and Mokos, 2020). In addition to
traditional regression methods and ANNs, this research also
adopts alternative AI methods, support vector regression, and
adaptive network-based fuzzy inference systems (ANFIS) to
develop concrete compressive prediction models. These methods
are introduced in the next section.

Artificial Intelligence Methods
Some previous RH estimation research adopts traditional
statistical methods to correlate RH measurements and
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concrete compressive strength. However, the results have not
been satisfactory so far (Qasrawi, 2000; Szilágyi et al., 2011;
Brencich et al., 2013; Breysse and Martínez-Fernández, 2014).
This research attempts to use AI methods to investigate the
relationship between RH measurements and concrete
compressive strength. As an application of AI, machine
learning algorithms use sample data to develop (or train)
mathematical models. Learning from sample data allows the
model to make predictions without being explicitly
programmed (Bishop, 2006). For this research, RH
experiments are conducted to obtain sample data for machine
learning prediction models. Among the various machine learning
techniques for regression, ANNs, support vector machines
(SVMs), and ANFIS are chosen to develop the prediction
models. For this research, these techniques are chosen because
ANNs, SVMs, and ANFIS are reported to have been successfully
applied in many different areas, such as finance, engineering,
medicine, and manufacturing. The model prediction results from
these AI techniques also outperformed traditional statistical
regression methods (Shirsath and Singh, 2010; Balabin and
Lomakina, 2011; Yilmaz and Kaynar, 2011; Rezaeianzadeh
et al., 2014).

Based on the literature, this research adapts AI regression
methods to improve concrete compressive strength estimation
for in situ RH tests. The RH test and AI regression methods are
briefly introduced in the next section.

METHODOLOGY

RH tests are popular nondestructive tests to measure the surface
hardness and penetration resistance of concrete. RH test
measurements can be related to the elastic properties or
strength of the test object. In the RH tests, the hammer is first
pressed against the concrete surface (small, nonstructural beams
in this research). Next, the spring-loaded hammer mass strikes
with a defined energy, and then the rebound is measured. The

rebound value measured is known as the rebound number. By
referring to the conversion table or equation provided by the
manufacturer, the concrete compressive strength can then be
estimated using the rebound number. For digital RH, the
compressive strength can be automatically calculated
(Information on, 2012). The RH gives an indication of the test
object’s surface hardness. When using RH to examine concrete
compressive strength, a lower rebound value is obtained for low
strength and stiffness concrete due to more energy absorption
(Brencich et al., 2013).

For this research, the research team first conducted RH tests
on nonstructural beams in the basement of a large residential
complex. After the RH tests, core samples were carefully drilled
and then tested in the laboratory to obtain the actual compressive
strength. Due to the destructive nature of the core drilling
process, in situ RH test data are difficult to collect. In order to
get more reliable concrete strength estimations, data from a total
of 100 samples are collected. A digital RH (Silver Schmidt Type
N-PC) is used for this research as shown in Figure 1. The digital
hammer offers intuitive, menu-guided operation; electronic data
processing; automatic correction for testing positions; and test
data storage (Information on, 2012). This instrument is chosen
because its accuracy and repeatability are improved compared to
traditional concrete test hammers. The collected data are then
used to develop and validate the AI regression models.

ANNs are machine learning methods that are inspired by the
biological neural systems in the brain. An ANN consists of
interconnected nodes (artificial neurons), and these nodes can
receive, process, and transmit signals to artificial neurons
connected to them. Each artificial neuron has weighted inputs,
one transfer function, and one output. Although a single neuron
can perform certain simple tasks, the real computation power
comes from the interconnecting neurons. Typically, these
interconnected neurons are aggregated into the input layer, the
hidden layer(s), and the output layer. Signals are received by the
input layer and then transmitted through the hidden layer(s) and
output layer. Such systems are able to learn from examples
without being programmed with task-specific rules (Zupan
and Gasteiger, 1991; Gurney, 2014). A typical three-layer
neural network is shown in Figure 2 with one input layer, one
hidden layer, and one output layer.

FIGURE 1 | Silver schmidt type N-PC rebound hammer.

FIGURE 2 | Three-layer ANNs.
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In the hidden layer, the neurons receive activation signals from
the neurons in the input layer. The activation signal entering each
neuron is the weighted sum of all the signals from the input layer.
This weighted sum of all signals (also known as activation signal)
is shown in Eq. 1. In Eq. 1, xj is the activation signal that neuron j
in the hidden layer receives; Ii is ith neuron in the input layer, and
Wij is the weight of the connection between neuron j in the
hidden layer and the input layer neuron Ii. After receiving the
activation signals, the neuron generates an output through a
predetermined activation function. One of the most common
activation functions is the sigmoid function, illustrated in Eq. 2.
In Eq. 2, xj is the input for neuron j in the hidden layer and hj is
the output of neuron j. Sigmoid functions transform input values
into output values between 0 and 1.

xj � ∑
i

IiWij (1)

hj � f (xj) � 1
1 + e−xj

(2)

yk � ∑
j

hjWjk (3)

The outputs of the hidden layer neurons are then transmitted
to the output layer. As shown in Eq. 3, hj is the output of neuron j
andWjk is the weight of the connection between neurons j and k.
yk is the activation signal received by the output layer neuron k,
the weighted sum of inputs to the output layer neuron k. In the
output layer, the activation function transforms the received
activation signals and generates the outputs of the neural
networks. As illustrated in Eq. 4, ok is the output of the neural
network model after sigmoid function transformation. For
supervised neural networks, the model error, E(W), is then
calculated by comparing the desired (or actual) value dk and
the model output ok as calculated in Eq. 5.

ok � f (yk) � 1
1 + e−yk

(4)

E(W) � 1
2
∑
k

(dk − ok)2 (5)

In neural network model development, the error function,
E(W), is minimized to find the best fit model. One of the most
popular techniques to minimize he error is the back-propagation
(BP) algorithm. In the BP algorithm, the errors obtained at the
output layers are propagated backward to the hidden layer and
then to the input layer. During the BP process, the connecting
weights between all the neurons in the networks are updated.
With the updated weights, the network output is recalculated.
The error obtained from the updated neural network is back-
propagated to update the weights again. This process is repeated
to minimize the error until the best fit model is found.

ANNs have been successfully applied in many research fields
to make predictions. Some researchers have successfully adapted
ANNs to predict concrete compressive strength using input
variables such as age, Portland cement, water, sand, crushed
stone, high range water-reducing agent, and fly ash (Topçu
and Sarıdemir, 2008). This research also utilizes ANNs to
develop the concrete strength prediction model.

SVMs, first purposed by Vapnik (2013), are supervised
machine learning methods based on statistical learning theory.
As shown in Figure 3, SVMs first conduct nonlinear mapping of
sample data into the higher dimensional feature space, and then
the sample data can be classified using a linear model. The Φ
indicates the transformation function for the nonlinear mapping.

SVMs were first developed for classification; Drucker et al.
further proposed using the concepts for regression (Drucker et al.,
1997), also known as support vector regression. The support
vector regression concepts are briefly described below (Smola and
Schölkopf, 2004).

For a given data set, D � {(xi, di)}ni , xi is the input vector, di is
the desired (target) value, and n is the size of the data set. With the
nonlinear mapping (Φ) of the input vector, the nonlinear
regression in the lower dimensional space can then be
represented by the linear regression in the higher dimensional
feature space as shown in Eq. 6.

f (x) � ωΦ(x) + b, (6)

where ω is the weight vector, Φ is the higher dimensional feature
space, and b is the bias.

The main concepts of the support vector regression are to
minimize the structural risks. By minimizing the risk penalty
function, ω and b can be obtained as shown below (Smola and
Schölkopf, 2004):

RSVR(C) � C × 1
n
∑n
i−1

Lε(di, yi) + 1
2
‖ω‖2, (7)

where

Lε � { ∣∣∣∣d − y
∣∣∣∣ − ε if

∣∣∣∣d − y
∣∣∣∣≥ ε

0 otherwise
, (8)

where C × 1/n∑n
i−1Lε(di, yi) is the estimated risk based on Lε

(ε -insensitive loss function) in Eq. 7, yi is the target, 1/2‖ω‖2 is the
penalty item for estimating the structural risk, andC is the penalty
constant.

By introducing the slack variables ξ and ξ*, ω and b can be
estimated. Then, the new objective function is shown as.

Minimize

FIGURE 3 | SVM higher dimension mapping.
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RSVMs(ω, ξ(p)) � C × 1
n
∑n
i−1
(ξ i + ξpi ) + 1

2
‖ω‖2 (9)

Subject to

di − ωφ(xi) − bi ≤ ε + ξ i
ωφ(xi) + bi − di ≤ ε + ξpi

ξ(p) ≥ 0 (10)

The Lagrange multipliers, ai and ai*, can then be incorporated,
and the SVM decision function becomes

f (x, ai, api ) � ∑n
i�1
(ai − api )K(x, xi) + b (11)

Next, the Lagrange multipliers, ai and ai*, are adopted in the
penalty objective function as shown below:

Maximize

R(ai, api ) � ∑n
i�1

di(ai − api ) − ε(ai + api ) − 1
2
∑n
i�1

∑n
j�1
(ai − api )

× (aj − apj )K(x, xi) (12)

Subject to

∑n
i�1
(ai − api ) � 0,

0≤ ai ≤C i � 1, 2, ..., n
0≤ api ≤C i � 1, 2, ..., n

(13)

The kernel function, K (xi, xj), is the inner product of xi and xj
in the corresponding feature spaces ψ(xi) and ψ(xj), K(xi, xj) �
φ(xi)pφ(xj).

Compared to ANNs, which are sometimes criticized as black
box approximations, the support vector regression can be
theoretically analyzed using computational learning theory
(Smola and Schölkopf, 2004; Anguita et al., 2010). Several
research results have shown that SVMs are able to provide
better prediction results when comparing to ANNs (Kim,
2003; Huang et al., 2005). As a result, this research uses
support vector regression as one of the AI prediction
techniques in the model development.

ANFIS is a kind of ANN that is based on the Takagi–Sugeno
fuzzy inference system (Jang, 1993). It is a hybrid intelligent
system that integrates the human-like reasoning style of fuzzy
systems and the learning structure of neural networks. Fuzzy
if–then rules are incorporated into the inference system so that
the system can learn to approximate nonlinear functions from
sample data. ANFIS is based on the first-order Sugeno fuzzy
model proposed by Takagi and Sugeno. Considering two input
variables (x and y) and one output variable (z), with the Sugeno
fuzzy model, ANFIS incorporates the learning algorithms in the
ANNs to determine the parameters in the premise and
consequent parts of the fuzzy rules (Abraham, 2005). The
structure of the ANFIS model with two input variables (x and
y) and one output variable (z) is shown in Figure 4.

The functions of each layer in this ANFIS structure are
introduced below (Abdulshahed et al., 2015):

Layer 1 is the input layer, which is intended for input fuzzification.
In this layer, input variables are mapped into the fuzzy sets. Each
node represents an adaptive node with node function.

O1,i � µAi (x) for i � 1, 2 (14)

or O1,i � µBi (y) for i � 1, 2 (15)

x and y are the inputs for node i; O1,i is the membership degree for
fuzzy set A (membership functions A1, A2) or fuzzy set B
(membership functions B1, B2). The typical bell-shaped
membership function in this layer can be expressed as

µA(x) �
1

1 +
∣∣∣∣∣x−ciai

∣∣∣∣∣2bi (16)

In Eq. 16, a, b, and c are the parameters for membership
function u(x). These parameters determine the shape of the
membership function and are referred to as premise parameters.

Layer 2 is the rule layer, which calculates the product of all the
incoming signals to the nodes. Each node in this layer is a fixed
node, and the output of this layer is the product of all the
incoming signals or obtained from min (AND) in the fuzzy
sets. Each node represents the firing strength of the rule. It
can be calculated as

O2,i � wi � µAi(x)µBi (y) for i � 1, 2 (17)

or O2,i � wi � min(µAi(x), µBi(y)) for i � 1, 2 (18)

Layer three is the normalization layer, which normalizes the
firing strength of each node. Each node in this layer is also a fixed
node, and the output is referred to as the normalized firing
strength of that node. The output of the ith node is obtained
by calculating the ratio of the ith rule’|’s firing strength to the sum
of all rules’ firing strengths. It can be calculated as

O3,i � w � wi

w1 + w2
for i � 1, 2 (19)

Layer 4 is the inference layer, which is intended for
defuzzification. Each node in this layer is an adaptive node. It
takes the outputs from layer 3 and then multiplies them by the
consequent parameters. It can be calculated as

FIGURE 4 | ANFIS model.
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O4,i � wifi � wi(pix + qiy + ri) (20)

In Eq. 20, wi is the normalized firing strength from layer 3 and {pi,
qi, ri} are the relevant consequent parameters for that node.

Layer 5 is the output layer, which calculates the overall output.
There is only onefixednode in this layer. It calculates the overall output
as the summation of all incoming signals and can be expressed as

O5,i � ∑
i

wifi � ∑iwifi∑iwi
(21)

In the ANFIS structure, the premise parameters are typically
nonlinear, and consequent parameters are normally linear. This
makes the parameter optimization process very complicated. Jang
(Jang, 1993) proposes a hybrid learning algorithm to solve this
problem. It involves a forward and backward process. In the
forward pass, the premise parameters are first fixed, and the
algorithm uses the least-squares method to identify the consequent
parameters in Layer 4. After comparing the model output and desired
output and obtaining the errors, the errors are propagated backward to
the first layer, and the premise parameters are updated by the gradient
descent method in the backward pass. This forward/backward process
is repeated many times until the errors fall within the tolerance level.
Since its introduction, ANFIS has been adopted to develop prediction
models in many different research disciplines and is able to produce
good prediction results (Vural et al., 2009; Boyacioglu and Avci, 2010;
Abdulshahed et al., 2015).

Based on the related research, this research attempts to adopt
three AI techniques (ANNs, SVMs, and ANFIS) to further
investigate the relationship between in situ RH measurements
and actual concrete compressive strength.

DATA COLLECTION

The researchers collaborated with a government-certified material
testing laboratory and the Chinese Professional Civil Engineer
Association for data collection. The RH tests were conducted on
nonstructural beams in the basement of a large residential complex
as shown in Figure 5. For consistency, all test hammer
measurements were taken by the same personnel. The
specifications in ASTM 805 and CNS 10732 for RH tests were
carefully followed. After the RH tests, core samples were taken in
order to obtain the actual compressive strength. To limit the
structural damage due to coring, test locations were carefully
chosen by the professional engineers. The design drawings were
carefully reviewed to avoid rebar in the test areas. Before the test
was conducted, test locations were examined again to avoid heavily
textured or soft surfaces or surfaces with loose mortar. The digital
RH was held firmly so that the plunger is perpendicular to the test
surface. Ten readings were taken for each test area, and all the
distances between impact points are greater than 25mm. After
each impact, the impression made on the surface was examined to
see if the impact crushed or broke through a near-surface air void.
If so, the reading was disregarded, and another reading was taken.

To obtain the actual compressive strength, core samples were
also taken at the same location and then brought back to the

laboratory for destructive compression tests. Design drawings
were carefully reviewed, and professional engineers were
consulted when determining the test locations (mostly within
the middle third section of the beam). To avoid damage to the
rebar, rebar detectors were employed to confirm the locations of
rebar before drilling took place. In addition, the void was filled
with low-shrinkage concrete right after the drilling. All of the core
drillings were conducted by the same professional team from a
local material testing laboratory. All the core samples were taken
and prepared per the CNS 1238 A3051 (method of test for
obtaining and testing drilled core samples of concrete)
specifications. After cores were drilled, the surface water was
wiped off, and the sample was stored in a nonabsorbent
container. Before the compression tests, the ends of the core
specimens were sawed so that they were flat and perpendicular to
the longitudinal axis. The size of the test specimens is 7.5 Φ ×
10 cm.

The basement is mainly intended for parking, and the building
construction was approaching the completion stage when the
tests were conducted. A total of 100 small beams were chosen for
the RH tests, and these beams are have the same dimensions
(50 cm in width and 70 cm in depth). For each beam, a total of 10
RHmeasurements were taken at one location. The Silver Schmidt
N-Type electronic RH was used to conduct the tests. Core
samples were taken at the same locations after the RH tests as
shown in Figure 6. RH tests, core sample collection, and
compression tests were conducted during a period of 4 weeks.
These drilled core samples were taken back to the laboratory and
carefully cured after the drill. To obtain the compressive strength,
destructive compression tests were conducted using the HT-8391

FIGURE 5 | In situ rebound hammer test.
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200-ton concrete compression test machine. The data collected
were used to develop and test the ANN, SVM, and ANFIS
prediction models.

It should be noted that, before conducting the experiments, the
research team were requested to sign a confidential agreement by
the facility owner. As a result, only limited information regarding
the research results can be revealed to the public. The descriptive
statistics of RH tests and core sample compressive strength tests
are shown in Table 1.

MODEL DEVELOPMENT AND VALIDATION

A total of 100 RH test sample data were collected for this research
analysis. The data are used to develop and validate the regression
and artificial intelligence (ANNs, SVMs, and ANFIS) prediction
models. Among the 100 samples, 80 of them are randomly chosen
as the training data set, and the remaining 20 samples are
assigned as the testing data set. For consistency, all the
prediction models use the same 80 randomly selected samples
to develop the models, and the same 20 samples are used to
validate the models.

Some researchers have incorporated additional factors (such
as water:cement ratio, aggregate size, and age) as input variables
in their prediction models. Nevertheless, it is difficult (sometimes
not feasible) to obtain these properties for existing structures.
Therefore, this research only used RH measurements as the
model inputs. For each test location, a total of 10 rebound
measurements were taken as shown in Figure 6. These
measurements were first recorded in the test hammer, and
then the averages and standard deviations were calculated. All
models proposed by this research have two input variables
(average and standard deviation of the RH measurements) and
one output variable (actual concrete compressive strength). As for
the measure of model prediction accuracy, this research uses
MAPE to compare prediction accuracies between the proposed
models. MAPEs are widely used measures in examining the
prediction accuracies for AI models (Nurcahyo and Nhita,
2014; Priya and Iqbal, 2015; Ramasamy et al., 2015). The
MAPE is calculated using the following equation:

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣Ai − Pi

Ai

∣∣∣∣∣∣∣ (22)

where Ai is actual compressive strength, Pi is model output, and n
is the total number of data.

In addition to MAPE, root mean square error (RMSE) is also
calculated as an alternative prediction measurement for models.
Compared to MAPE, RMSE emphasizes large errors as shown in
the following equation:

RMSE �













1
n
∑n
i�1

(Ai − Pi)2
√

(23)

Also, the variance accounted for (VAF) between the actual
(desired) value and model prediction (output) is also calculated
using the following equation (Kumar et al., 2013):

VAF � (1 − var(A − P)
Var(A) ) × 100% (24)

If the output values all equal the desired values, the MAPE and
RMSE equal 0; the VAF equals 100%.

Regression Models
First, scatterplots of the collected data are plotted and examined
for possible relationships between the average RH measurements
and actual compressive strength. Next, simple linear and
nonlinear regressions are conducted to see if simple regression
models can yield good prediction results. The randomly chosen
80 training data are used to develop the linear and nonlinear
regression models as shown in Figures 7, 8.

The linear regression function obtained is

y � 6.3826 x + 144.6 (25)

For the linear regression model, the MAPE obtained from the
training data is 17.88% and the RMSE is 90.81 kgf/cm2.

FIGURE 6 | Rebound hammer and core sample location.

TABLE 1 | Rebound hammer and core sample test results summary.

Test Results Max Min Average Stdev.

Rebound Value (n � 100 × 10) 64 30 55.7 5.24
Actual Compressive Strength (kgf/cm2)
(n � 100)

673 158 486.3 98.18
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The nonlinear regression function obtained is:

y � 181.38 e0.0182 x (26)

For the nonlinear regression model, the MAPE obtained
from the training data is 16.62% and the RMSE is 92.4 kgf/
cm2.

After obtaining the regression equations, the remaining 20
testing data are used to validate the regression models. The
average rebound values from the testing data set are input into
the equations to obtain concrete compressive strength
predictions. The prediction results are then compared with
the actual compressive strength obtained from the core
sample destructive compression tests. The MAPE, VAF,

and RMSE calculated for the linear regression model are
15.67%, ‒21.58%, and 103.07 kgf/cm2, respectively. For the
nonlinear regression models, the MAPE, VAF, and RMSE
obtained are 16.75%, ‒19.13%, and 110.79 kgf/cm2,
respectively.

The prediction results show that both the linear and nonlinear
regression models have MAPEs over 15%. Similar results are
observed from other research indicating that traditional linear
and nonlinear regression methods might not yield good
prediction results (Wei, 2012; Mishra et al., 2019). In order to
improve the prediction accuracy, this research proposes
alternative prediction models based on AI methods (ANNs,
SVMs, and ANFIS).

FIGURE 7 | Linear regression scatterplot.

FIGURE 8 | Nonlinear regression scatterplot.
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Artificial Neural Networks Models
This research uses NeuroSolutions 7.0 to develop the BP network
(BPN) model for concrete compressive strength estimations.
During the ANN model development process, parameters such
as number of hidden layers, number of neurons in each layer, type
of transfer functions, and learning rules are explored to obtain
better prediction models. For this research, ANN models with
both one and two hidden layers are developed. Different numbers
of neurons in each layer, transfer functions, and learning rules are
also investigated. In other words, trial and error is implemented
to obtain better model parameter setup. Please refer to Table 2 for
ANN model parameter setup details.

There are 80 samples in the training data set (including
10 cross-validation samples) and 20 samples in the testing
data set. In order to find the best ANN prediction model, the
ANN parameters are explored through the trial and error process.
After several trials, it was found that better results (lower training
errors) are obtained when using the “TanhAxon” transfer
function and “Levenberg-Marquardt” (LM) learning rule. The
TanhAxon transfer function applies a bias and tanh function to
each neuron in the layer. This squashes the range of each neuron
in the layer to between −1 and 1. The LM algorithm is a standard
technique for nonlinear least-squares problems and can be

thought of as a combination of steepest descent and the
Gauss-Newton method.

The best training results obtained from the one-hidden-layer
network is from a 2 to 5-1 (two inputs, five process elements in
the hidden layer, and one output) ANN model. The MAPE and
RMSE obtained are 16.82% and 101.21, respectively, from the
training data set. This model is validated with the 20 samples
using the testing data set. The MAPE, VAF, and RMSE obtained
from the one-hidden-layer ANNmodel are 14.77%, −33.88%, and
92.67, respectively, when validating with the testing data.

ANN models with two hidden layers are also developed using
the same training data set. Various parameter settings are
explored in order to obtain lower training errors. The best
training results obtained from the two-hidden-layer network is
from a 2-5 to 5-1 (two inputs, five process elements in the first and
second hidden layers, and one output) ANN model. The
corresponding MAPE and RMSE obtained from the training
data are 11.9% and 85.36, respectively, which are lower than
the one-hidden-layer model. The training and validation errors
for this ANN model are shown in Figure 9.

Next, the two-hidden-layer model is validated with the 20
samples from the testing data set. The MAPE, VAF, and RMSE
obtained from the testing data are 12.37%, −30.68%, and 88.45,
respectively, which are also lower than the one-hidden-layer
model. The desired values (actual compressive strength) and
model outputs are presented in a scatterplot as shown in
Figure 10. If the model output equals the desired value, it
should fall on the red line. In Figure 11, the line chart of the
desired and model output compressive strengths is also plotted.
To get a better understanding of the individual errors between the
desired values and model outputs, a residual histogram of the
testing samples is presented in Figure 12.

From the above, it can be observed that, most of the time, the
predicted values (model outputs) are smaller than the desired
values. It indicates that this ANN model tends to underestimate.

TABLE 2 | ANNs model setup.

Model Parameter Settings

Exemplars Training Dataset 80
Cross-Validation 10a

Testing Dataset 20
Hidden Layers One and two
Transfer Functions TanhAxon, SigmoidAxon, LinearAxon
Learning Rule Levenberg Marqua, Momentum
Maximum Epochs Starting from 500

aThese 10 samples are randomly chosen from the 80 training samples.

FIGURE 9 | ANN model (2-5-5–1) training and validation error.
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In addition, there are 10 samples with residuals over 50 kgf/cm2,
which might contribute to the low prediction accuracy. The
training and testing results of ANN models with one and two
hidden layers are summarized in Table 3.

Support Vector Regression Models
This research uses the least squares SVM (LSSVM) in the Matlab
R2018a to develop the support vector regression model. The same
80 training data used in ANN model development are used to
develop the LSSVM regression model.

For the SVM regression models, there are typically four types
of kernel functions: linear, polynomial, sigmoid, and radial basis
function (RBF) kernels. Among them, RBF is favorable for its

capability of dealing with nonlinearity and high-dimensional
computation and effectiveness in reducing complexity for
inputs by adjusting C and c (Hsu et al., 2003), where C is the
cost of the soft-margin SVM loss function and gamma is the free
parameter of the RBF. For this research, support vector regression
parameters are obtained from the trial and error process.
Different C and c values are investigated to obtain the best
SVM model with the training data set as shown in Table 4.

From Table 4, the best training MAPE obtained for the SVM
model is 15.13%, and the corresponding C and c values are 2 and
5,000, respectively.

Next, this model is validated with the 20 samples from the
testing data set. The desired values (actual compressive strength)

FIGURE 10 | ANN model (2-5-5–1) scatterplot.

FIGURE 11 | ANN model (2-5-5–1) line chart.
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and support vector regression model outputs are presented in a
scatterplot as shown in Figure 13. The red line indicates 100%
accuracy prediction. The MAPE, VAF, and RMSE obtained for
this support regression model are 16.08%, 6.05%, and 99.05,
respectively. The line chart of the desired and model output
compressive strengths is provided in Figure 14. The residual
histogram of the testing samples is presented in Figure 15. The
results show that the support vector regression model is not as
accurate compared to the ANN model.

Adaptive Network-Based Fuzzy Inference
Models
The ANFISmodel is developed in theMatlab 2018a environment.
The same 80 training samples used in ANN and SVM model
development are also used to develop the ANFIS model. When
developing the ANFIS models, the researchers can choose
different numbers and types of membership functions. The
researchers developed three different sets of models (models
with three, five, and eight membership functions). For each
membership function setting in Matlab 2018, there are eight
different types to choose from: triangular (trimf), trapezoidal
(trapmf), generalized bell-shaped (gbell), Gaussian (gauss1),
Gaussian combination (gauss2), pi-shaped (pimf), difference
between two sigmoidal (dsigmf), and product of two sigmoidal
membership functions (psigmf). Each of them is tried in the
ANFIS model development to find the best prediction results.

In the model setup, the tolerance level is set as 0, and the
training is set to repeat 1,000, 2,000, and 3,000 times. The training
error diagram for the model with three sigmoid membership
functions (dsigmf) is shown in Figure 16.

ANFIS models with three, five, and eight membership
functions are developed using different types of membership
functions. The models that yield the best training results are
summarized in Table 5. For models with three membership
functions ([3, 3]), the best MAPE, 10.45%, is obtained with
the sigmoid membership functions (dsigmf). For models with
five membership functions ([5, 5]), the best MAPE, 10.10%, is
obtained with the trapezoidal membership functions (trapmf).
For models with eight membership functions ([8, 8]), the best
MAPE, 9.11%, is obtained with the trapmf membership function.

After the best trainingmodel ([8, 8]), trapmfmembership function)
is identified, the remaining 20 testing samples (unseen data to the
model) are used to obtain the concrete compressive strength
predictions. The desired values (actual compressive strength) and
support vector regression model outputs are presented in a
scatterplot as shown in Figure 17. The line chart of the desired and
ANFISmodel output is provided in Figure 18. The residual histogram
of the testing samples is presented in Figure 19. TheMAPE, VAF, and
RMSE obtained are 10.01%, −58.58%, and 62.46, respectively.

TABLE 3 | ANNs model results.

ANNs Model Type Training Testing

MAPE RMSE MAPE RMSE

2-5-1 16.82% 101.21 14.77% 92.67
2-5-5-1 11.9% 85.36 12.37% 88.45

TABLE 4 | SVM parameter settings and training error.

C value γ value Training MAPE C value γ value Training MAPE

2 1,000 15.24% 2 1,000 15.24%
4 1,000 15.54% 2 1,500 15.20%
8 1,000 15.60% 2 2,000 15.18%
16 1,000 15.72% 2 3,000 15.15%
32 1,000 16.05% 2 5,000 15.13%
64 1,000 16.40% 2 7,000 16.11%
128 1,000 16.40% 2 10,000 16.14%

FIGURE 12 | ANN model (2-5-5–1) residual histogram.
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The prediction results show that MAPEs in both training and
testing data sets obtained from the three AI-based models are
better than the 20% MAPE observed from previous research.
Among them, the ANFIS model yields the best prediction
accuracy with both the lowest training MAPE (9.11%) and
testing MAPE (10.01%).

In order to examine the reliability of the prediction results,
K-fold cross-validation is used to test the ANFIS model. In K-fold
cross-validation, part of the available data is used to develop the
model, and a different part of the data is used to test it. The K-fold
cross-validation is also known as leave-one-out cross-validation

(Hastie et al., 2009). For this research, the data are split into five
equal-sized parts. Each of the five parts has 20 samples, and there
are 100 samples in total. Four parts are first chosen to develop the
prediction model, and the fifth part is used to calculate the
prediction error. Then, another four parts are chosen to develop
the model, and the remaining part is used to test the model. This
process is repeated five times until all of the five parts are used to test
the predictionmodel. TheMAPE average and standard deviation of
the five-fold cross-validation are 9.90% and 2.28%, respectively. The
RMSE average and standard deviation of the five-fold cross-
validation are 58.67 and 8.93, respectively. This result shows

FIGURE 13 | Support vector regression model scatterplot

FIGURE 14 | Support vector regression model line chart.
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that, with different combinations of training and testing data, the
ANFIS models are able to yield consistent prediction accuracies.

In summary, this research collected a total of 100 in situ RH
and core sampling test data to develop concrete compressive
estimation models. Among them, 80 samples were randomly
selected to train the models, and the remaining 20 samples were

FIGURE 16 | ANFIS model training error.

FIGURE 15 | Support vector regression model residual histogram.

TABLE 5 | ANFIS model training results.

ANFIS Model Transfer Function Type Training MAPE Training RMSE

[3 3] Dsigmf 10.45% 64.43
[5 5] Trapmf 10.10% 64.16
[8 8] Trapmf 9.11% 57.48
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used for model validation. First, linear and nonlinear regression
models were developed and tested. The compressive strength
prediction accuracies (measured by MAPE) obtained from the
linear and nonlinear regression models are 15.66 and 16.75%,
respectively, which do not show significant improvement from
previous research. Subsequently, AI-based models (ANNs, SVMs,
andANFIS)were developed and validated using the same training and
testing data sets. For each model, various model parameters were
explored in order to achieve lower training error and higher prediction
accuracy. Among these models, the ANFIS model yielded the best
training and testing results with the lowest training and testingMAPEs
of 9.11 and 10.01%, respectively. The model development and
validation results from this research effort are summarized in
Table 6. From Table 6, it can be observed that both ANN and

ANFIS models are able to generate better prediction accuracies when
compared to traditional linear and nonlinear regression models.
Similar to Wei’s research results (Wei, 2012), the ANFIS model
can produce the lowest prediction errors when using the RH
measurement to measure concrete compressive strength.

CONCLUSIONS AND
RECOMMENDATIONS

To further investigate the relationship between in situ RH test
measurements and actual concrete compressive strength, this
research adopts AI techniques to develop concrete compressive
strength prediction models. A total of 100 test data are collected

FIGURE 17 | ANFIS model scatterplot

FIGURE 18 | ANFIS model line chart.
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from a large residential complex building. The data collected are used
to develop and validate traditional regression models as well as AI-
based models (ANN, SVM, and ANFIS models). For traditional
regression models, the MAPEs calculated for the linear and
nonlinear models are 15.66 and 16.75%, respectively. For the ANN
model, the best prediction results are obtained froma two-hidden-layer
network (2-5–5-1), and theMAPE obtained is 12.37%. For the support
vector regression model, the best MAPE obtained is 16.08%. The
corresponding parameters for the best support vector regressionmodel
are C � 2 and c � 5,000. For this research, the ANFIS model yields the
best prediction accuracy with an MAPE of 10.01% when the model is
validated using the testing data. This result is obtained from theANFIS
model with eightmembership functions for the two input variables ([8,
8]), and the membership function type is trapmf. K-fold cross-
validation is also conducted, and the results show that the ANFIS
model have consistent prediction errors when validated with different
data. The research results show that AI techniques can be used to
develop concrete compressive strength prediction models using in situ
RH test measurements. The prediction accuracies are better when
comparing to previous research results.

It should be noted that the RH testmeasurements are highly related
to the near surface of the test object. Therefore, it is recommended that
the RH tests can be combined with other nondestructive test methods
(such as UPV tests) to improve concrete compressive strength
estimations. Research results have shown that the SonReb (UPV +

RH test) method (Rilem Report TC43-CND, 1993) might improve
concrete strength estimations in NDT tests (Nobile, 2015; Rashid and
Waqas, 2017; Pereira and Romão, 2018). For this research, the results
are obtained from the 100-sample data collected. In order to improve
reliability, it is suggested that more sample data could be collected for
model development and validation.
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FIGURE 19 | ANFIS model residual histogram.

TABLE 6 | Summary of model validation result.

Model Type Model Setup Testing MAPE Testing RMSE

Regression linear 15.67% 103.07
Non-linear 16.75% 110.79

ANNs 2-5–5-1 12.37% 88.45
SVMs C � 2, γ � 5,000 16.08% 99.05
ANFIS [8 8], Trapmf 10.01% 62.46
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