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Outer membrane vesicles (OMVs) are valued for their unique, convenient, and amendable

functions. They are flexible, controllable nanoparticles, which can be modified in different

ways, for use in a wide array of applications like adjuvants, vaccines, drug presentation,

and fluorescence tracking. Attempts have been made to alter the nanoparticles in

liposomes and bacterial ghosts using traditional methods. However, it has not been highly

successful owing to certain unavoidable disadvantages. OMVs have unique advantages

and are considered novel platforms for heterologous protein presentation. Although

previous reviews have described this to some extent, owing to the rapid development in

this field, there is a need for the regular update of the reviews. This review focuses on

few novel applications of engineered OMVs, and redefines the significance of OMVs as

novel multifunctional delivery platforms. Additionally, this review also supplements and

provides an update on the OMV transformation methods.

Keywords: genetic engineering, multifunctional delivery platform, outer membrane vesicles (OMVs), LPS, ClyA, AT

INTRODUCTION

Outer membrane vesicle (OMV), naturally secreted by Gram-negative bacteria, is a spherical
nanostructure with a diameter of 30–200 nm (Figure 1) (Liu et al., 2016). Bacteria can produce
OMVs in solid and liquidmedia, or in biofilms and intracellular infections under in vitro conditions
(Unal et al., 2011; Klimentová and Stulík, 2014; Caruana and Walper, 2020). The generation
of OMVs is considered a stress response. Various stress factors, such as temperature, nutrient
consumption, and exposure to harmful chemicals, may cause accumulation and aggregation of
misfolded proteins in the periplasm. Packing these pressure products to the outer membrane
and releasing them, OMVs are formed (Klimentová and Stulík, 2014). Quantitative analysis
showed that Escherichia coli packages ∼0.2–0.5% of outer membrane and periplasmic protein
into OMV (Kesty and Kuehn, 2004). Approximately 1% of the outer membrane material could
be incorporated into the vesicles of Pseudomonas aeruginosa, while the logarithmic phase culture
of Neisseria meningitidis incorporates 8–12% of its total protein and endotoxin into vesicles
(Devoe and Gilchrist, 1973; Bauman and Kuehn, 2006). Most of the components of OMVs
are lipopolysaccharide (LPS), glycerophospholipids, and proteins including periplasmic proteins
(Ellis and Kuehn, 2010; Underhill and Goodridge, 2012). The various components on OMVs
serve different functions. LPS of OMVs gives its adjuvant function, which is useful for vaccine
formulation, and some other antigen components that can be used for vaccine development.
In addition, other components on OMVs also play roles that cannot be ignored. OMVs
have been found to function as a multifaceted delivery system with intra- and inter-species
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FIGURE 1 | (a) Showed that Cryo-EM imaging of OMVs (Liu et al., 2016). OMVs derived from the flagellin-deficient S.typhimurium were visualized using cryo-EM. The

red arrows indicate the visible OMVs; (b) showed schematic diagram of OMVs secretion process.

interactions throughmembrane proteins (Ellis andKuehn, 2010).
The OMVs produced by Mycobacterium tuberculosis carries the
iron-carrier mold, mycomycin, which transports this essential
nutrient over long distances in a hostile host environment
(Prados–Rosales et al., 2014). Regarding the interspecies
interactions of OMVs, multiple studies have indicated the use
of OMVs by many bacterial pathogens to deliver virulent
determinants to host cells, at proximal and distal sites, thereby
impairing the host defense system and promoting infection.
In contrast, OMVs from various mucosal pathogens show
numerous pathogen-associated molecular patterns including
LPS, lipoproteins, DNA, and RNA. Their interaction with the
pattern recognition receptors (PRR) on host epithelial cells
stimulates the production of cytokines and chemokines on the
mucosal epithelial surface, their interactions with immune cells,
and regulates pathology in a variety of ways (Yoon, 2016). The
virulence factors contained in OMVs can be distributed over long
distances, and also transferred onto the plasmamembranes of the
host cells (Ellis and Kuehn, 2010).

Schulz et al. (2018) characterized the morphology of OMVs
by electron microscopy and found that OMVs are biocompatible
with epithelial cells and differentiated macrophages (Schulz
et al., 2018). They showed low endotoxin activity compared to
control samples, indicating low acute inflammation potential.
At the same time, OMVs also showed good biodegradability,
and it has been proven that OMV in the lysosome can be
completely degraded after 48 h of endocytosis (Kim et al.,
2012). Bioengineering can be used to increase OMV output,

Abbreviations: OMVs, Outer membrane vesicles; LPS, lipopolysaccharide; PRR,
pattern recognition receptors; GFP, green fluorescent protein; ClyA, Cytosolic A;
AT, Autotransport; GST, glutathione-S-transferase; OVA, Ovalbumin; β-stem, β-
helix core structure; AA, amino acid; PTE, phosphodiesterase; Scaf3, trivalent
scaffold; geOMVs, Glycosylation-modified OMVs; KGF-2, keratinocyte growth
factor 2; Nluc, nano-luciferase; OMVMel, biopolymer-melanin OMV.

and may be used in conjunction with specific production
processes to obtain a large number of well-defined, stable,
and unified OMV particle vaccine products (van der Pol
et al., 2015). Commercially available N. meningitidis serotype
B OMV vaccine indicates the use of OMVs for disease
prevention and treatment (Mirlashari et al., 2010; Collins,
2011; Santos et al., 2012). Currently, research has been focused
on the use of OMVs in vaccine transformation platforms;
different heterologous proteins can be efficiently added to
achieve the use of such nanoparticles in multiple applications
(Chen et al., 2010; Bartolini et al., 2013; Alves et al., 2015).

Although previous reviews have described OMVs in vaccine
transformation platforms, since this is a rapidly growing area of
research, the reviews need to be updated frequently (Gerritzen
et al., 2017). This review mainly describes the applications of
the most recently engineered OMVs, and gives an update on
few novel engineering methods. Additionally, the advantages and
disadvantages of the different engineering methods have been
compared, and few prospective applications of the engineered
OMVs have been described.

PURIFICATION, THE KEY STEP IN OMV
USAGE IN VACCINE APPLICATIONS

Some bacterial nanoparticles have gradually gaining interest
and are being developed with antigen-related functions.
However, compared with OMV, the production process is
more complicated and expensive, and it is difficult to ensure
its safety in living organisms (Table 1) (Carita et al., 2018; Hu
et al., 2019; Lee et al., 2019; Sánchez et al., 2020). Presently,
there have been a variety of bacterial OMVs used in vaccine
production attempts, such as E. coli, P. aeruginosa, Shigella,
Salmonella, Helicobacter pylori (H. pylori), Campylobacter jejuni,
Borrelia burgdorferi, Vibrio, and Neisseria spp. (Bauman and
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TABLE 1 | The advantages and disadvantages of OMVs and other bacterial small molecules.

Bacterially

produced

carriers

Particle size Material

properties

Advantages Disadvantages References

Liposomes 10 nm–hundreds

nm

Phospholipid

vesicles

More extensive research; High

biocompatibility; Low

immunogenicity

Drug leakage; Incomplete

loading function; Cumbersome

quality control system

Carita et al., 2018

Bacterial ghosts 40–200 nm Empty envelopes

of Gram-negative

bacteria

High security Low efficiency; Complex

production; Unclear effects of

human application

Hu et al., 2019

Biologically

synthesized

polyester

100–500 nm Polyester particles Ensure antigen integrity; High

biocompatibility; Non-toxic

metabolism

Complex purification; Unstable

production; Difficult to control

the particle size of the host cell

Lee et al., 2019

Inclusion Bodies

(IBs)

50 nm–hundreds

nm

Inactive protein

particles

Dense structure, hard to

hydrolyze; Complete

biocompatibility; Highly expressed

protein

Purification is complex; Hard to

produce large batches;

Complex and Inconsistent

production

Sánchez et al.,

2020

OMVs 30–200 nm Outer membrane

of Gram-negative

bacteria

Clinical use; High biocompatibility;

Good biodegradability;

Large-scale production; Simple

purification steps; Unified

production process; Convenient

antigen presentation platform

Multiple antigen presentation

efficiency is not high

Kesty and Kuehn,

2004; Ellis and

Kuehn, 2010

Kuehn, 2006; Chatterjee and Chaudhuri, 2011; Elmi et al., 2012;
Schwechheimer and Kuehn, 2015; Turner et al., 2015; Elhenawy
et al., 2016). In the making of vaccines of different strains, some
components on OMVs (such as LPS) could affect the safety
of the vaccine. Purification can remove some unnecessary or
harmful components, thereby making OMVs more in line with
needs. Purification is the first and the most important step in the
use of OMVs and impurities can have a large impact, resulting
in extremely unfavorable on experimental outcomes. Thus,
the purification of OMVs using traditional methods has been
summarized, and the latest approaches for the purification of
OMVs using genetic modifications have been elaborated.

Purification of OMVs Using Traditional
Methods
Traditional methods of OMV purification include
ultracentrifugation, density gradient separation, precipitation,
and gel filtration techniques (Kataoka et al., 2014; Klimentová
and Stulík, 2014; Cecil et al., 2016; Kim et al., 2017a,b). Density
gradient centrifugation and gel filtration are commonly used
methods for OMV purification (Kulp and Kuehn, 2010), while
ultracentrifugation and precipitation are the primary methods
to obtain OMVs. Although ultracentrifugation methods have
been widely used in the preparation of OMVs, this method has
certain shortcomings. The primary problem is the complexity
of the operation process. It is time consuming, and requires
skilled labor, owing to the complexity of the process. In addition,
the high cost of the purification equipment makes it difficult to
commercialize. Although sedimentation is relatively inexpensive,
it also has certain unavoidable disadvantages. The preparation
of the salt solution required for precipitation is difficult, and
the steps are complicated. Also, the proteins on the OMVs
are easily damaged, thereby allowing for a negative impact

on experimental results (Qing et al., 2019). Additionally,
considering the impact of LPS on the experiment, researchers
have attempted certain special methods. Initially, detergent was
added during the extraction process to attenuate LPS. However,
studies have shown that LPS is a potential endotoxin, and acts
as a powerful adjuvant for specific antigens (Mitra et al., 2013).
Consequently, the complete removal of LPS from OMVs was
required, rather than LPS attenuation with detergent, which
proved unsuitable for the betterment of vaccine performance
(Mitra et al., 2016). Therefore, researchers proposed the use of
EDTA extraction (chelating agent) to obtain high quality OMVs,
by accurately controlling the pH and collection point (van
de Waterbeemd et al., 2012). However, this method demands
stringent extraction conditions, and has a complex operation
process. If the purification methods do not meet the research
requirements, the development and application of OMVs in the
biomedical field will be limited. Therefore, the development of a
simpler and more feasible method is very crucial.

Genetic Engineering Used for Attenuating
Toxicity of OMVs
Generally, major pathogenic Gram-negative bacteria can secrete
OMVs and interact with the host through OMVs (Kuehn and
Kesty, 2005). Although OMVs can be obtained by extraction with
detergents, the improper use of chemicals can result in the loss of
lipoproteins and enzymes, and their activity, which impairs the
ability of OMVs to stimulate cross-protective immunity. In order
to obtain OMVs with low toxicity and high safety, the genetic
modification, and purification of OMVs has been proposed.
Genetic modification is primarily aimed at the attenuation of the
OMVs, and improvement of its yield. An established method
is the knock out of the msbB gene, which regulates LPS in
bacteria. The inactivation of msbB leads to a significant decrease
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in the level of LPS endotoxin (Kim et al., 2009; Ranallo et al.,
2010). This method has been widely used in the preparation
of OMVs (Leitner et al., 2015). Latest research has combined a
new modification scheme with the genetic modification of the
msbB gene, and has helped to obtain good results. At the same
time, the Dutch vaccine research institute found that the deletion
of the lpxL1 gene attenuated LPS toxicity while retaining the
adjuvant activity required for the immune response (van der
Ley et al., 2001; Fisseha et al., 2005; Koeberling et al., 2008).
Engineered OMVs obtained from Bordetella pertussis expressing
the pagL gene of Bordetella bronchiseptica, had lower endotoxin
activity and better adjuvant performance. Attenuated OMVs are
considered as prospective candidates in the development of novel
vaccines targeting multiple antigens (Asensio et al., 2011).

Compared to the traditional methods, genetically engineered
bacterial strains not only possess exclusively attenuated LPS,
but also have the ability to induce pathogen-specific immune
responses to OMVs, which is more suitable for the non-
endotoxin conversion of OMVs (Shim et al., 2017). These
pivotal genes attracted attention, and their knockout lead
to a decrease in immunogenicity. Consequently, researchers
have gradually started to explore more novel methods such
as using non-pathogenic symbiotic bacteria as the source
of OMVs, which can overcome the risks of gene knockout
and render a certain degree of safety (Carvalho et al.,
2019). Now, OMVs can be mass-produced through optimized
purification methods, and for reference, Gerritzen et al.
(2019) has summarized various purification methods of OMV
(Gerritzen et al., 2019).

Genetic Engineering in the Increasing
Production of OMVs
The Tol-Pal system continues to attract attention since its
functioning affects the OMV production (Shrivastava et al.,
2017). The five proteins of the Tol-Pal system includes three
inner membrane proteins (TolA, TolQ, and TolR), a periplasmic
protein (TolB), and a peptidoglycan-related lipoprotein (Pal)
associated with the outer membrane proteins (Derouiche et al.,
1995). The tolB mutant shows increased OMV release in many
bacteria like E. coli, Salmonella typhimurium, and H. pylori
(Deatherage et al., 2009; Nevermann et al., 2019). Interestingly,
tol mutants can often be introduced into the bacteria of
interest by means of electrotransportation (Turner et al., 2015).
Additionally, the rmpM gene deletion mutant was found to
have a loosely attached outer membrane, which increased OMV
release (Maharjan et al., 2016). Theoretically, the combination
of the lpxL1 and rmpM mutations can address toxicity and
resolve issues associated with the detergent-free OMV vaccines.
Both gene mutations have been reported to have beneficial
effects, making the detergent-free method a better alternative
to the traditional detergent-based OMV purification methods
(van de Waterbeemd et al., 2010). With gradual improvement in
genetically engineered OMVs, multiple genes have beenmodified
for the purification of OMVs. For example, few studies have
attempted to incorporate a non-natural histidine amino acid. The
sequence (His-tag) has been used to purify the bacterial OMVs by

affinity chromatography (Alves et al., 2015). Additionally, genetic
engineering has also been used to produce a high-yield of bacteria
lacking the OmpA gene, which has been widely used in OMV
engineering (Moon et al., 2012; Kulp et al., 2015).

Studies in E. coli have shown that the stability of the envelope
comes from three major cross-links: OmpA, LppAB, and the
Tol-Pal complex (Mizushima, 1984; Yeh et al., 2010; Park et al.,
2012). When there is a decrease in these cross-links, the yield of
OMV increases, and vice versa. Thus, S. typhimurium mutants
lacking OmpA, LppAB, Pal, TolA, or TolB show increased OMV
production (Deatherage et al., 2009). Similarly, gene deletion can
have a negative impact on immunogenicity. For example, the
TolA gene can increase the resistance of S. typhimurium to bile
(Lahiri et al., 2011). The tolR gene encodes proteins with exercise-
related functions in S. typhimurium and E. coli (Santos et al.,
2014). Deletion of these genes will inevitably have a negative
impact on the function of OMVs, like reduced immunogenicity.
Consequently, the question of balancing yield and the immune
efficacy remains unsolved.

UPDATE ON THE APPLICATION OF OMVS

AS ANTIGEN PRESENTATION PLATFORMS
USING GENETIC ENGINEERING

Increasing evidence exists for the delivery of antigens by
OMVs, to proximal host cells and distal host cells, which
in turn stimulates the immune system and triggers immune
response in the host (Shen et al., 2012). The antigens in
OMVs can be distributed over long distances and are not
damaged by dynamic physical and biochemical stresses. In
addition, they can be transferred to the plasma membrane
of the host cell (Sharpe et al., 2011; Yoon et al., 2011).
Moreover, some transmembrane proteins on OMVs can be used
as anchoring proteins, and play a role in presenting heterologous
proteins in engineering transformation. To design a safer and a
more efficient antigen delivery system, the naturally occurring
OMVs have been modified by genetic engineering to obtain
a multifunctional antigen delivery platform (Kim et al., 2009).
By summarizing existing transformation methods, we hope
to highlight the systematic processes of engineering OMVs
(Figure 2).

Presentation of Heterologous Proteins
The modification of OMVs, in terms of the presentation of
heterologous antigens, is an established method. Since this
modification alters the communication between the cells and
the bacteria to a certain extent, it affects the functionality
of OMVs as vaccines. Most of the heterologous antigens are
heterologous proteins.

Intrinsic Antigens
The expression of intrinsic antigens in OMVs is widely used,
and is closely associated with the development of vaccines. The
symbiotic bacteria Neisseria gonorrhoeae and N. meningitidis
share a tendency to overproduce the bacterial outer membrane,
leading to the formation and release of OMVs during growth.
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FIGURE 2 | OMV serves as a versatile transformation platform. Engineering methods include: ClyA Fusion; Spy Tag/Spy Catcher; Hbp platform; intrinsic antigen;

Glycosylation; Ice nucleation protein Fusion.

OMVs from the meningococcal and commensal intima have
been reported to function as a vaccine against meningococcal
disease (Mirlashari et al., 2010). The nspA gene has been shown
to be highly conserved in a variety of meningococcal strains, and
has been extensively studied as a potential antigen for vaccines
(Lewis et al., 2010, 2012; Echenique–Rivera et al., 2011; Giuntini
et al., 2011). However, this method is difficult to commercialize.
Previous studies have reported that recombinant E. coli was
not suitable for the expression of other meningococcal OMV
vaccine components, owing to its ability to genetically up-
regulate certain outer membrane proteins inmeningococcus, and
separately engineer OMVs (O’dwyer et al., 2004). Ail is an outer
membrane adhesin and invasin from Yersinia enterocolitica.
Following genetic engineering, the OMVs of the E. coli DH5α
strain carrying Ail can be internalized in the eukaryotic cells. The
presence of Ail enabled non-invasive strains to invade the CHO
cells (Kesty and Kuehn, 2004).

Moreover, green fluorescent protein (GFP) fused with the
Tat signal sequence, was secreted into the periplasm by the
double arginine transporter (Tat) in the E. coli DH5α strain.
Pronase-resistant fluorescence was detected in the vesicles of
the Tat-GFP transformed strain, demonstrating the presence
of GFP in intact vesicles (Kesty and Kuehn, 2004). The
inclusion of GFP cargo increased the vesicle density, but did
not bring about any morphological changes in the vesicles.
More than 60 membrane proteins have been detected in the
OMVs (Molloy et al., 2000; Tokuda and Matsuyama, 2004;
Lee et al., 2007). These proteins continue to be identified

as anchoring proteins in the engineered OMVs. With further
study of OMVs, more proteins with important functions will
be identified.

Fusion of ClyA
Cytosolic A (ClyA), a 34-kDa cytosolic protein encoded by the
ClyA gene (also known as sheA and hlyE), is located on the
K-12 chromosome of E. coli (Westermark et al., 2000). Lately,
researchers have favored the genetic fusion of ClyA. ClyA acts as
a leading sequence and aids in the localization of heterologous
proteins in the outer membranes where OMVs are secreted,
resulting in the display of functional proteins on the surface of
the OMVs (Kim et al., 2008). The gene for the heterologous
protein expresses a recombinant outer membrane protein by
fusion with the ClyA gene. Since ClyA is anchored to the outer
membrane, the heterologous antigen can be expressed in an
extracellular manner. Experiments on the heterologous protein
presentation of ClyA-OMVs have been gradually extended. For
example, expression of the Omp22 protein using the E. coliDH5α
strain and the Fv fragment of the presenting antibody, the HER2
antibody, and the influenza virus M2e antibody, and so on (Kesty
and Kuehn, 2004; Kim et al., 2008; Gujrati and Sangyong, 2014;
Garrett Rappazzo et al., 2016; Huang et al., 2016).

Vesicles produced by bacterial pathogens promote the direct
delivery of antigens into the host cells. In this regard, the
recombinant ClyA-OMV increases the antigen delivery efficiency
by 8-fold (Wai et al., 2003). Further research shows that the
protein fusion on ClyA has different effects. Fusion with the

Frontiers in Materials | www.frontiersin.org 5 July 2020 | Volume 7 | Article 202

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Li and Liu OMVs as Multifunctional Delivery Platforms

N-terminal of ClyA produces heterologous antigens that are
inconsistent, while C-terminal fusions always produce well-
displayed proteins which retain their biological functions (Kim
et al., 2008). This may be due to the fact that the C-terminus
of ClyA is closer to the outer surface compared to the distance
between the N-terminus of ClyA and the outer membrane,
and is therefore more likely to extend into the extracellular
environment (Tzokov et al., 2006; Eifler et al., 2014). Additionally,
the physiological state of ClyA also affects its localization
in the OMVs. According to experiments, the redox state of
ClyA is pivotal in regulating its localization in the OMVs
(Kim et al., 2008).

AT Platform
Autotransport (AT) is a large virulence factor (usually over 100
kDa) secreted by Gram-negative bacteria. The AT system is
simple, and is hypothesized to carry all information concerning
the inner periplasm, and the outer membrane translocation of
the protein itself. AT is synthesized as a large precursor protein
containing three domains: first, the N-terminal signal peptide,
which targets the protein to the Sec translocator and initiates the
transfer through the intima; second, the passenger domain; third,
the C-terminal beta-domain, which integrates into the outer
membrane and plays a crucial role in passenger translocation
into the extracellular space (Eifler et al., 2012). The AT system
has been used as a transport vehicle for many heterologous
fusion partners in Gram-negative bacteria (Kjaergaard et al.,
2000; Junker et al., 2019). In most cases, variants of the Neisseria
IgA protease and the endogenous E. coli AT AIDA-I are used to
engineer antigens specifically for surface display (Junker et al.,
2007). Two model antigens of Leishmania were successfully
expressed using this method (Schroeder and Aebischer, 2009).
Recently, the skp protein of ETEC has been successfully loaded
into OMVs through AT, which fused with the glutathione-S-
transferase (GST) epitope and combined with cholera toxin to
prepare an ideal vaccine (Hays et al., 2018). OspA has been
extensively studied as a vaccine component against Lyme disease
(Wressnigg et al., 2014; Comstedt et al., 2015). The OspA antigen
has been successfully expressed in OMVs but has not been
exposed on the surface of OMVs. The improved method uses a
meningococcal surface protein, fHbp, as the anchor protein. By
connecting OspA to the N-terminus of fHbp, the strong immune
response elicited by the engineered OMVs was successfully
detected (Salverda et al., 2016; Zhang et al., 2016). Ovalbumin
(OVA) hemoglobin protease has also been successfully expressed
on the surface of engineered OMVs through the AT platform,
and has been shown to have the ability to induce antigen-specific
CD8 + T cell responses (Schetters et al., 2019). Unlike ClyA,
the AT system can successfully present multiple antigens using a
slightly different approach. Using the crystal structure of the AT
passenger, five passenger side domains were selected and replaced
with theM. tuberculosis antigen ESAT6 sequentially, while the β-
helix core structure (β-stem) remained intact (Otto et al., 2005).
The resulting Hbp-ESAT6 chimera was efficiently and stably
secreted into the medium of E. coli. The Hbp-ESAT6 display
variant was constructed by disrupting the cleavage site between

the passenger and the β-domain, whichmaintains cell correlation
and promotes efficient surface exposure of ESAT6 (Eifler et al.,
2012). Compared to the ClyA fusion system, the AT system
has multiple sites for the insertion of heterologous sequences
that can simultaneously bind multiple antigens. This enables the
formation of a multivalent recombinant live vaccine. This is of
high value because multivalent vaccines are a key requirement
for the prevention of infectious diseases such as tuberculosis
(Aagaard et al., 2011). Importantly, since the passenger side
domains have Hbp function, their replacement with antigenic
proteins automatically eliminates potential toxic effects, making
the proposed Hbp platform safe for antigen delivery (van Bloois
et al., 2011). Thus, the AT system has been found to be more
efficient, convenient, and safer than the engineered OMVs
associated with ClyA.

Spy Tag/Spy Catcher System
The SpyCatcher is a genetically encoded protein designed to
spontaneously form a covalent bond with its peptide partner
SpyTag (Brune et al., 2016). Studies have demonstrated the ability
of this bioconjugate system to deliver antigens, which can be
linked to an antigen delivery system via common cell-linking
proteins (Alves et al., 2015). It has been found that this system
can be used as a modification of the autotransport system (Jong
et al., 2010). In the AT system, although antigen delivery has been
successfully accomplished, their density on the OMVs has been
found to be affected (Jong et al., 2010). The SpyCatcher/SpyTag
protein ligation technology can enzymatically attach the antigen
to the high-density Hbp in OMVs, without being hampered by
the membrane environment, as verified by recent experiments.
This protein ligation system is based on the fibronectin of
Streptococcus pyogenes, and forms an intramolecular isopeptide
bond between the adjacent lysine and aspartate residues by
an autocatalytic mechanism (Zakeri et al., 2012). The domain
was split into a 13 amino acid (AA) peptide called the
SpyTag, and a 138-AA fragment called the SpyCatcher, to
create a SpyCatcher/SpyTag pair for coupling with heterologous
proteins and autotransporters. When fused to different proteins,
the SpyTag and the SpyCatcher recombine with the domain
following mixing and form stable intermolecular covalent bonds
under certain conditions (Fierer et al., 2014). Additionally,
a similar structure, the orthogonal SnoopTag/SnoopCatcher
system, can also couple multiple antigenic modules to Hbp
by a sequential ligation strategy without affecting antigenic
display (Veggiani et al., 2016). Spy ligation can be easily
performed by gene fusion to the end of the Hbp display
vector, and directional loading onto the OMVs. OMV display
technology, combined with protein linkages, constitutes a plug-
and-play system designed for customized antigen delivery. As a
“mediating” protein system, the Spy Tag/Spy Catcher can also
link other anchoring proteins such as OmpA, to deliver the
corresponding antigen. This has been verified in the presentation
of the active enzyme phosphodiesterase (PTE) (Alves et al., 2015).
Therefore, the Spy Tag/Spy Catcher system can be used for
modifying anchoring proteins, allowing engineered OMVs to
perform antigen delivery more efficiently.
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Ice Nucleation Protein
To display multiple functional proteins on OMVs, a trivalent
scaffold (Scaf3) plasmid was constructed to express the protein
of interest (Tsai et al., 2009). Park et al. (2014) used an enzyme
scaffold to express the protein in bacteria, and immobilized it
on the outer membrane using a truncated ice nucleation protein
anchor. The plasmid pINP was constructed by amplification
using a truncated ice nucleation protein gene from pPNC20 (Bae
et al., 2002). High levels of INP-scaf3 were successfully detected
on engineered E. coli OMVs, by binding Scf3 to INP by primers
(Park et al., 2014). This provides a simple and convenient way
to express different enzymes on OMVs. The assembled enzyme
complex not only retains full activity, but also leads to the
hydrolysis of cellulose, 23 times faster than the conventional
enzymes. This method can thus be used as a simple platform for
the efficient functioning ofmultiple enzymes as nano-biocatalysts
(Park et al., 2014). The flexibility to design scaffolds using various
specific binding domains allows for the display of unlimited
number of functional proteins on OMVs.

Similar to the AT system, the enzyme scaffold is also a
high-performance system that can simultaneously load multiple
heterologous proteins. However, the AT system has certain
inevitable shortcomings, like a truncated passenger structure
used in the loading of multiple antigens (Jong et al., 2010).
Similar to the AT system, the enzyme scaffold also binds the
target protein in an orderly manner, forming a multi-functional
system independently. Therefore, it is expected to demonstrate
more applications.

Glycosylation Linkage
Glycosylation-modified OMVs (geOMVs), as seen in
Streptococcus pneumoniae capsules and C. jejuni N-linked
glycans, have been shown to produce a good immune response
(Price et al., 2016). The geOMV platform utilizes the loose glycan
structure of the O-antigen ligase. Specifically, they are delivered
to the lipid A-core molecule in the inner membrane (Kaniuk
et al., 2004; Han et al., 2012). First, glycans were customized
using the initial glycosyltransferase, WecA, and a specific
glycosyltransferase encoded on a plasmid. The flip enzyme
Wzx subsequently moved the glycans to the periplasmic surface
of the inner membrane, and the enzyme Wzy polymerized
the glycan subunits into a high-molecular-weight form of the
surface glycans. The WaaL ligase then attached the glycan
to the lipid A-core molecule. Finally, these customized LPS
molecules were transported to the outer membrane and flipped
into the extracellular space through the Lpt protein complex
(Kaniuk et al., 2004; Simpson et al., 2015). When bacteria
formed the OMVs, LPS as well as proteins and lipids were
packaged into OMVs, resulting in the formation of mature
geOMVs. The S. pneumoniae capsules were expressed in E.
coli cells lacking the relevant O antigen, and the relevant
plasmid was constructed and introduced into E. coli to secrete
the corresponding OMVs. The immunological potency was
confirmed using animal experiments (Price et al., 2016).
Glycosylated conjugate vaccines are valuable. However, technical
challenges exist with respect to the attachment of glycan chains
(Jones, 2005; Wacker et al., 2006; Bottomley et al., 2012).

The glycol-engineered E. coli-expressing OMVs can express
the glycans required for binding to the vaccine, and thus can
complement the current conjugate vaccines, particularly for
serotypes corresponding to glycan structures that have not
been resolved. The studies of glycans were less than those
of proteins, lipids, and nucleic acids (Williams et al., 2018).
The successful validation of glycosylated OMVs provides an
inspiring platform for future engineered glycosylation efforts
(Liang et al., 2014; Shimoda et al., 2017).

OTHER APPLICATIONS OF OMVS USING
GENETIC ENGINEERING

In addition to presenting antigens for vaccine application, the
transformation of OMVs has now embraced more functions,
including drug delivery, bioimaging, nanogenerators, and new
adjuvants (Table 2). OMVs are being developed for more
applications due to their flexible retrofit characteristics.

Drug Delivery
In addition to serving as a platform for surface antigen
presentation, the function of OMVs to encapsulate small
molecule particles in the lumen for presentation is also of
interest. Recent studies have found that OMVs have a great
potential in the transport of small molecule drugs (Table 3).
The method of loading drugs into the lumen of OMVs by
electroporation has been proven. For relatively hydrophobic
and positively charged small molecule drugs that easily interact
with lipophilic membranes, passive diffusion can be used.
However, for hydrophilic molecules, the bilayer lipid membrane
may constitute an obstacle, in which case electroporation may
be the method of choice (Gujrati et al., 2014) (Figure 3).
Although OMVs can only encapsulate about 15% of KSP-
siRNA, the amount is sufficient to exert cytotoxicity. This
electrotransport method is convenient and easy to implement,
and has been widely used in loading small molecular substances
(Turner et al., 2015). Recently, scientists have tried to use
bioengineering methods to successfully upload cancer treatment
drugs on OMVs. OMVs from the non-pathogenic commensal
bacteria were used to deliver keratinocyte growth factor
2 (KGF-2), a small molecule with the potential to treat
inflammatory bowel disease (Baumgart and Sandborn, 2007).
Adding intact KGF-2 OMVs to epithelial cell culture promoted
cell proliferation and accelerated wound healing, in a safe
manner (Carvalho et al., 2019). Melanin, a specific agent for
photothermia therapy in cancer treatment, was presented
through OMVs, and almost all the cancer cells in the animal
model were destroyed (Gujrati et al., 2019) (Figure 4). Another
loading method is the incorporation of drugs into OMVs
during their biological generation through parental bacteria.
Further to cancer treatment, drug delivery by OMVs has also
been confirmed. Allan and Beveridge (2003) have demonstrated
that the incorporation of gentamicin during the growth of
P. aeruginosa PAO1 strains produced gentamicin-containing
OMVs, which can deliver drugs to the target, Burkholderia
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TABLE 2 | Application and performance of engineered OMVs.

Application Lumen/outer

membrane

Anchor protein Results and efficacy References

Nanopolymer bioreactor Outer membrane Ice Nucleation Protein (INP) Provide synergistic cellulose hydrolysis;

Increase glucose production by 23 times

compared with free enzyme

Park et al., 2014

Multifunctional imaging

and detection platforms

Lumen None Easily customize through genetic

engineering; Create a wide range of

applications including live cell imaging

Chen et al., 2017

Drug delivery Lumen None Slowly release drugs under specific

environmental conditions; Reduce

non-specific toxicity caused by drug leakage

into the circulatory system

Gujrati et al., 2014

Vaccine adjuvant Lumen / Outer

membrane

ClyA; Autotransport (AT); Ice

nucleation protein; Glycosylation

Safe and effective vaccine platform Kesty and Kuehn, 2004;

Junker et al., 2007; Park

et al., 2014; Price et al.,

2016

TABLE 3 | Engineering OMVs delivering drugs and corresponding efficacy of diseases.

Bacterial strain Disease Drugs Effect and characteristic References

Bteroides

thetaiotaomicron

VPI-5482

Colitis keratinocyte growth factor-2

(KGF-2)

Control colitis clinically and pathologically;

Reduce colon atrophy and length reduction

caused by treatment; Reduce epithelial

damage and inflammatory infiltration

Carvalho et al., 2019

Escherichia coli strain that

exhibits reduced

endotoxicity toward

human cells

Cancer Therapeutic siRNA Complete biodegradability; Very rigid and

stable nanostructure; Reduced drug leakage

and non-specific toxicity

Gujrati et al., 2014

Escherichia coli K12 Cancer Naturally occurring melanin Tumor growth is reduced by about 43%;

High safety, non-toxic to normal cells

Gujrati et al., 2019

Pseudomonas aeruginosa

PAO1 strain

Cystic fibrosis,

Cepacia syndrome

Gentamicin Thermodynamic stability and will not

decompose in suspension

Allan and Beveridge, 2003

Streptococcus flexi

serotype 5 (M90T)

Parasitic disease Gentamicin Drug stability Kadurugamuwa and

Beveridge, 1998

cepacia (Allan and Beveridge, 2003). This was also confirmed in
Shigella flexneri OMVs (Kadurugamuwa and Beveridge, 1998).

As a drug presentation tool, OMVs have the advantage of
being small, stable, well-tolerated, and highly specific. OMVs
can slowly release drugs under specific Physiological conditions,
reducing non-specific toxicity caused by drug leakage into the
circulatory system. In addition, this slow-release property can
provide sufficient time for siRNA to reach its target cancer
cells in areas with abnormal blood supply (Gujrati et al., 2014).
OMVs have thermodynamic stability and will not decompose
in suspension, while ordinary liposomes have the disadvantages
of drug leakage and easy degradation of circulation. Although
the packaging efficiency is not ideal, it is sufficient to exert
drug efficacy.

Multifunctional Imaging and Detection
Platforms
Complex, multi-antigen-bound engineered OMVs have begun
to evolve and grow. Based on this technology, scientists have
proposed a “one-pot synthesis” model (Chen et al., 2017).

According to the mutual binding between proteins, the nano-
luciferase (Nluc) and the Z domain recruits antibodies which
exists in OMVs at the same time (Tashiro et al., 1997).
Experiments have confirmed the feasibility of imaging cancer
cells by multifunctional OMVs (Ferreira et al., 2006). Currently,
multifunctional OMVs can be customized with ease through
genetic engineering, creating an almost unlimited combination of
“capture” and “report,” for a wide range of applications including
live cell imaging (Chen et al., 2017) (Figure 5). At the same time,
the photoacoustic imaging method has proven to be feasible to
produce encapsulated biopolymer-melanin OMV (OMV Mel),
using bacterial strains expressing the tyrosinase transgenes. The
OMV Mel is generated under near-infrared light, and is suitable
for imaging applications. The strong photoacoustic signal non-
invasively monitors tumor-associated OMV Mel distribution
in vivo (Gujrati et al., 2019). This experiment represents
the rationale on the use of bioengineered OMVs as effective
alternatives to synthetic particles in photoacoustic imaging, for
image enhancement and photo-thermal applications (Figure 4).

OMVs have been reported to possess excellent sensitivity.
When used in thrombin detection, the detection limit of
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FIGURE 3 | Targeted therapy for the HER2 receptor. OMVs are genetically engineered to carry siRNA that silence cancer genes, and specifically target cancer cells

that express the HER2 antigen to exert anti-cancer effects.

thrombin by OMVs was found to be 0.5 nm (Chen et al.,
2017). Additionally, the preparatory method is simple, and a
high yield of OMVs can be successfully obtained with ease
only through a simple fermentation process. Furthermore, since
more than 60 membrane-anchoring proteins have been detected
in OMVs, a variety of modified enzymes can be presented by
OMVs. Therefore, OMVs can flexibly modify electrochemical-
based detection or colorimetric detection of enzymes. Owing to
these advantages, OMVs can be applied in immunoassays, in vivo
imaging, and cancer cell detection.

Nanopolymer Bioreactor
Multi-step enzyme pathways play a key role in cell metabolism.
Enzyme cascade reactions are highly complex systems. A key
feature of a highly efficient enzymatic pathway is the synergistic
and spatial organization of the enzyme to ensure sequential
transformation of the substrate (Agapakis et al., 2012). OMV
is relatively stable in the surrounding environment and can
be manufactured cost-effectively, and is considered to have

the potential of a bioreactor. A novel study by Park et al.
(2014) identified a single protein scaffold based on the Coh-
Doc interaction, which can be used to sequentially assemble
multiple enzymes onto the surface of OMVs, thereby resulting
in a nanoreactor capable of complex biocatalysis (Park et al.,
2014) (Figure 6). By genetically engineering enzyme scaffolds
into OMVs, scientists have succeeded in obtaining an enzyme
system with an enzyme cascade. Recently, the expression of
organophosphate hydrolase in E. coli OMVs has also been
successful, and engineered OMVs have enhanced thermal
stability and pH stability (Su et al., 2017). After 15 reaction cycles,
at least 83% of the OMVs initial activity is retained. After 40 days,
about 20–30% of initial activity is retained (Su et al., 2017). In
addition, phosphotriesterase was displayed in OMVs through the
outer membrane porin OmpA of E. coli (Alves et al., 2018).

In recent decades, various methods have been developed
to create artificial multi-enzyme complexes, including
OMVs, polyhydroxyalkanoate (PHA) particles, virus-like
particles (VLP), enzyme-derived nanoparticles (EZPs), and
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magnetosomes (Parlane et al., 2017; Yan et al., 2017; Wilkerson
et al., 2018; Schmid-Dannertand and López-Gallego, 2019).
However, in terms of its wider application, there are still
some obstacles. For example, due to steric hindrance, the
encapsulation rate of large proteins is low, and the substrate
cannot fully enter the enzyme assembly and the vesicle shell
(Wong et al., 2020). These nanoparticles are difficult to challenge
for long-term storage and have poor biocompatibility. The
enzyme system expressed through the outer membrane vesicles
has been proven stable for long-term storage and has the
potential to be used as a carrier for industrial production of
enzyme systems.

As a Vaccine Adjuvant
An adjuvant is defined as a molecule that aids an antigen
in eliciting an immune response. Adjuvants improve the
immune response in people with poor immune response,
expand cross-protection, induce a shift in the specific T cell-
assisted response, and reduce the amount of antigen required
for vaccine development (Maisonneuve et al., 2014). OMVs
have been considered as potential vaccine adjuvants since their
inception (Figure 7). However, due to the toxicity of wild-
type LPS, such as flagellin, lipoprotein, and other OMPs, they
may trigger allergic reactions such as excessive inflammation
(Arigita et al., 2005; Thompson et al., 2005). Therefore, the

OMV endotoxins are removed manually following production.
Another disadvantage is that the LPS-deficient OMVs generally
exhibit lower immunogenicity compared to the immunogenicity
of the wild-type OMVs containing wild-type LPS (Gnopo
et al., 2017). Therefore, the appropriate modification of LPS is
necessary to obtain an optimal balance between low-toxicity and
high-immunogenicity. The latest method of LPS modification
involves the synthetic assembly or genetic modification of
bacteria (Arenas et al., 2010). Further, OMVs with LpxL
gene deletion and PagL gene expression have been proven
to possess good adjuvant ability and show significantly better
abilities compared to that of the wild type (Arenas et al.,
2010; van de Waterbeemd et al., 2010; Asensio et al., 2011).
Further comparison has revealed that the PagL gene expression
possesses higher endotoxic activity compared to that of the
LpxL gene, which was also supported by animal studies. The
PagL gene is considered to have a better adjuvant effect
(Asensio et al., 2011).

Recent studies have shown that the adjuvant ability of
engineered OMVs continues to attract the attention of
researchers. Engineered OMVs carrying the Ail antigen
have been shown to increase adhesion to the CHO cells, and
non-invasive vesicles have been modified to invade the CHO
cells (Kesty and Kuehn, 2004). Recent developments in vaccine
research involve the use of more antigen profiles, expressing

FIGURE 4 | OMVs loaded with melanin were injected into mice through the tail vein. After irradiating at 750 nm, a strong photoacoustic signal of MSOT was

generated. The tumor cells were almost completely killed by laser irradiation at 730–830 nm for several minutes.

Frontiers in Materials | www.frontiersin.org 10 July 2020 | Volume 7 | Article 202

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Li and Liu OMVs as Multifunctional Delivery Platforms

FIGURE 5 | OMVs can be engineered for immunoimaging and cell detection. There are two main methods: (a) directly loading a fluorescent substance; (b) indirectly

loading a small molecular substance (such as melanin), and a signal can be obtained under a specific light. By taking OMV preparation, you can track the path of

action of the drug in the body and monitor its efficacy.

mutant forms of HlaH35L, SpAKKAA, LukE, LukD/E, one
of the two components of the interleukin Csa1A, and the
iron binding protein, FhuD2, on meningococcal OMVs, have
proven to possess good immunogenicity (Falugi et al., 2013;
Gasanov et al., 2013; Spaan et al., 2017). The OMVs produced in
Salmonella carrying pneumococcal protein antigens have shown
promising results in a murine model (Kuipers et al., 2015).
This allows glycans and proteins to synergistically enhance the
immunogenicity of vaccines (Price et al., 2016). In contrast,
the currently existing and the most successful antimicrobial
vaccine glycoconjugates face multiple problems like complex
preparation, slow development, insufficient safety, instability,
and batch-to-batch variability. In addition, glycoconjugates
do not contain multiple serotypes. OMVs can be genetically
modified with flexibility and ease to produce geOMVs with
the perfect balance between reduced toxicity and optimal
adjuvant properties.

FUTURE RESEARCH DIRECTIONS

Compared to conventional adjuvants, OMVs show a clear
advantage in terms of future development (Tan et al., 2018).

As a platform for the convenient implementation of genetic
modification, OMVs have received attention in the field of
precision medicine, in addition to a wide range of vaccine
applications (Wang et al., 2019). For example, OMVs have
become a potential choice for the targeted delivery of cancer
drugs. As an easily engineered nanoparticle, OMVs can transport
a variety of small molecules with different characteristics, thereby
involving in important applications such as immunoimaging,
enzyme-linked reaction polymers, etc. Further research will help
to unveil the undiscovered aspects and future applications of the
engineered OMVs.

Targeted Cancer Therapy Delivery Platform
Targeted therapy continues to receive attention owing to its
fewer side effects. Bio-nanocarriers derived from a variety of
natural resources like pathogens and mammalian cells have been
identified to be well-suited for drug delivery (Yoo et al., 2011),
and nanomaterials have been widely studied as drug delivery
vehicles in the treatment of cancer (Petros and DeSimone,
2010; Shi et al., 2010). Designing OMVs to target specific
cell types makes them an attractive treatment option. In
addition, engineering OMVs offers several advantages. The outer
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FIGURE 6 | OMV can be linked to an enzyme scaffold through gene functions to connect three enzyme molecules that can complete a complete set of reactions.

Through the action of enzymes, cellulose is successfully hydrolyzed to reduce sugars.

membrane protects the OMV contents such as chemotherapeutic
agents, from protease or nuclease degradation, thereby increasing
the circulating half-life of the drug. Recent studies have
successfully designed tumor-targeted OMVs carrying an anti-
tumor siRNA (Gujrati and Sangyong, 2014; Gujrati et al.,
2014). The transmembrane receptor HER2, chosen as the cell-
specific target, was found to be overexpressed in a range of
cancers, including breast, ovarian, and gastric cancers (Weaver
and Cleveland, 2005). By binding HER2 antibody to ClyA,
OMVs targeting cancer cells were obtained. In vitro studies
by Gujrati et al. (2014) have demonstrated the ability of the
siRNA-loaded OMVs to deliver siRNA in ovarian and breast
cancer cell lines, subsequently inducing cancer cell death (Gujrati
et al., 2014). Multiple forms of cancer treatment have been
proven feasible. By presenting melanin, a substance with good
light-to-heat conversion rate, a treatment can be achieved that
can kill tumor cells by selectively irradiating the melanin-
containing tissues, thereby inducing local heating (Liu et al.,
2013). Animal studies have shown that almost all tumor cells
in the body were eliminated. Furthermore, this photothermal
therapy monitors the effect of local treatment by photoacoustic
imaging (Gujrati et al., 2019). Additionally, recent studies have
shown that engineered OMVs, which transport OVA hemoglobin
protease using the AT system, have a mediatory function in the
induction of antigen-specific CD8+ T cell response (Schetters
et al., 2019). CD8+ T cells control viral replication and tumor

growth. This property of OMVs also hints at its powerful
potential in cancer treatment.

OMVs deliver heterologous proteins thus, acting as tools for
delivering targeted drugs. Such vesicles are expected to be further
developed in the near future. The advent of nanobiotechnology,
and advances in genomics, immunology, microbiology, and
vaccine needs, alone and in combination, have made OMVs a
novel choice for precision therapies and targeted-drug therapies.

Multifunctional Delivery Platform
In addition to the widely known function of antigen presentation,
OMVs have been used in a wide array of applications.
For example, OMVs can be used as bioreactors for enzyme
cascade reactions. By carrying anchor proteins which load
multiple heterologous proteins such as ice nucleating proteins,
OMVs can combine multiple related enzymes to complete a
more complex set of biological reactions (Park et al., 2014).
Additionally, engineered OMVs have also been used in the
field of immune bioimaging. OMVs can be directly tagged with
fluorescent substances that can be easily detected, such as GFP,
and perform functions such as in vivo imaging and remote
tracking (Chen et al., 2017). Indirect detection methods have
also been confirmed. OMVs carrying melanin generate strong
photoacoustic signals suitable for imaging applications under
near-infrared light (Gujrati et al., 2019). This method has also
proven to be therapeutically effective. For rendering OMVs
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FIGURE 7 | OMVs function as an adjuvant through three main areas: (a) attenuated antigen stimulation; (b) presentation of heterologous antigens; (c) increased

adhesion to tissue cells.

in various platforms, secure performance is a pre-requisite. In
addition to existing methods for attenuating gene knockouts, the
use of non-pathogenic symbiotic bacteria as a source of OMVs
has also received attention (Carvalho et al., 2019). Reconstruction
of these OMVs can easily produce engineered OMVs with
high safety.

With further study of OMVs, it has been shown that this
bio-nanoparticle has a variety of functions not limited to
vaccine adjuvants. Relying on flexible genetic modifications,
OMVs perform multiple functions by carrying small molecules
with multiple functions. OMVs are expected to demonstrate
more applications in the fields of immunology, diagnostics,
and so on.

CONCLUSION

OMVs have attracted attention as a new engineering platform
for vaccine development. Through research on the engineering
of OMVs, we find that the applications of OMVs are not limited
to vaccines. As a convenient bio-nanoparticle, OMV has the

potential to function as a multi-functional delivery platform,
and thus can be applied in many fields such as immunology,
clinical medicine, diagnostics, and biochemistry. However, there
are still some problems in the application of OMVs: (i) the
toxicity of LPS on OMVs is still a major concern, especially when
applied in the human body; (ii) in biological engineering, OMVs
load heterologous proteins and the efficiency of small molecular
substances is not high; (iii) in large-scale production, the size of
OMVs is not easy to control, and the difference between batches
is large. At the same time, the lack of understanding of the exact
assembly mechanism of OMVs leads to poor programmability
of the particles. In future research, attention should be paid to
other problems of modifying OMVs such as: (i) increasing the
load rate; (ii) improving safety and reduce costs when large-scale
production is required; and (iii) delineating the mechanism of
OMVs germination for a better understanding of the mechanism
of its functions. This review focuses on some of the latest
advances in the application of engineered OMVs such as drugs
for cancer treatment, immune imaging, etc. It is anticipated
that the functions of OMVs may be better manipulated through
genetic engineering in subsequent studies.
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