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Spinel lithium manganese oxide (LiMn2O4) based Li-ion battery (LIB) is attractive for
hybrid/full electric vehicles because of its abundant resources and easy preparation.
However, operation under an elevated temperature could cause severe capacity fading
of the spinel cathodes. In this work, 1, 3-propane sultone (PS) is investigated as an
electrolyte additive for improving the cyclability of the LiMn2O4/graphite LIB at elevated
temperature. The charge and discharge measurement proves that PS can significantly
enhance the cyclability of 053048-type LiMn2O4/graphite pouch cell at 60◦C. Compared
to the cell without additive, the capacity retention of the cell using electrolyte with 5%
PS increases from 52 to 71% after 180 cycles. The improved cyclability is attributable
to the modification of the solid electrolyte interface (SEI) on both positive and negative
sides of the LiMn2O4/graphite cell by PS, which effectively prevents anode and cathode
from structural breakdown and inhibits the electrolyte decomposition.

Keywords: 1, 3-propane sultone, solid electrolyte interphase, graphite anode, spinel cathode, lithium ion battery

INTRODUCTION

Li-ion battery (LIB) is successfully applied in portable electronic equipment and is scaled up for
hybrid/full electric vehicles and grid storage for renewable energy sources (Cheng et al., 2017; Yu
et al., 2020). Spinel lithium manganese oxide (LiMn2O4) is an ideal material for LIB owing to its
superior properties, such as low cost, high operating voltage, good safety, and low toxicity. However,
LiMn2O4 is not widely utilized in LIB commercialization due to its poor cycling performance,
especially at high temperature over 55◦C (Huang et al., 2018; Hai et al., 2019). Generally, the poor
cycling performance is arised from the irreversible crystal phase transition (Jahn–Teller distortion)
and oxygen deficiency (Xie et al., 2019), and more importantly, manganese (Mn) ion dissolving
into the electrolyte and subsequently deposited on the graphite anode, which degrades the solid
electrolyte interphase (SEI) on the electrode surface or deteriorates the graphite structure (Ryou
et al., 2010; Liao et al., 2017; Flamme et al., 2020).

Many methods were reported to effectively improve the electrochemical performance of the
LiMn2O4 cells, such as element partial substitutions (Ding et al., 2011; Piao et al., 2018) and
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surface coatings (Cao et al., 2018; Li et al., 2018;
Zhang et al., 2018). However, alternatives and surface coatings
usually cause reversible capacity loss and involve high cost
manufacture. The use of surface film-forming electrolyte
additive is an effective and facile method to enhance the
electrochemical behavior of lithium ion battery. This method
cannot only modify the SEI layers on electrodes and prevent the
dissolution/deposition of transition metal, but also can inhibit
the electrolyte decomposition during the cycling.

Various SEI-film forming additives have been used for
enhancing the high temperature stability of the LiMn2O4-based
cells, including sulfur-containing compounds such as methylene
methanedisulfonate (Zuo et al., 2014), prop-1-ene-1, 3-sultone
(Li Y. et al., 2013), P-toluenesulfonyl isocyanate (Wang et al.,
2015), 3, 3′–sulfonyldipropionitrile (Huang et al., 2015), and
butyl sultone (Xu et al., 2007). The sulfur-containing substances
generated from the additives decomposition can deactivate many
catalysts (Czekaj et al., 2011). It helps to build protective
surface film on the electrode and suppress decomposition of
the electrolyte, which leads to the improved performance of
the cell. 1, 3-propane sultone (PS) is one of the most used
additives in LIBs (Guo et al., 2008). It has been used as an
electrolyte additive in LiMn2O4-based battery to improve the
thermal storage performance. The improvement can be ascribed
to its suppression of solvent co-intercalating into graphite anode
(Xu et al., 2009).

Although PS has been applied as suppress propylene carbonate
(PC) co-intercalation co-solvent and additive to improve the
thermal storage performance in LiMn2O4/graphite cell, the
behavior of PS on the cathode reactions, modification of the
anode SEI, and thermal cyclability of the cell have not been clearly
investigated. Herein, we present a study focused on morphology
and structure of the cathode and anode SEI films by using PS as an
electrolyte additive in LiMn2O4/graphite cell. The effect of PS on
the cell cyclability at high operating temperature was investigated
and the morphologies and chemical compositions of the surface
films of the cycled electrodes were also presented.

EXPERIMENTAL

The LiMn2O4 electrode was prepared by coating a mixture of
90 wt.% LiMn2O4 (Hunan Reshine New Material Co., Ltd.),
5 wt.% of super-p (MMM carbon, Belgium), and 5 wt.% of
polyvinylidene difluoride (PVDF, Shanghai Ofluorine Chemical
Technology Co., Ltd.) binder on an aluminum current collect
(thickness was 16 um). The active material loading of the
LiMn2O4 electrode was 340 g m−2 and the thickness was about
179 um. The graphite electrode was obtained by coating a mixture
95 wt.% of graphite (BTR Battery Materials Co., Ltd.), 1 wt.% of
super-p, 2 wt.% carboxymethyl cellulose, and 2 wt.% of styrene
butadiene rubber in deionized water on a copper foil (thickness
was 8 um). The graphite material loading of the electrode was
155 g m−2 and the thickness was about 165 um. The full cells
(053048-type) were assembled in an argon-filled dry glove box
(Mbraun Unilab MB20, water and oxygen contents were lower
than 0.1 ppm) with the LiMn2O4 electrode as positive electrodes

(P) and graphite electrode as negative electrodes (N). The loading
weight of the active material for LiMn2O4/graphite cells was
controlled to the specific capacity of N/P = 1.15 (the specific
capacity of N and P were 340 and 135 mA h g−1 for graphite
and LiMn2O4, respectively). The design capacity of the punch cell
was 500 mAh. The separator was a Celgard 2400 membrane. The
electrolyte was composed of 1.0 M LiPF6 - ethylene carbonate
(EC) / ethyl methyl carbonate (EMC) with the volume ratio of
1:2 (Guangzhou Tinci Materials Technology Co. Ltd, China).
1, 3-propane sultone (PS) was purchased from Aladdin (purity:
>99%). The amount of electrolyte used in the pouch cell was
controlled to 2.8 g Ah−1.

The electrochemical performance test of the full cell was
performed using CT-4008-5V6A-S1 test system (NEWARE,
Shenzhen, China) between 2.75 and 4.20 V at room temperature
and 60◦C, respectively. Five cells were tested with each electrolyte
and the reported charge/discharge results are the average values
of top three cells. The thickness of cells was tested by a
micrometer caliper (Cal PRO IP67, SYLVAC, Swiss). The formula
for calculating the swell value of the LiMn2O4/graphite battery is
as follows:

Swellvalue(%) = (T− T0)/T0 × 100.

where T0 and T are the thickness of the LiMn2O4/graphite cell
before and after 180 cycles at 60◦C, respectively.

The internal resistance of cells was measured by resistance
meter (HK3561, Meifu, Shenzhen) when the cells cooled down to
the room temperature. The formula for calculating the internal
resistance rate of the LiMn2O4/graphite battery is as follows:

Internal resistance rate (%) = (R-R0)/R0 × 100.
where R0 and R are the internal resistance of the
LiMn2O4/graphite cell before and after 180 cycles at
60◦C, respectively.

Conductivity of the electrolyte solutions was measured using
a Model DDS-307 conductometer (Shanghai Precision Scientific
Instrument Co., Ltd., China). The linear sweep voltammetry
(LSV) was performed in Li/Pt cell on Solartron-1408 instrument
(England) at a scan rate of 0.2 mV s−1 in voltage range of
open circuit potential to 5.0 V (vs. Li+/Li). Cyclic voltammetry
of Li/graphite cell was performed on Solartron-1470 instrument
(England) in the potential range of 0.01–2.5 V (vs. Li+/Li)
at a scanning rate of 0.2 mV s−1. The diameter and the
thickness of Li disk were 15.6 and 0.2 mm, respectively. The
graphite and LiMn2O4 electrodes were disassembled from the
full cells and washed with dimethyl carbonate solvent 3 times
to remove residual electrolytes. The rinsed electrodes were kept
in an antechamber of the glovebox to remove the solvent
before conducting surface characterization. The morphology and
structure of the electrodes were obtained by a scanning electron
microscope (SEM, JEOL JSM-6380) and a transmission electron
microscope (TEM, JEOL JEM-2100HR). X-ray diffractometer
(XRD, Rigaku Ultima IV, Japan) was used to investigate the
crystal structure of the electrode. The chemical composition on
the surface of the electrodes was analyzed by X-ray photoelectron
spectroscopy (XPS, Kratos Axis Ultra DLD) with Al Ka line
(hυ = 1486.6 eV) as a radiation exciting source. X-ray analysis
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area for the surface was ˜500× 500 um. Pressure in the analytical
chamber during spectral acquisition was less than 5 × 10−9

Torr. Pass energy for survey and detail spectra (to calculate
composition) was 80 eV. The take-off angle (the angle between
the sample normal and the input axis of the energy analyzer) was
0◦, and the input lens was operated in hybrid mode (0◦ take-off
angle = around 100 Å sampling depth). The binding energy was
calibrated based on the C 1s level at 284.3 eV (C-C).

RESULTS AND DISCUSSION

Figure 1 depicts the cycling behavior of LiMn2O4/graphite
pouch full-cells without and with variable concentrations of 1,
3-propane sultone (PS) at room temperature at a current of
500 mA. As shown in Figure 1A, the reversible capacity of the
LiMn2O4/graphite cell without additive is only 430 mAh in the
first cycle, which indicates a large amount of irreversible lithium
consumption during charging owing to the decomposition of
electrolyte on the anode surface. When PS additive is applied in
the electrolyte, the discharge capacities increased. The first cycle
capacity of the cells with 3, 5, and 7 wt.% PS addition in the

electrolyte are 474, 497, and 467 mAh, respectively. Obviously,
when the concentration of PS is 5 wt.%, a most effective SEI film
was formed on the electrodes. The SEI film cannot only suppress
the electrolyte decomposition but also can benefit the lithium
insertion/de-insertion during the cycling. However, the discharge
capacity decreased when the PS concentration is higher than 5
wt.%. This phenomenon suggests that excess PS might lead to
the formation of a thicker SEI film on the electrode which would
hinder the transport of Li+ in the cells.

Figure 2 shows the cycling performances of
LiMn2O4/graphite cells using the electrolyte without and
with various concentrations of PS at 60◦C. Before the cycling at
high temperature, all the cells were cycling for three times under
room temperature at 1C (500 mA). In the cell with additive-free
electrolyte, the capacity fading becomes severe during the
cycling, as shown in Figure 2A. The reversible capacity of the
cell using the electrolyte without additive displays about 48%
capacity loss at the 180th cycle (Figure 2B). At high temperature
(60◦C), the decomposition of the electrolyte becomes severe
and the LiMn2O4 suffer destruction, result in the dissolution
of Mn ions from spinel into the electrolyte. The Mn ions in the
electrolyte can deposit on the graphite side and further catalyze

FIGURE 1 | Cyclic stability (A) and corresponding capacity retention (B) of LiMn2O4/graphite cells using the electrolyte without (Base), with 3, 5, and with 7 wt.%
PS. Charge-discharge rate was 1.0 C in the potential range of 2.75–4.20 V at 25◦C.

FIGURE 2 | Cycling stability (A) and corresponding capacity retention (B) of LiMn2O4/graphite cells using the electrolyte without (Base), with 3, 5, and with 7 wt.%
PS. Charge-discharge rate was 1.0 C in the potential range of 2.75–4.20 V at 60◦C.
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the electrolyte decomposition when the cell was charging,
leading to poor cycling performance (Li Y. et al., 2013). In case
of the LiMn2O4/graphite cells using PS, the cycling stabilities are
much higher than that of the additive-free cell. The discharge
capacity retention of the LiMn2O4/graphite in the electrolyte
using 3, 5, and 7 wt.% PS are 62, 71, and 64%, respectively. This
indicates that an excellent SEI film can be formed on graphite
with 5 wt.% PS addition. The electrochemical performance of the
cell becomes worse when the content of the additive is further
increased, which might be related to the over thickness of the
SEI film. These results indicate the contribution of PS to the
enhanced stability performance of the LiMn2O4/graphite cells.

The dimensional change and resistance growth of the
cells can further confirm that PS can effectively protect
the electrolyte from decomposition. Figure 3 and Table 1
present the thickness change and resistance growth of the
cells before and after 180 cycles at 60◦C. Under high
temperature, the electrolyte decompositions on both anode
and cathode become severe during the cycling, which result
in gas generation and structural change of the SEI film
and consequently increase the thickness and resistance along
the electrodes. The swell value of the cells using electrolyte
without, with 3, 5, and 7 wt.% PS are 35.8, 21.3, 6.5,
and 7.2%, while the internal resistance rate for those cells
are 78.5, 46.4, 31.8, and 38.2%, respectively. Apparently, the
electrolyte decomposition in the LiMn2O4/graphite cells with
PS as electrolyte additive can be significantly suppressed at
high temperature.

The conductivities of electrolyte without and with different
contents of PS were investigated at room temperature. Due to
the high melting point of PS (30–33◦C), the conductivity of
the electrolyte is slightly decreased with the increase content
of the additive, as shown in Table 2. The conductivity of
electrolyte containing 5% PS can reach 8.63 mS cm−1, indicating

an insignificant effect on electrolyte conductivity if PS is used
within certain limits.

The stability of the electrolyte was also evaluated with linear
sweep voltammetry (LSV). Figure 4 presents the LSV of Pt
in the electrolyte with and without PS. The base electrolyte is
decomposed at around 4.7 V (vs. Li+/Li). When adding 5% PS
into the electrolyte, oxidation current can be observed at around
4.1 V (vs. Li+/Li). This behavior implies that the preferential
oxidation of PS, suggests PS can form the modified surface film
on LiMn2O4 compared to the base electrolyte.

The reduction behavior of the PS on graphite anode was
also investigated by cyclic voltammograms (CV). Figure 5 shows
the CV of graphite electrodes in 1.0 M LiPF6-EC / EMC (1:2)
with and without 5% PS. In the electrolyte without additive,
a reduction peak located at around 0.5 V (vs. Li+/Li) can
be observed during the first cathodic potential sweep, which
is attributed to the reduction of EC in the electrolyte. This
reduction peak still appears in the second cycle, although it
is smaller than that of the first one, as shown Figure 5A. It
means the EC-derived SEI film does not completely suppress
the further reduction of electrolyte during the second cycle. In
the case of the electrolyte with PS, a small reduction peak at
around 0.7 V (vs. Li+/Li) can be observed in the first cycle,
and the peak at 0.5 V (vs. Li+/Li) disappears, as shown in
Figure 5B. In the second cycle, the reduction peak of PS
disappears. These results indicate the preferential reduction of
PS and the SEI formed by PS was effective enough to suppress
the further decompositions of solvents. It can be noted that
the de-intercalation peak of lithium ions swifts to 0.30 V (vs.
Li+/Li) in the second cycle, which is lower than that of the
base electrolyte (0.37 V vs. Li+/Li). This suggests the SEI
formed by PS on the first cycle promotes the reaction at the
interface and thus leads to higher capacity of the cell than that
of the base one.

FIGURE 3 | Swell value and internal resistance rate of LiMn2O4/graphite cells using the electrolyte without (Base) and with variable concentrations of PS after 180
cycles at 60◦C.
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TABLE 1 | Swell value and internal resistance rate of LiMn2O4/graphite cells using
different electrolytes before and after 180 cycles at 60◦C.

Solvent Additive Swell value (%) Internal resistance (%)

EC-EMC(1:2) Base 35.8 78.2

3 wt.% PS 21.3 45.9

5 wt.% PS 6.5 32.1

7 wt.% PS 7.2 38.4

TABLE 2 | Conductivities of 1.0 M LiPF6 – EC / EMC (1:2) at different content
of PS.

Electrolyte Conductivity (mS cm−1)

Base 9.17

3% PS 8.91

5% PS 8.63

7% PS 8.47

To investigate the effect of PS on the improved cyclability
of LiMn2O4/graphite cell at elevated temperature, XRD,
SEM, TEM, and XPS measurements were conducted to
analyze the morphologies and compositions of the cycled
electrode surface films.

The SEM images in Figure 6 show the surface morphology
of the pristine and the graphite electrodes after 180 cycles
at 60◦C using the electrolyte with and without 5 wt.% PS.
The flake-like structure graphite particles with clean surface
and sharp edges can be clearly observed in the pristine
electrode (Figures 6a,d). After cycling in the electrolyte without
additive, the electrode surface becomes rough and display a
fluffy and thick morphology as shown in Figures 6b,e. It
suggests that the electrolyte is decomposed and the graphite
structure is destroyed. In contrast, the PS electrode continued
to display a smooth surface and almost kept relatively similar
to original shape of fresh graphite particles after cycling
(Figure 6c). Moreover, the surface of the graphite particles

FIGURE 4 | LSV of Pt electrode in 1.0 M LiPF6-EC / EMC (1:2) with and
without 5% PS. The area of working electrode was 1.0 cm2.

is evenly covered with a dense surface film. This result
indicates that a stable and robust SEI could be formed by the
addition of PS, which inhibits further electrolyte decomposition
and protects the graphite effectively from exfoliation. The
development of sulfur-containing interfaces may allow for the
use of electrolytes that are otherwise structural unstable anode
materials, such as the Si-based and oxide anode (Wu et al., 2019;
Fang et al., 2020).

Figure 7 reveals the SEM and TEM images of the p.ristine
LiMn2O4 and the cathodes cycled with and without PS after
180 cycles. As shown in Figures 7a,d, the fresh LiMn2O4
particles present a typical octahedral spinel shape and the surface
are smooth and clean. After cycling in the electrolyte without
PS, thick and inhomogeneous deposits can be observed on
the spinel particle surface (Figures 7b,e), and cracks appear
as indicated by the arrow in Figure 7c. By contrast, the
deposit on the LiMn2O4 particle with PS additive is uniform

FIGURE 5 | Cyclic voltammograms of graphite electrode in 1.0 M LiPF6-EC / EMC (1:2) without (A) and with 5% PS (B). The diameter of graphite electrode was
13.0 mm.
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FIGURE 6 | SEM images of pristine graphite anode (a,d) and the anodes cycled in the electrolyte without (b,e), with 5 wt.% PS (c,f).

FIGURE 7 | SEM and TEM images for pristine LiMn2O4 cathode (a,d) and the cathode that have been cycled without (b,e), with 5 wt.% PS (c,f).

and thin. The TEM image (Figure 7f) displays that the
thickness of SEI is around 30 nm. Moreover, the morphology
of spinel particle maintains well after cycling. These results
indicate that Mn dissolution occurs because of the deterioration
of the LiMn2O4 structure when the cell operated in the
base electrolyte. In case of the application of PS as an
additive, a protective SEI film can be formed on the cathode
surface. This SEI can protect the LiMn2O4 particles from

destruction, inhibits the dissolution of manganese ions from
LiMn2O4 and greatly hinders the continuous decomposition of
the electrolyte.

The structural stability of the LiMn2O4 cycling in the
electrolyte with PS was characterized by XRD measurements.
As shown in Figure 8, all the major diffraction peaks in the
pristine electrode and the two cycled LiMn2O4 electrodes can
be indexed to the typical spinel structure for the LiMn2O4
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FIGURE 8 | XRD patterns (A) and the magnified XRD patterns in the 17–37
◦

2 Theta interval (B) of LiMn2O4 electrodes before and after cycling in the electrolyte
with and without 5 wt.% PS.

FIGURE 9 | XPS spectra of C 1s, O 1s, F 1s, P 2p, Mn 2p, and S 2p for graphite electrodes after 180 cycles at 60◦C in base electrolyte and PS-containing
electrolyte.

(JCPDS No. 35-0782). For the LiMn2O4 cathode cycled with
the additive-free electrolyte, the overall intensity of the LiMn2O4
diffraction peaks is weaker than the pristine electrode, confirming
that LiMn2O4 suffers structural deterioration. This can be
ascribed to the severe transition metal (Mn3+) dissolution from
the crystal structure that related to the nature of LiMn2O4
itself (Amatucci et al., 1997; Huang et al., 2018). As shown
in Figure 8B, the (111) and (311) XRD peaks of electrode
cycled without additive shift to higher angles, indicating the
crystal lattice shrinkage (Liu et al., 2009). By contrast, the
shifting extent for the LiMn2O4 electrode in the electrolyte
with PS is less than that of the electrode without additive,
which indicates the SEI formed from PS provides sufficient
protection for the crystal structure integrity. This result is in a
good agreement with that observed by SEM and TEM. Noted
that the shifting still happens while the cell using PS as the
electrolyte additive. This might be the reason for the degradation
in the cell performance at elevated temperature (as shown in
Figure 2).

The ex-situ XPS spectra have been utilized to investigate
the surface compositions of graphite and LiMn2O4 electrodes.
Figure 9 and Table 3 reveal the XPS spectra results of graphite

anodes after 180 cycles at 60◦C. In the C 1s and O 1s spectra,
C = O (289.4 eV, 531.2 eV) bond corresponds to lithium
carbonates and polycarbonates, while C-O (286.1 and 533.2 eV)
bond corresponds to ethers and carbonates (Verma et al., 2010;
Zhu et al., 2018). The peak of C = O bond in electrode with
PS is much stronger than that of the sample without additive,
which indicates that the SEI derived from PS contains more C = O
functional groups.

In F 1s spectra, the signals at 684.3 and 686.1 eV are
characteristic of lithium fluoride and LixPOyFz (DedryveÌre et al.,
2005), respectively. As for P 2p spectra, the binding energy values
around 133.3 eV and 136.0 eV are belong to LixPOyFz and LixPFy
(Zheng et al., 2018; Li et al., 2020). These compounds are ascribed
to the decomposition products of lithium hexafluorophosphate

TABLE 3 | Element concentrations of the cycled anodes using base electrolyte
and PS-containing electrolyte.

C 1s (%) O 1s (%) F 1s (%) P 2p (%) Mn 2p (%) S 2p (%)

Base 46.1 37.7 12.0 2.9 1.3 –

With PS 40.5 53.6 4.4 0.5 – 1.0
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FIGURE 10 | XPS spectra of C 1s, O 1s, F 1s, P 2p, Mn 2p, and S 2p for the LiMn2O4 electrodes after 180 cycles at 60◦C in base electrolyte and PS-containing
electrolyte.

in the electrolyte. The concentrations of fluorine and phosphorus
discernibly decreased in PS-containing electrolyte, as shown in
Table 3. Moreover, the anode cycled with PS shows much weaker
intensities of lithium fluoride, LixPOyFz and LixPFy than that
of with base electrolyte. It suggests the SEI formed by PS can
suppress the decomposition of the electrolyte. It can be noted that
the Mn 2p spectrum appears in the graphite electrode, which split
into 2p3/2 and 2p1/2. The binding energy at 641.1 and 643.1 eV
correspond to Mn3+ in Mn2O3 and Mn4+ in MnO2, while the
binding energy at 653.3 eV is attributed to Mn 2p1/2 (Liu et al.,
2016). It indicates that the manganese ions pass through the
membrane and deposited on the anode side. On the contrary,
the element manganese is hardly detected on the PS graphite
electrode, which means the SEI derived from PS can suppress
the deposition on the graphite and inhibit the decomposition
of the electrolyte. In S 2p spectra, a broad signal around 168–
169 eV can be detected in the PS-containing electrolyte, which
correspond to Li2SO3 and ROSO2Li (Ota et al., 2003; Li M. et al.,
2013), respectively, and this result also clearly indicates that the
decomposition products of PS are introduced into SEI.

Figure 10 presents XPS profile of the LiMn2O4 electrodes
in the electrolytes with and without PS after 180 cycles at
60◦C, and the related element concentrations are also shown
in Table 4. The C 1s spectra for LiMn2O4 cycled in both
of the electrolytes mainly contain C from conductive carbon
(284.3 eV) and PVDF (285.5 and 290.4 eV) (Verma et al., 2010;
Cao et al., 2013), while C-O (285.5 eV), C = O (288.9 eV)
and OCO2 (290.1 eV), respectively from ROCO2Li, ROLi
and Li2CO3 species that decomposed from the electrolyte
(Aurbach et al., 1996). The O1s contains three main peaks
for both of the cathodes: MnxOy or LiMn2O4 (529.5 eV),
Li2CO3 (531.5 eV), and lithium alkyl carbonates (532.6 eV)

TABLE 4 | Element concentrations of the cycled cathodes using base electrolyte
and PS-containing electrolyte.

C 1s (%) O 1s (%) F 1s (%) P 2p (%) Mn 2p (%) S 2p (%)

Base 47.1 21.2 26.5 1.8 3.4 –

With PS 45.3 23.2 24.8 0.8 4.4 1.5

(Zuo et al., 2012; Rong et al., 2014). The binding energy at 532 eV
in the electrolyte with PS can be related to the decomposition
product of PS. The detected peaks at 642.1/643.4 eV and
the 653.9 eV correspond to Mn 2p3/2 and Mn 2p1/2. Noted
that the Mn signals in Mn 2p and Mn–O in O 1s spectra
of the PS-containing electrolyte are stronger than that of the
electrolyte without additive, suggesting the thin SEI formed
by PS on LiMn2O4 electrode in which more active material
can be detected.

The F 1s spectra of Figure 10 reveal three peaks: PVDF
(687.5 eV), LixPOyFz (686.4 eV), and lithium fluoride (684.6 eV)
(DedryveÌre et al., 2005). The signals at 133.6 and 135.9 eV in P 2p
spectra can be characteristic of LixPOyFz and LixPFy (Zheng et al.,
2018), which are considered to be the decomposition products
of the lithium hexafluorophosphate. The peak intensities of
LixPOyFz and LixPFz decreased when the LiMn2O4 cathode
cycled using the electrolyte with PS. It indicates that the SEI
derived from PS can reduce the decomposition of lithium
hexafluorophosphate on the LiMn2O4 surface. For the cathode
cycled with PS-containing electrolyte, the peak at around 168–
169 eV shows the existence of sulfur-containing species (Li2SO3
and ROSO2Li) (Ota et al., 2003). This result clearly shows
the existence of PS decomposition products in the SEI, and
this SEI film can protect the structure of LiMn2O4 and the
dissolution of manganese from spinel particles and inhibit the
decomposition of electrolyte.

CONCLUSION

The cycling stability of LiMn2O4/graphite under elevated
temperature can be improved by applying 1, 3-propane
sultone (PS) as an electrolyte additive. The enhanced cycling
performances are mainly ascribed to the PS-originated solid
electrolyte interface (SEI) film on both anode and cathode
surface. These SEIs are essential to inhibit the electrolyte
decomposition on graphite and LiMn2O4 electrodes, and protect
the spinel structure of LiMn2O4 from destruction. Moreover, the
SEIs can also suppress the dissolution of manganese ions from the
cathode and the deposition on the anode.
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