AUTHOR=Cheng Jun , Wang Hongchuan , Li Jinshan , Gai Jinyang , Ru Jinming , Du Zhaoxin , Fan Jiangkun , Niu Jinlong , Song Hongjie , Yu Zhentao TITLE=The Effect of Cold Swaging Deformation on the Microstructures and Mechanical Properties of a Novel Metastable β Type Ti–10Mo–6Zr–4Sn–3Nb Alloy for Biomedical Devices JOURNAL=Frontiers in Materials VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2020.00228 DOI=10.3389/fmats.2020.00228 ISSN=2296-8016 ABSTRACT=
This work investigated the microstructures, texture evolution, and mechanical properties of newly designed metastable β type Ti–10Mo–6Zr–4Sn–3Nb (wt.%) alloys for biomedical devices, which were subjected to cold swaging deformation with reductions of 15–75%. With the increment in the reduction of swaging deformation, the grains are broken and gradually refined, and stress-induced martensite transformation takes place, resulting in the formation of the α” phase. Moreover, the {1 1 2} <1 1 1> and {1 1 0} <1 1 2> fibers turn into γ-fiber {1 1 1} <1 1 0> and α-fiber {1 1 2} <1 1 0> with the increment in the swaging reduction. The α-fiber texture in particular, first weakens and then strengthens during cold deformation. Under the combined effect of sub-structures, grain refinement, and texture evolution, the strength of the alloy is gradually enhanced with the increment in the cold deformation reduction. The solution-treated alloy bar shows superior cold workability in the swaging process. The plasticity remains at a moderate level because the initial grains have not been completely broken at the beginning of cold swaging deformation. The elastic modulus of the alloy shows a downward trend with an increasing reduction, which is related to the dislocation multiplication, grain refinement, and grain orientation evolution during cold swaging deformation.