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Mechanical deicing is a method to remove the ice on the pavement surface, and the
ice strength directly affects the difficulty and effectiveness of the mechanical deicing.
This paper aims to investigate the compression strength of ice to facilitate the deicing
equipment to crush ice. In this paper, a large-scale freezing laboratory is employed to
simulate low-temperature environment, and the uniaxial unconfined compressive tests
of artificial freshwater ice under different temperature conditions are carried out through
the uniaxial loading system. The compressive strength and modulus of ice are obtained
when the substrate is asphalt pavement. The test result shows that the ice compressive
strength and modulus respectively distribute from 0.36 to 3.67 MPa and 11.7 to
359.1 MPa when ice temperature varies from−0.7 to−7.5◦C. The relations between ice
temperature and compressive strength are approximately in a linear manner, while the
relation of compressive modulus and ice temperature shows good power function and
exponential relationships, respectively, when ice temperature ranges from −8 to −5◦C
and from −5 to 0◦C. Furthermore, the failure mechanism of ice under relatively lower
temperature is due to the development of cut-through cracks inside the ice. The failure
mode divides into shear failure and ductile failure and the failure ice is mainly composed
of large ice strips and bulks. For the ice with relatively higher temperature especially the
ice close to melting point temperature, the ice failure mode is compressive and ductile,
and the failure ice is mainly composed of granular ice crystals.

Keywords: ice, compressive strength, compressive modulus, asphalt pavement, failure mode

INTRODUCTION

The ice formed on the surface of civil structures exerts adverse impacts on the engineering
construction and its normal use (Hanbali, 1994; Dan et al., 2019a,b). It is well known that the
wet asphalt pavement is more likely to be frozen in the low-temperature environment especially in
moist mountain area (Dan et al., 2014, 2020a). The area in western China often suffers from freezing
rain during the winter, and ice on the asphalt pavement reduces the pavement skid resistance and
subsequently endangers the traffic safety (Gustafson, 1982; Zhu et al., 2012; Dan et al., 2020c).
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For instance, a massive ice disaster occurred in western China.
Thereinto, the Guizhou province suffers from the most severe
ice disaster during the winter in 2008 (Chen et al., 2008). The
ice thickness reaches 20 cm and caused many serious traffic
accidents. Accordingly, the ice pavement problems with respect
to ice warning and deicing should be taken seriously (Dan
et al., 2014). Currently, many technologies were developed to
deice (Croutch and Harttey, 1992; Petrenko, 1999; Sarkar and
Farzaneh, 2009), including the mechanical deicing technology
(SHRP, 1994; Taggart et al., 2002; Dan et al., 2020b). In general,
the ice strength directly affects the difficulty and effectiveness of
the mechanical deicing (Oksanen, 1983; SHRP, 1994; Tan, 2008).
So far, there are few studies on the ice strength when the substrate
is asphalt pavement. Nonetheless, relatively more researches have
presented to measure the ice strength under certain conditions
in the other research fields (Gow and Williamson, 1972; Haynes
and Mellor, 1977; Sodhi, 2001; Marion and Jakubowski, 2004;
Kärnä et al., 2010).

Gow and Williamson (1972) used a novel technique to
measure the linear compressibility of ice at relatively low
pressures. A mean linear compressibility of 3.7 Mb−1 was
obtained at−10◦C. Haynes and Mellor (1977) developed a simple
but accurate method for making lateral restraint compressive
strength tests on right circular cylinders. Sodhi (2001) conducted
small-scale indentation tests with compliant structures and
freshwater ice sheets. The results of the present study with
compliant structures show that there is ductile deformation of
ice at low indentation speeds and continuous brittle crushing at
high indentation speeds. Kärnä and Jochmarm (2003) discussed
some of failure modes observed while different ice formations
were acting on the lighthouse, and the details of the bending
failure mode and ice crushing were described. Marion and
Jakubowski (2004) presented a new model for estimating
the compressibility of ice based on chemical thermodynamic
principles and compared these model results with previous work.
Their estimate of ice compressibility demonstrated significant
temperature dependence. Yurtseven and Kilit (2009) calculated
the isothermal compressibility using the experimental data for the
heat expansion of ice I in the pre-melting region. By analyzing the
data at various pressures, compressibility is predicted as functions
of temperature and pressure near the melting point in ice I. Kärnä
et al. (2010) conducted a study of dynamic interaction processes
between a drifting ice sheet and a conical offshore structure. They
used the conventional test techniques to study the ice failure
process due to upward and downward breaking cones.

These researchers have made essential contributions to
understanding ice strength and modulus under various
conditions, however, most of them focus on the case that ice
temperature is below−10◦C, and few researches were conducted
when the ice temperature is above−10◦C. The Guizhou province
locates in the south of mid-latitude region of the northern
hemisphere, and the minimum air temperature during winter
is above −10◦C. Thus, the temperature of ice formed on the
pavement is basically not below −10◦C (Chen et al., 2008).
Therefore, this paper aims to investigate the compression
strength of ice to facilitate the deicing equipment to crush
ice, and the laboratory study is carried out to understand

the compressive properties of ice on asphalt pavement above
−10◦C. After removing the covered ice layer, the performance
of anti-skid resistance is improved and the traffic accidents is
reduced accordingly.

EXPERIMENTAL PROGRAM

The factors that influence mechanical property of ice are various
(e.g., the ice temperature, load speed, specimen size, and the
substrate type). In this paper, we mainly focus on the study
on the ice compressive strength and modulus for various ice
temperatures when the substrate is asphalt pavement. The current
researchers carried out some studies on the compressive failure
mode of ice under different loading speeds (Sinha, 1981; Timco
and Frederking, 1982; Weertman, 1983; Schulson, 2001; Petrovic,
2003; Montagnat et al., 2014). It can be found that the ice
failure process under fast loading is complex with uncertainty,
and the ice strength and the compressive modulus are not
exact to determine (Schulson, 2001). Therefore, the research
emphasizes the case of slow loading speed (the quasi static
loading) in this paper.

Specimen Production
The schematic diagram of test specimen is shown in Figure 1.
The Marshall specimen (compacted and molded asphalt mixture)
is a substrate with rough surface on which the ice is formed
under a low-temperature environment in order to ensure the
ice specimen cannot move during the compression process. The
asphalt mixture is AC-13, of which the mean texture depth is
0.75 mm. The impermeable adhesive tape twines around on the
top of the Marshall Specimen and the height of protruding over
the top is about 40 mm (Figure 1). Therefore, it forms a cup
shape and is watertight. Then, the “cup shape specimen” is filled
with fresh water and put into freezing laboratory under a low-
temperature environment for enough time and the fresh water
will be frozen. The ice specimen is columnar and Ice-1h, which is
of the hexagonal crystal structure. The crystal growth direction
is perpendicular to the substrate surface. The following steps
are to peel off the adhesive tape and smooth ice surface with
special polisher (because the surface of ice is generally concave–
convex, it affects contact performance between ice surface and
loading platen) (Figure 1). Then, the height of the ice cylinder is
measured with a Vernier caliper and the ice temperature is tested
with a platinum temperature sensor.

It should be pointed out that according to the field
investigation and research results, the road surface can form the
thickest of about 20 cm ice in the road section of severe icing in
Guizhou Province, and the greatest thickness of ice is about 4 cm.
Generally, the method of mechanical deicing will be adopted,
and the strength of ice has a great influence on the selection of
mechanical deicing equipment. Therefore, the 40 mm depth ice
is chosen for testing.

Equipment and Scheme
Ice is essentially formed in a wet and low-temperature
environment. The large-scale freezing laboratory is constructed
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for simulating this kind of environment. The air temperature,
rainfall, wind speed, and pavement temperature can be
controlled. The experimental model of pavement is filled with
building materials (asphalt mixture), and it is constructed
in the freezing laboratory and subjected to low temperature
and wet conditions.

The schematic diagram of test platform is shown in Figure 2.
The specimen used to be compressed is placed on a metal
cushion, which is put on an asphalt pavement surface. The
thickness of the metal cushion depends on the distance between
the ice specimen and the loading platen. In order to ensure
the uniformity of force applied on the ice top, the centers of
loading platen and ice top should be in a line. Then, the uniaxial
loading system will work and the loading platen will increasingly
move toward the ice specimen until it makes contact with the
ice top surface. The movement speed of the loading platen can
be controlled and changed through a computer system. As load

increases, the ice on the Marshall specimen will be broken down
and lose strength.

Experimental Process
Test Preparation
Before conducting the ice compressive test, the loading–
unloading performance is tested. The loading–unloading curve
is plotted in Figure 3. It can be seen from the diagram that
the maximum load value is about 100 kN, and the system will
unload if load is beyond 100 kN. In addition, the compressive
strength under the unconfined condition is also tested for
the purpose of estimating the failure load of the Marshall
specimen. For instance, the failure load test curve of the Marshall
specimen for −4◦C is illustrated in Figure 4. It can be seen
that the peak load (failure load) value is about 90 kN and the
compressive strength is about 11 MPa (the ratio of the peak

Marshall specimenMarshall specimen

convex ice surface smooth ice surface

polishing
ice cylinder ice cylinder ≈ 

40
 m

m
≈ 

64
 m

m
102 mm

ice

FIGURE 1 | Schematic diagram of specimen with ice and ice surface after polishing.

FIGURE 2 | Schematic diagram of uniaxial unconfined compressive system.
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FIGURE 3 | Loading–unloading curve of load system.

load to the contact area). Therefore, the effective test needs
the precondition that the failure load and failure strength of
ice should be lower than 90 kN and 11 MPa, respectively.
Moreover, several compressive tests are conducted for testing

the deformation of the Marshall specimens under various
temperature conditions.

Test Procedures
The test specimen with ice is placed on the test platform
(Figure 5A), and it should be ensured that the test temperature is
close to the ice temperature (the temperature change of ice can be
neglected). Then, the movement of loading platen is controlled by
the computer system and the speed is specified as 2 mm/min (the
strain ratio is 8.33 × 10−4 s−1) (Zhang L. M. et al., 2009; Zhang
et al., 2011). During the test, the computer controlling system
can automatically record load and displacement simultaneously.
After stop loading, the loading platen is uplifted and separated
from the ice surface (Figure 5B). Accordingly, the loading–
unloading process is accomplished. The test cases depend on
the ice temperatures from Zhang et al. −10 to 0◦C, which is
accurately measured by the temperature sensor.

RESULTS AND DISCUSSION

Test Results of Ice Strength
According to the experimental scheme, uniaxial unconfined
compressive strength failure tests of ice are carried out under

FIGURE 4 | Load–displacement and stress–strain curve of Marshall specimen for –4◦C.

FIGURE 5 | (A) Test picture under loading conditions. (B) Test picture under unloading conditions.
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FIGURE 6 | Stress–strain curve of ice during compression process for different temperatures.
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FIGURE 7 | Stress–strain curve of ice with various temperatures during compression process.

different ice temperatures, and the stress–strain curves are also
obtained, which are shown in Figures 6, 7. The peak value
of stress is the compressive strength and the gradient of the
linear segment in the stress–stain curve is compressive modulus.

The test results are aggregated in Table 1. It can be seen from
Figure 6 that the obvious peak value of stress can be observed
in the sub-figures. Typically, the stress grows up with the strain
increase and then falls down after the stress reaches its peak.
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Furthermore, it can be seen from Table 1 that all the peak load
values do not exceed the critical load (the load when the Marshall
specimen is failure).

Figure 7 shows various positions that peak stress occurs in
the stress–strain curves when ice temperatures are different.
It indicates that the deformation properties of ice for various
temperatures are not the same. The relationship between
ice temperature and strain corresponding to the peak stress
occurrence (i.e., failure strain of ice) is shown in Figure 8. Overall,
the strain is smaller for lower ice temperature. That is to say, ice
is less ductile for lower temperature.

Effect of Ice Temperature on the
Compressive Strength and Modulus
It can be seen from Table 1 that the compressive strength of ice
distributes from 0.36 to 3.67 MPa when ice temperature varies

TABLE 1 | Test results of uniaxial unconfined compressive strength of ice.

Test
number

T ice (◦C) L (mm) L/D Peak
load (Kn)

Pice (MPa) EC (MPa)

1 −0.7 38.6 0.38 2.94 0.36 11.7

2 −2.0 41.3 0.40 9.93 1.22 27.5

3 −2.3 42.8 0.42 13.08 1.60 41.7

4 −2.6 39.5 0.39 13.89 1.70 50.1

5 −3.2 40.6 0.40 12.91 1.58 65.3

6 −3.6 42.3 0.41 15.69 1.92 70.2

7 −3.8 41.1 0.40 18.35 2.25 75.7

8 −4.0 40.2 0.39 15.85 1.94 82.7

9 −4.5 40.5 0.40 18.80 2.30 126.7

10 −4.6 41.3 0.40 17.20 2.11 168.1

11 −4.8 38.4 0.38 17.45 2.14 157.9

12 −5.0 41.4 0.41 23.21 2.84 181.8

13 −5.2 42.0 0.41 20.18 2.47 260.1

14 −5.8 39.5 0.39 24.07 2.95 305.9

15 −6.3 40.7 0.40 26.56 3.25 337.4

16 −7.5 39.6 0.39 29.99 3.67 359.1

L is the ice thickness, mm; D is the diameter of ice specimen, mm.
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FIGURE 8 | Relationship between ice temperature and failure strain of ice.

from −0.7 to −7.5◦C. The scatter diagram is plotted to illustrate
the relationship between ice failure strength and ice temperature
(Figure 9). The expression to approximate the relationship of the
ice failure strength and ice temperature is also obtained through
regression and fitting method as shown in Eq. (1).{

Pice = −0.4524Tice + 0.279
R2
= 0.94

Tice ∈ [−0.7, 7.5] (1)

where Pice is the uniaxial unconfined compressive strength of
ice (MPa) and Tice is the ice temperature (◦C). Eq. (1) shows
the good linear relationship between compressive strength and
ice temperature, and the correlation coefficient is 0.94. It agrees
well with the test results obtained by Wang et al. (2007) and
Zhang L. M. et al. (2009). Therefore, the results obtained in the
laboratory test will help the mechanical deicing equipment to
apply appropriate force on the pavement with ice. That is to say,
the force can crush the ice on the one hand and not damage the
pavement on the other hand.

In addition, the compressive modulus of ice distributes
from 11.7 to 395.1 MPa when ice temperature varies from
−0.7 to −7.5◦C. The scatter diagram is plotted to illustrate
the relationship between ice compressive modulus and ice
temperature (Figure 10). The approximate expression of
the relationship between ice compression modulus and ice
temperature is obtained through a regression and fitting method
as shown in Eq. (2).{

EC = 7.97 exp (−0.6233Tice)

R2
= 0.97

Tice ∈ [−5, 0]EC = 365.5− 0.15
(
−
Tice

10

)−10.2

R2
= 0.97

Tice ∈ [−8, − 5]
(2)

where EC is the uniaxial unconfined compressive
modulus of ice (MPa).

As can be seen from Eq. (2), when the ice temperature is higher
than −5◦C, the relationship between ice compression modulus
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FIGURE 9 | Uniaxial unconfined compressive strength of ice for various
temperatures.
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and ice temperature is approximately exponential, and the
correlation coefficient is 0.97. When the ice temperature ranges
from −8 to −5◦C, this kind of relationship can be approximated
by power function, and the correlation coefficient is 0.97.

It can be seen apparently from Figure 10 that the
compression modulus improves with ice temperature decrease.
The improvement tends to be gentle when ice temperature
approaches −10◦C. According to other researchers (Wang et al.,
2007; Yu et al., 2009), the improvement of compressive modulus
with ice temperature is slight when ice temperature is below
−10◦C, and it is affected by ice strain rate. Since the laboratory
condition is limited, the compressive test is not conducted for
lower ice temperature (below −10◦C). Nevertheless, the test

results can provide the value of compressive modulus of ice to
facilitate the calculation in simulating the mechanical behavior of
material and structure including ice layer.

Ice Failure Mode Under Different
Temperature Conditions
According to some researches (Sinha, 1981; Timco and
Frederking, 1982; Petrovic, 2003; Zhang X. Z. et al., 2009), ice
failure mode depends on strain rate (i.e., load speed) and is
affected by ice temperature as well. It can be found that the failure
behaviors during the test process are obvious different for various
ice temperatures.

Figures 11A,B show the schematic diagrams of ice failure
subjected to load at −6.3 and −0.7◦C respectively. When ice
temperature is −6.3◦C, the visible cracks from top to bottom
in the ice specimen develop quickly and connect gradually,
accompanied by a crisp crush sound during the loading
process. Significantly, it can be found from Figure 11A that
an approximately incline failure plane (not accurate failure
plane) appears and the ice particle partially moves along the
plane, which can be observed. This phenomenon is regarded
as ice shear failure. Because no lateral confinement is applied
to the ice cylinder, the ice cylinder expands laterally and
is compressed vertically. The obvious peak stress value can
be obtained from the stress–strain curve (Figure 7) and
the failure ice is mainly composed of large ice strips and
bulks (Figure 12A).

While the failure phenomenon of ice at−0.7◦C is inconsistent
with that of ice at −6.3◦C. Under this condition, ice cylinder
is compressed vertically and expands laterally in the process
of loading and does not have obvious failure plane like that
at −6.3◦C (Figure 11B). It can be seen from the Figure 12B

FIGURE 11 | (A) Ice specimen before and after compressive test for –6.3◦C. (B) Ice specimen before and after compressive test for −0.7◦C.
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FIGURE 12 | (A) Ice configuration after compression for lower ice temperature. (B) Ice configuration after compression for higher ice temperature.

that the failure ice is mainly composed of granular ice
crystals, which is different from that of ice under the lower-
temperature condition.

General conclusions can be drawn from the above experiment
phenomenon, namely, that the failure mechanism of ice on the
asphalt pavement under relatively lower temperature is due to
the development of cut-through cracks inside the ice. The ice
crack development results in the decline of ice-bearing capacity
until it reaches whole failure state. The apparent failure plane
inside the ice appears and no melting phenomenon can be
observed. In contrast, for ice with relatively higher temperature
especially the ice near melting point temperature, the visible
cracks are less developed.

CONCLUSION

The uniaxial unconfined compressive tests of ice under different
cold temperature conditions are carried out. With the aid of
a data acquisition system, the load–displacement curves and
stress–strain curves of each test are obtained and the test results
are analyzed. Accordingly, the experimental conclusions can be
drawn as follows:

(1) The different positions that peak stress occurs in the stress–
strain curves illustrate that the deformation properties of

ice under various temperatures are not the same. Overall,
the strain is smaller for the lower ice temperature. It
indicates that the ice is less ductile for lower temperature.

(2) The uniaxial unconfined compressive strength of ice is
evaluated, and it distributes from 0.36 to 3.67 MPa when
the ice temperature varies from −0.7 to −7.5◦C. The
relation of ice failure strength and ice temperature can be
approximately evaluated in a linear manner. The strength
can help the mechanical deicing equipment to apply
appropriate force on the pavement with ice. That is to say,
the force can crush the ice on the one hand and not damage
the pavement on the other hand.

(3) The compressive modulus of ice distributes from 11.7 to
359.1 MPa when the ice temperature ranges from −7.5
to −0.7◦C. The expression to approximate the relation of
ice compressive modulus and ice temperature is obtained
through a regression and fitting method. It shows good
power function and exponential relationships, respectively,
when ice temperature ranges from −8 to −5◦C and from
−5 to 0◦C. The test results can provide the value of
compressive modulus of ice to facilitate the calculation
in simulating the mechanical behavior of material and
structure including ice layer.

(4) The failure mechanism of ice under relatively lower
temperature is due to the crack development of
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cut-through cracks inside the ice. The ice crack
development results in the decline of ice-bearing capacity
until it reaches a whole failure state. The relatively apparent
failure plane inside the ice can be formed and no melting
phenomenon can be observed. In view of the low strain
rate, the ice failure mode for this kind of condition is shear
failure and ductile, and the failure ice is mainly composed
of large ice strips and bulks.

(5) For ice with relatively higher temperature especially
the ice near the melting point temperature, the
visible cracks are less developed. In view of the low
strain rate, the ice failure mode is compressive and
ductile, and the failure ice is mainly composed of
granular ice crystals.
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