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In this work, we combined photoreceptor protein with graphene based field
effect transistors to achieve a high responsivity photodetector. Three different
aromatic hydrocarbons were used to functionalize graphene with carboxyl groups
via π-π stacking interactions, and 1-pyrenebutyric acid exhibited the best result
for photoreceptor protein immobilization. Besides, the modification procedure of
photoreceptor protein was also optimized by using a novel protein stack way on the
device. Unlike conventional self-assembly method, photoreceptor proteins were cross-
linked before immobilized on graphene thin film and yielded a higher modification
density. Finally, the photocurrent response was significantly enhanced from −1% to
−9.62%. These results bring key opportunity for graphene field effect transistor based
photodetection, and the surface functionalization method are expected to help achieve
high sensing performance on protein-based biosensors.
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INTRODUCTION

As a typical thin-film carbon material, graphene has unique structure and excellent properties
(Geim and Novoselov, 2007; Castro Neto et al., 2009; Afsahi et al., 2018). The ultra-high carrier
mobility for both electrons and holes, broad light absorption from 300 nm to 2.5 µm, excellent
mechanical properties and strength make it an ideal material in photonics over other materials (Xia
et al., 2009; Bonaccorso et al., 2010; Mak et al., 2012). But the low light absorption results in low
responsivity (Nair et al., 2008; Park et al., 2009). Enhancing responsivity is central to graphene-
based photodetectors. Great efforts have been done in opening the band gap of graphene or
designing the device structure to improve the photoresponse, and significant achievements have
been made (Wang et al., 2008; Mueller et al., 2010; Avouris and Freitag, 2014; Liu et al., 2014). But
these complex structures increase the complexity and cost of the process.

Photoreceptor proteins have been reported to provide high sensitivity to low-intensity light,
low cost of fabrication and good wavelength selectivity (Jolley et al., 2005; Ciesielski et al., 2010;
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Nabiev et al., 2010; Conrad et al., 2014). Recent years witnessed a
great number of advances in the research field of photoreceptors,
which opens the door of utilizing photoreceptors as a novel
photosensitive material in the fabrication of biophotosensors
(Gibson and Woodward, 1992; Kim et al., 2014). Photoreceptor
proteins based near-infrared (NIR) photodetector (Gong et al.,
2017), photovoltaic device (Das et al., 2004) and wavelength
selective photodetector (Lu et al., 2012) have been manufactured.
Despite the progress in biophotosensors, the bioconjugation
strategies between photoreceptor proteins and transducers has
always been the key to their performance, such as protein
conformation, activity and stability (Bhakta et al., 2015; Liebana
and Drago, 2016).

With excellent biocompatibility, graphene is promise for
loading photoreceptor proteins and can serve as a redox center
of the active substances (De Leo et al., 2015; Kwon et al., 2015;
Suvarnaphaet and Pechprasarn, 2017; Dedelaite et al., 2018).
Due to the two-dimensional honeycomb structure of graphene,
photoreceptor proteins can be modified to graphene by π-π
stacking interactions (Liu et al., 2011). π-π stacking functional
groups can give graphene new properties, while retaining the
mechanical, chemical, and electronic properties (Georgakilas
et al., 2012; Kuila et al., 2012). These original properties of
graphene are critical to the signal conversion of biosensors.
However, the traditional monolayer self-assembly method
leads to low modification efficiency of photoreceptor proteins.
Therefore, optimizing the spatial assembly of photoreceptor
proteins is a critical factor for the effective application of
biophotosensors.

In this work, we constructed a highly responsive
biophotoconductor based on graphene field effect transistor
(GFET). The graphene channel was modified with blue light
using flavin (BLUF) from photoreceptor protein AppA (Jung
et al., 2005; Masuda et al., 2005; Mathes et al., 2012; Masuda, 2013;
Fudim et al., 2015). First of all, we used three carboxyl molecules,
namely 1-pyenecarboxylic acid (PCA), 1-naphthylacetic acid
(NAA) and 1-pyrenebutyric acid (PBA) to functionalize graphene
through π-π interaction and selected the most suitable carboxyl
molecule by comparing the performance of the obtained devices.
Then, unlike the traditional monolayer self-assembly method,
we adopted a cross-linking modification method to improve
the density of modified graphene. The protein molecules were
first joined and then modified onto the graphene surface. This
work illustrates a practical functionalization scheme and shows
how to improve the performance of the biophotoconductor
by judicious selection of the functional molecules and protein
assembly methods.

EXPERIMENTAL

Materials and Reagents
The pristine graphene films growth by chemical vapor
deposition (CVD) method on copper foils were purchased
from 2D Carbon (China). The 1-pyrenecarboxylic acid (PCA),
1-pyrenebutyric acid (PBA), N-(3-dimethylaminopropyl)-N-
ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide

(NHS), 4-morpholineethanesulfonic acid (MES), phosphate-
buffered saline (PBS) and ethanolamine were purchased from
Sigma-Aldrich (United States). 1-naphthylacetic acid (NAA)
was purchased from TCI (Japan). Acetonitrile used to dissolve
PCA, NAA, and PBA was purchased from Sinopharm Chemical
Reagent Co., Ltd., (China). The expression and purification of
BLUF have been reported (Tong et al., 2020).

Device Fabrication
The graphene field effect transistors were fabricated on a 4-inch
silicon substrate. Firstly, a dense layer of silicon dioxide (300 nm)
was fabricated on the silicon substrate as an insulating layer.
Then the 20 nm titanium/100 nm gold source-drain electrodes
were deposited onto the SiO2 substrate by photolithography,
magnetron sputtering and lift-off process. Graphene film was
transferred onto SiO2 surface by using PMMA [poly(methyl
methacrylate)] as a sacrificial layer, and then patterned by O2
plasma. Finally, the wafer was subjected to thermal annealing in
a 5:4 mixture of argon and hydrogen gas at 300◦C for 4 h. The
graphene channel could be electrically gated using the back gate.

Surface Modification
The devices were first immersed in 1 mM aromatic hydrocarbon
(PCA, NAA, or PBA) solutions at room temperature for 2 h to
create a layer of carboxylic acid groups, and then rinsed with
alcohol and deionized water. The carboxylic acid groups were
then activated in a 20 µl of 1:1 mixture of 0.4 M EDC and
0.1 M NHS (0.1 M MES, pH 5.2) solution for 1 h at room
temperature. After that, the device was rinsed in 0.1 M MES
(pH 5.2). Subsequently, the BLUF proteins can be covalently
attached onto the graphene surface through the reactive NHS-
ester groups. As for single layer BLUF, the device was treated with
10 µl 1 mg/ml BLUF solution overnight at 4◦C. As for cross-
linking BLUF, the device was exposed to a 30 µl of 1:1:1 mixture
of 0.4 M EDC, 0.1 M NHS and 1 mg/ml BLUF overnight at 4◦C.
After immobilizing BLUF and rinsing with 1 × PBS (pH 7.4),
1 mM ethanolamine in 1 × PBS solution (pH 7.4) was added to
the device for 20 min to deactivate and block the excess reactive
groups remained on the graphene surface. Finally, the BLUF
modified device was rinsed with deionized water and used for
subsequent photodetection.

Sensing Apparatus and Parameters
Optical imaging was used to observe whether the transferred
graphene was damaged, multilayered or wrinkled. Raman
spectroscopy (DXR, Thermo Fisher, United States) was taken
to explore the quality of graphene. Atomic force microscopy
(AFM) was taken to determine the surface topology and thickness
of BLUF-modified graphene films (NT-MDT, Russia). FT-IR
(Fourier transform infrared) spectroscopy (A540/3, Bruker) was
taken to verify the chemical composition of the surface of
graphene before and after modification. The hydrophobicity of
the substrate during modification process was measured by a
contact angle meter. Electrical measurements were conducted
using a Keithley 4200 semiconductor (Keithley Instruments Inc.,
Cleveland, OH, United States). The light sensing measurements
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FIGURE 1 | Fabrication and characterization of the graphene field effect transistor. (A) The schematic representation of the pristine graphene substrate. (B) The
Raman spectrum of pristine graphene.

FIGURE 2 | (A) The surface modification process by different carboxyl molecules: PCA, NAA, PBA. (B) Photocurrent responses of the devices under 450 nm
illumination. Bias voltage is 10 mV.

were conducted using a UV LED spotlight source (BJ Jing Zhen
Da Tec., China) with a wavelength of 450 nm.

RESULTS AND DISCUSSION

Fabrication and Characterization of
GFET
Figure 1A shows the schematic representation of the GFET.
The single layer graphene manufactured by chemical vapor
deposition (CVD) process was transferred to the wafer by using
PMMA as a supporting layer. Then the PMMA layer was
removed by acetone. The residues associated with transfer may
affect the stability of subsequent biomolecule connections, which
were removed by annealing. Raman spectroscopy is an effect
method to characterize the structure of graphene including the
number of layers, defects and disorder (Ferrari and Basko, 2013).
Raman analysis was performed with a 514 nm laser to measure
the distinctive peaks of pristine graphene (Figure 1B). The D
band is nearly free, and the intensity of 2D (at 2690 cm−1) peak is

about twice of the G (at 1590 cm−1) peak. Therefore, a low defect
monolayer graphene was successfully covered on the substrate.

Selection of Carboxyl Molecules
First, the modification effects of different carboxyl molecules
were studied. As shown in Figure 2A, we used these three
carboxyl molecules to assemble a single layer of BLUF-K5 (a
kind of BLUF with five amino groups) onto graphene. The
surface of graphene was first carboxylated through non-covalent
π-π stacking interactions. Then the terminal carboxylic acid
groups were reactivated by a mixed solution of EDC and NHS.
The reactive NHS-ester groups can bind molecules with amino
groups. Thus, BLUF-K5 can be attached on the graphene surface
through chemically stable peptide bonding.

In order to measure the optoelectronic performance of the
devices, we placed the devices under a 450 nm light at 350 W/m2

and collected the photocurrent signals at room temperature.
Photogenerated carriers were generated after the absorption
of light by BLUF (Masuda, 2013), which affected the carrier
concentration of graphene. The functionalization of BLUF makes
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FIGURE 3 | The surface modification process and contact angle images of the devices. (A) The pristine graphene with a contact angle of 95.3◦. (B) Surface
modification with PBA. The PBA modified graphene with a contact angle of 83.2◦. (C) EDC/NHS conjugation. (D) Self-assembled monolayer of BLUF-K1. The
contact angle is 78.5◦. (E) Self-assembled monolayer of BLUF- K5. The contact angle is 68.8◦. (F) Cross-linking of BLUF-K1. The contact angle is 74.6◦.
(G) Cross-linking of BLUF-K5. The contact angle is 58.1◦.

FIGURE 4 | The AFM images of graphene hybrid with different BLUF. (a) Self-assembled monolayer of BLUF- K1. The thickness is approximately 4.9 nm when
measured along the horizontal white line in AFM image. (b) Self-assembled monolayer of BLUF- K5. The thickness is approximately 5.6 nm when measured along
the horizontal white line in AFM image. (c) Cross-linking of BLUF-K1. The thickness is approximately 5.2 nm when measured along the horizontal white line in AFM
image. (d) Cross-linking of BLUF-K5. The thickness is approximately 12.9 nm when measured along the horizontal white line in AFM image.

graphene n-doped. The conductivity was decreased due to the
photoexcited proteins injecting holes into n-doped graphene
(Tong et al., 2020). Thus, 1I/I0 was used as an indicator
of the change in photoconductivity. As shown in Figure 2B,
the performance of the device functionalized through PBA
was significantly better than PCA and NAA. The photocurrent
response of the device functionalized through PBA was about
−5%, which was twice that of the other two and had strong

stability. PBA yielded an efficient method for the connection
between graphene and photoreceptor protein.

Selection of Protein Assembly Methods
Consequently, PBA was selected as the graphene carboxyl
functionalized molecule to study the best method for protein
assembly. We used two kinds of BLUF with different numbers
of amino groups, BLUF-K1 with one amino group and BLUF-K5
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FIGURE 5 | FT-IR reflectance spectra of pristine graphene (black) and after
modification with BLUF through PBA.

with five amino groups. BLUF proteins were assembled in four
different ways. The schematic illustration is shown in Figure 3.
The contact angles and thicknesses were measured to analyze the
protein density of these four assembly methods.

Before modification, the contact angle of graphene was about
95.3◦ (Figure 3A). Due to the hydrophilic nature of the carboxylic
acid groups, the contact angle was significantly reduced to 83.2◦

after the modification of PBA (Figure 3B). As for the self-
assembly method, BLUF proteins were directly linked to NHS-
ester groups to form a self-assembled monolayer (SAM). As
shown in Figures 3D,E, the reactive NHS-esters bound to the
BLUF proteins and a layer of protein molecules was modified
on the graphene surface. The thickness of SAM BLUF-K1 was
about 4.9 nm (Figure 4a), which was slightly lower than 5.6 nm
of SAM BLUF-K5 (Figure 4b). However, the number of protein
molecules linked by this monolayer self-assembly method is
relatively small.

Since this kind of photodetection does not require one-to-one
recognition between BLUF proteins and light, we mixed EDC,
NHS and BLUF proteins instead of directly adding BLUF proteins

to promote cross-linking between BLUF proteins. On the other
hand, BLUF can also react with the NHS-ester groups. Since
BLUF-K1 has only one amino group, the cross-linked BLUF-K1
has no excess amino groups attached to graphene. Therefore,
BLUF-K1 modified to graphene was still a single molecule
without cross-linking (Figure 3F), leaving a monolayer of 5.2 nm
thickness (Figure 4c). For BLUF-K1, the cross-linking and SAM
modification methods produce the same devices, resulting in
similar contact angles and thicknesses.

To enhance cross-linking, we used BLUF-K5 with five amino
groups. Through cross-linking, BLUF-K5 could be connected
with each other irregularly, and the unreacted amino groups
could be linked with graphene. The contact angle of the SAM
BLUF-K5 substrate was approximately 68.8◦ and that of the
cross-linked BLUF-K5 increased to 58.1◦. The thickness of cross-
linked BLUF-K5 was 12.9 nm (Figure 4d), which was about
twice that of SAM BLUF-K5. These results indicate that the
density of photosensitive units was greatly increased through the
cross-linking of BLUF-K5.

The FT-IR spectra of graphene before and after modification
with BLUF were measured to confirm the groups for conjugation
(Figure 5). As for pristine graphene, the spectra had a
wide absorption peak from 1475 cm−1 to 1645 cm−1, which
represented the C skeleton vibration. The main vibration peaks
of proteins are amide I and amide II bands. After modification
with BLUF, the amide II band at 1685 cm−1 and amide I band at
1592 cm−1 which were associated with the N-H bend and C = O
stretch modes, respectively, were observed.

We then investigated the photoelectric response of these four
protein assembly methods. The photocurrent response of the
device after each modification process was measured as control
experiments (Figure 6). Before modification, the photocurrent
change of the pristine graphene device was almost negligible.
This is consistent with the too low light absorption rate of
graphene. After treated with PBA and EDC/NHS, the graphene
surface was no longer clean and some functional groups were
attached. The device had a slight photocurrent change within
−2% under illumination due to the little absorption from these
functional groups.

The real-time photocurrent responses of the proteins modified
on graphene by these four ways have different properties.

FIGURE 6 | The real-time photocurrent response for the devices with different functionalization. (A) Before the modification of protein. (B) The devices functionalized
with self-assembled monolayer of BLUF-K1 (black) and BLUF-K5 (red), respectively. (C) The devices functionalized with cross-linked BLUF-K1 (black) and BLUF-K5

(red), respectively. Responses were shown to 450 nm light under 350 W/m2. Bias voltage is 10 mV.
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Compared with pristine graphene, the attachment of BLUF
greatly reduced the photocurrent. The photocurrent of the device
modified with BLUF-K1 through SAM was reduced by about
3.4% (Figure 6B). And for the device modified with five amino
groups BLUF-K5 through SAM, the photocurrent was decreased
to approximately −5.1%. Therefore, BLUF with five amino
groups can be more easily modified onto the graphene surface.
But the effect of this enhancement is not very obvious. Because
the number of proteins modified on graphene through the SAM
method is only one layer, this amount is limited by the area.
Although the BLUF-K5 has five amino groups, it does not cause a
qualitative change in the amount of modification directly. Thus,
longitudinally enhanced cross-linking is one way to increase the
protein density.

Then we measured the photocurrent response of the devices
manufactured by modifying the proteins through cross-linking
(Figure 6C). When exposed to light, the device modified with
BLUF-K1 was reduced by about 3.7%. However, the device
modified with BLUF-K5 was significantly reduced by about
9.62%. Compared to the self-assembly method, the device
obtained by the modification of a single amino group BLUF did
not improve the photodetection performance by cross-linking.
Proteins with multiple amino groups can significantly improve
the performance of photodetection. BLUF-K5 can be arbitrarily
linked to the remaining BLUF-K5. But even by the method of
cross-linking, BLUF with a single amino group can only be
attached to graphene in a single layer. This kind of cross-linking
modification method can greatly enhance the responsivity of the
detector. But it requires that the protein molecules are linked
together. Therefore, there must be enough amino groups on the
protein molecules to ensure the cross-linking between each other.

CONCLUSION

In conclusion, we have successfully developed an effective
method to achieve highly responsive light detection based on

graphene through a biomimetic way. Graphene functionalized
by aromatic compounds through non-covalent π-π stacking
interaction did not disrupt its original structure and electrical
property. 1-pyrenebutyric acid is a relatively stable graphene
carboxylated molecule with higher response. Graphene has
good biocompatibility with BLUF. BLUF modified to the device
exhibited its biological function of highly light absorption.
Moreover, the density of the modified protein was increased by
cross-linking modification method, which greatly enhanced the
photocurrent response of graphene. From a broad perspective,
we created a significant improvement of the photodetection
performance of pristine graphene by optimizing the carboxylated
molecules and protein stack ways.
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