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In this work, flake-flower NiO was successfully prepared via a facile hydrothermal
method. The microstructure of the synthesized sample was characterized by X-ray
powder diffraction (XRD), scanning electron microscopy (SEM), and transmission
electron microscopy (TEM). We find that the hierarchical flake-flower structure was
assembled by numerous nanosheets with different size and shape. The fabricated
sensor based on the obtained microstructure exhibited excellent gas sensing
performance including high response, outstanding selectivity and stability toward 5 ppm
CO at the optimal working temperature of 250◦C. A plausible gas sensing mechanism
was given out to explain how the nanosheet assembly morphology affects the gas
sensing performance of the flake-flower structure.
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INTRODUCTION

Dissolved Gas in Oil Analysis (DGA) is one of the most convenient and effective methods to judge
the early latent faults of oil immersed high-voltage electrical equipment at present (Gui et al.,
2019; Yang et al., 2019a; Zhou et al., 2019; Wang et al., 2020; Wei et al., 2020a). As one of the
most important fault characteristic gases of oil immersed transformer, carbon monoxide (CO), has
received considerable attention for its application to provide vital help for judging the operation
state of transformer (Zhou et al., 2015, 2018a,b; Yang et al., 2019b). In this respect, to detect and
analyze the dissolved gases, many strategies have been proposed, for instance, gas chromatography,
photoacoustic spectrometry and gas sensor (Qu et al., 2016; Liu et al., 2017; Wei et al., 2019b).
Among these methods, the design of gas sensor has attracted numerous interest, owing to its low
cost, facile route and simple structure (Wang et al., 2019a; Zargouni et al., 2019). However, to
ensure the normal operation of transformer and power system, the fabrication of high-performance
gas sensors is still a still a challenging work (Wei et al., 2019c; Zhou et al., 2018c; Zhang et al., 2019).

In order to fabricate high-performance gas sensors among various metal oxide semiconductors,
which includes ZnO (Zhou et al., 2013; Zhu et al., 2017, 2018a), SnO2 (Zhang et al., 2014,
2017; Ahmed et al., 2019), WO3 (Park et al., 2014; Du et al., 2018; Li et al., 2018), TiO2
(Zeng et al., 2012; Zhang Y. X. et al., 2018), and NiO (Zhang H. et al., 2018; Zhou et al.,
2018d; Devarayapalli et al., 2019), Nickel oxide (NiO) has gained increasing attention for its
wide band gap energy (3.6–4.0 eV) and stable physical and chemical properties (Sun et al.,
2016; Zhang Y. et al., 2016; Wang et al., 2017; Nagajyothi et al., 2019). Besides, a lot of
studies have confirmed that NiO is a promising nanomaterial to detect the fault characteristic
gas in transformer oil (Dang et al., 2015; Li et al., 2015; Beroual and Haddad, 2017).
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Considering that the morphology of the nanomaterials plays
an important role in the gas sensing performance of NiO
sensors, there have been considerable efforts in the synthesis
of different NiO nanostructures for instance nanoparticle (0-
D) (Cao et al., 2016; Kruefu et al., 2016), nanorod (1-
D) (Choi et al., 2016; Feng et al., 2017), nanosheet (2-
D) (Yu et al., 2015; Sta et al., 2016) and nanoflower (3-
D) (Wang et al., 2016; Miao et al., 2017). Compared with
low dimensional nanostructures, hierarchical nanostructures
have made great progress because of their complicated and
beneficial structures (Cao et al., 2015; Wang et al., 2015).
For example, Wei et al. (2019a) designed and synthesized 2-
D NiO porous nanosheet via a facile hydrothermal method,
the gas sensor based on which had excellent gas sensing
performance toward 30 ppm H2 at the optimal working
temperature of 225◦C benefited from the special porous
nanostructure. Wang et al. (2019b) synthesized hierarchical
structure assembled with NiO nanosheets and the sensor
based on the nanostructure exhibited excellent gas sensing
performance due to its high special surface area. Reasonable
design of hierarchical structure of NiO is a challenging but
meaningful work to enhance the performance of NiO based
sensor to detect the fault characteristic gas in transformer
oil (Zhang D. Z. et al., 2016; Balamurugan et al., 2017;
Cui et al., 2019).

In this work, hierarchical flake-flower NiO has been prepared
with a facile hydrothermal method. The obtained sample was
characterized by XRD, SEM, TEM, HRTEM, and SAED and
fabricated into gas sensing device. Gas sensing test toward
CO was carried out to demonstrate the high-performance
of the special hierarchical NiO structure. The gas sensing
results indicated that the fabricated sensor showed excellent
performances including high response, prominent stability and
outstanding selectivity toward 5 ppm CO at the optimal working
temperature of 250◦C. A plausible gas sensing mechanism
was proposed, demonstrating that the excellent performance
might be caused by the hierarchical 3-D structure with high
special surface area.

EXPERIMENTAL

Synthesis of Flake-Flower NiO
All reagents in this work used to prepare the hierarchical flake-
flower NiO were of analytical grade and used without any
further purification. In a typical hydrothermal procedure, 0.475 g
NiCl2·6H2O was added into 20 ml mixed solution composed of
10 ml of pure water and 10 ml of ethanol. Then, 0.2 g PVP and
10 ml of EG were added into the mixture under stirring. The
pH value of the solution was adjusted to about 10 by dropping
NH3·H2O. After that, the mixture was magnetically stirred for
5 min to form a homogeneous solution and then poured into a
50 mL Teflon-lined stainless autoclave which was kept at 140◦C
for 10 h. After the autoclave cooled to room temperature, the
green sample was harvested by centrifugation and washing with
pure water and ethanol for several times. After drying at 60◦C
for 10 h, the expected product was obtained by calcination at
600◦C for 1 h.

Materials Characterization
The structure and phase purity of the product were characterized
by X-ray diffraction (XRD) with a Rigaku D/Max-2550
diffractometry (Cu-Kα radiation, λ = 0.15418 nm, 2θ = 30–
85◦). The morphology of the flake-flower NiO was observed
by a Nova 400 scanning electronic microscope (SEM). The
high-magnification structure of the flake-flower morphology was
investigated by a JEM-2100F field-emission transmission electron
microscope including transmission electron microscope (TEM),
high resolution transmission electron microscope (HRTEM) and
selected area electron diffraction (SAED).

Gas Sensor Measurements
In order to fabricate high-performance CO sensing sensor based
on the flake-flower NiO, the device was designed with a side-
heated structure as shown in Figure 1A. Concretely, the prepared
sample was mixed with pure water and ethanol in a ratio of 8:1:1
to obtain a homogeneous solution which was used to form a

FIGURE 1 | (A) Schematic structure of the gas sensor. (B) The measuring electric circuit of the sensor.
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sensing film. Then, the formed film was coated onto a ceramic
tube which has been designed with a pair of Au electrodes and
two pairs of Pt wires. Next, a Ni-Cr wire was inserted into the tube
to control the working temperature of the sensor (Zhang et al.,
2015; Zhu et al., 2018b). Figure 1B gives out the theoretic diagram
of the test circuit, from which one can find that Vout represents
the output voltage to calculate the resistance and Vh represents

FIGURE 2 | XRD patterns of the prepared sample.

FIGURE 3 | SEM images of the flake-flower microstructure at low (a) and
corresponding high (b) magnification.

FIGURE 5 | Typical nitrogen adsorption-desorption isotherms and BJH pore
size distribution analysis.

FIGURE 6 | Gas responses of flake-flower NiO based gas sensor toward
5 ppm CO at different temperature from 100 to 400◦C.

FIGURE 4 | (a) TEM image of NiO; (b) HRTEM image of NiO; (c) SAED pattern of NiO.
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the heating voltage to change the working temperature (Wei et al.,
2019b). To ensure the long-term stability and repeatability of
the fabricated CO sensor, the device was aged at 300◦C for 1
week in air (Lu et al., 2018). The gas sensing performance of the
fabricated sensor was measured with a static analysis system using
a Chemical Gas Sensor-8 intelligent system (Beijing Elite Tech
Co., Ltd.). Besides, the volume of the test chamber is 20 L and the
flux of the test gases was set to 20 ml/min. Gas response in this
work were defined as S = Rg/Ra, in which Rg and Ra represent the
resistances in target gases and in air (Wei et al., 2020b).

RESULTS AND DISCUSSION

Morphology and Structure
The structure and phase purity of the synthesized flake-flower
sample were characterized by XRD as shown in Figure 2. From

FIGURE 7 | Gas responses of flake-flower NiO based gas sensor toward
different concentration of CO from 1 to 100 ppm at the optimal working
temperature of 250◦C.

FIGURE 8 | The dynamic response-recovery characteristic of the flake-flower
NiO based gas sensor toward different concentration of CO (1, 5, 10, 30 ppm)
at 250◦C.

the XRD pattern, it is obvious that there are five clear diffraction
peaks at 37.1◦, 43.3◦, 63.1◦, 75.1◦, and 79.5◦, which can be will
indexed with (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) lattice
planes of cubic NiO (JCPDS Card no. 47-1049). Besides, no other
diffraction peaks were observed in the spectrum, indicating that
the prepared product must be pristine NiO with high-purity.

Figure 3 displays the SEM micrographs of the flake-flower
NiO with different magnification. As shown in Figure 3a, it
can be seen that the synthesized sample have a flower-like
microstructure a relatively uniform distribution and a diameter
of about 5 µm. From the higher magnification image of the
flower-like microstructure (Figure 3b), it is intuitive that the
flake-flower structure was assembled by a lot of thin nanosheets.
The numerous nanosheets with different shape and size make the
NiO structure exhibit a flake-flower shape and hierarchy which
will possess large surface sites and abundant reaction rooms
for gas molecules.

To observe a more detailed structural information of the flake-
flower microstructure, the sample was analyzed by transmission
electron microscope with the characterization of TEM, HRTEM
and SAED (Figure 4). As presented in Figure 4a, the structure
was confirmed to be assembled by numerous irregular and
random nanosheets which have been mentioned in Figure 3b.
A clear HRTEM image of NiO is displayed in Figure 4b,
demonstrating the existence of crystalline NiO. From the clear
lattice stripes, the lattice spacing can be calculated to be 0.208 nm
which corresponded to the (200) plane of the cubic NiO.
Moreover, Figure 4c depicts the SAED image of synthesized
NiO sample, from which one can observe that there are a
group of diffraction rings, namely (1 1 1), (2 0 0), and (2 2 0)
lattice planes of cubic NiO. To confirm the potential impact of
the specific surface area on gas sensing properties, the typical
nitrogen adsorption-desorption isotherm was calculated. The
BET analysis (Figure 5) indicated that the specific surface area
of the synthesized flake-flower NiO is 176.5 m2g−1 and the
average pore size is 27.6 nm, suggesting that the flake-flower
microstructure provided a large surface area.

Gas Sensing Performance
As we all know, the working temperature of gas sensor has a
great influence on the reaction in the process of gas sensing. To
obtain the optimal working temperature of the fabricated CO
sensor based on the flake-flower NiO, the device was tested at
different temperatures from 100 to 400◦C toward 5 ppm CO. It
can be seen from Figure 6 that the response of the flake-flower
NiO based sensor toward CO of 5 ppm increased first and then
decreased with the increase of temperature, suggesting that the
response of the sensor is strongly dependent on the working
temperature. This is because the low activation energy at low
temperature is not enough to support the gas reaction, and the
increased temperature will lead to the higher desorption rate.
Given this, the gas response will reach a maximum at a specific
temperature, which is the optimum working temperature. In this
work, the optimum working temperature of the CO sensor is
250◦C, at which the highest response is 19.5. And subsequent
gas sensing experiments will be carried out at this optimal
operating temperature.
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FIGURE 9 | (A) The selectivity of the flake-flower NiO based gas sensor toward different 5 ppm gases at 250◦C. (B) The stability of the flake-flower NiO based gas
sensor toward 5 ppm CO for 1 month.

FIGURE 10 | The schematic diagram of sensing mechanism.

Figure 7 presents the response of the flake-flower NiO based
sensor toward different concentration of CO at the optimal
working temperature of 250◦C. Obviously, the response of the
fabricated sensor increased almost linearly with the increase

of the concentration of CO from 1 to 100 ppm. Besides, the
linear fitting function and the linear correlation coefficient were
calculated as y = 17.57 + 0.43x and 0.995, respectively. It can
be found that the responses of flake-flower NiO based sensor
increased obviously linearly with the increasing CO from 1 to
100 ppm at the optimal working temperature of 250◦C.

Figure 8 demonstrates the response and recovery
characteristic of the prepared sensor with different
concentrations of CO (1, 5, 10, 30 ppm) at the optimal
working temperature of 250◦C. It is obvious the gas response
curve of the sensor increases sharply when CO in, while the
gas response curve of the sensor quickly returns to the original
state when CO out. The CO responses of the sensor were tested
to be 16.9, 19.5, 22.8, and 32.7 under 1, 5, 10, and 30 ppm,
respectively. The dynamic response-recovery result indicated
that the fabricated sensor possessed excellent reversibility which
is an important property for the application of gas sensors.

Considering that selectivity and stability are two important
indexes to evaluate the performance of gas sensors, further
gas sensing experiments were carried out based on the gas
concentration of 5 ppm and the optimal working temperature
of 250◦C. As shown in Figure 9A, the sensor based on the

TABLE 1 | Summary of recent researches on NiO based sensors for sensing of toward different reducing gases.

Sensing material Gas Concentration (ppm) Temp. (◦C) Response References

NiO nanowires H2 1000 400 100% Hoa et al., 2018

NiO nanowires H2 1000 250 106.9% Tonezzer et al., 2017

NiO nanofibers CO 10 300 1.78 Choi et al., 2016

NiO nanowires H2 1000 250 107% Tonezzer et al., 2016

Hollow NiO hemisphere C2H5OH 200 300 5 Cho et al., 2011

NiO nanoparticles CO 100 350 90 Aslani et al., 2011

Porous NiO microspheres H2S 20 200 27.2 Trung et al., 2019

NiO nanoplates CO 10 275 16.39 Wang et al., 2019b

NiO nanosheet H2 30 225 20.47 Wei et al., 2019a

Flake-flower NiO CO 30 250 32.7 This work
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flake-flower NiO was exposed toward hydrogen sulfide (H2S),
acetylene (C2H2), hydrogen (H2), ammonia (NH3), methane
(CH4), and CO. It can be calculated that the response toward CO
is at least 6 times higher than that of other gas, indicating that
the NiO based sensor has good selectivity for 5 ppm CO at the
optimal working temperature of 250◦C, and can be applied for
the effective detection of CO. The long-term stability experiment
of fabricated CO sensor was carried out for 1 month. The
performance of the sensor toward 5 ppm CO at 250◦C was
tested every 5 day. Figure 9B confirms that the prepared device
possessed outstanding stability with slight change for 1 month,
suggesting the fabricated sensor could be a promising choice for
the application to the effective detection of CO.

Sensing Mechanism
As we all know, the basic gas sensing mechanism is demonstrated
by the resistance change caused by the reaction between the
adsorbed oxygen molecules and the measured gas molecules.
Before injecting the CO gases, the oxygen molecules in the air
were adsorbed on the surface of the NiO material due to its strong
electronegativity (Cao et al., 2015; Chen et al., 2018, 2019). The
oxygen molecules captured the electrons from the surface of NiO
material and then were reduced to oxygen ions (O−). For a typical
p-type oxide, since the main carrier of NiO is hole, the electrons
captured by oxygen mainly come from valence band. This process
results in the formation of a hole aggregation layer on the surface
of the material, which has a lower resistance compared with the
core region (Figure 10). The oxygen adsorption mechanism can
be expressed as follows:

O2(g) → O2(ads) (1)

O2(ads) + 2e− → 2O−(ads) (2)

When the reducing gas CO is introduced, it will react with
the oxygen ion adsorbed on the NiO surface to produce CO2
and release electrons at the same time. This process make the
released electrons combine with the holes, leading to the increase
of the resistance compared with previous state. The process can
be described as follows:

CO(gas) → CO(ads) (3)

CO(ads) + O−
(ads)
→ CO2 + e− (4)

Besides, for typical p-type NiO based sensing materials,
various strategies have been used to synthesize different
nanostructures for the detection of various reducing gases.
The gas sensing characteristics of the NiO based sensors
of the recently published investigations were listed in
Table 1, from which we can find that various NiO based
sensors possessed excellent gas sensing performances toward
different reducing gases.

CONCLUSION

To summarize, hierarchical flake-flower NiO was successfully
synthesized via a facile hydrothermal method. The prepared
sample was tested by various structural and morphological
characterization, demonstrating that the flake-flower
microstructure was assembled by numerous nanosheets with
different shape and size. Further CO sensing experiments
indicated that the sensor based on the flake-flower NiO exhibited
excellent gas sensing performance including high response,
outstanding selectivity and stability. A plausible mechanism
suggested that the excellent performance was caused by the flake-
flower morphology with complicated microstructure and large
special surface area. Therefore, the results suggested that flake-
flower NiO based CO sensor might be considered as a promising
candidate for detecting the fault characteristic gases dissolved in
transformer oil.
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