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Lithium titanate (Li4Ti5O12, LTO) has emerged as an alternative anode material for

rechargeable lithium ion (Li+) batteries with the potential for long cycle life, superior

safety, better low-temperature performance, and higher power density compared to

their graphite-based counterparts. LTO, being a “zero-strain” material, shows almost no

volume change (<1%) during lithium ion insertion/extraction and hence offers excellent

cycling stability (over 20,000 cycles). LTO anodes were popular initially on the belief that

the anode electrolyte interface would be free of any solid electrolyte interphase (SEI)

layer; however, this was found not to be the case. Rather, recent studies have reported

different types of deposits and layer formations on the surface of LTO electrodes, and

therefore this topic has received significant attention in recent years and has emerged

as an important research direction. However, these anodes, being very active catalysts,

are prone to undesirable reactions with electrolytes and problems such as gas evolution,

and associated swelling of the battery pack may occur. Also, the electrolytes have been

found to be one of the primary sources of problems, given that the electrolytes may

react with both the anode and cathode, creating serious stability and safety concerns.

The presence of moisture within the battery system, decomposition of the electrolyte

solvents and solutes, and high catalytic activity of the anode are among the possible

reasons behind the instability of LTO-based batteries. Development of an appropriate

chemical composition for the electrolyte and/or modification of the electrode/electrolyte

interface may overcome these issues.

Keywords: lithium titanate battery, lithium ion battery, stability, electrolyte, anode, solid electrolyte interphase layer

INTRODUCTION

The importance of lithium ion (Li+) batteries (LIBs) has been established for several
decades; however, efforts are ongoing to refine and improve the performance of the batteries.
A high energy density and a high power density are required to cater for the diverse
applications, ranging from miniaturized electronics, home appliances, to light and heavy
electric vehicles (Arico et al., 2005; Armand and Tarascon, 2008; Kang and Ceder, 2009).
The energy density of LIBs depends directly on the potential differences between the lithium
ion intercalation potentials of the positive (cathode) and the negative (anode) electrodes
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(Park et al., 2008). In this context, graphite has traditionally
been the preferred anode material for commercial use. The main
benefit of graphite is its very low intercalation potential (∼0.1V
vs. Li+/Li), which helps to obtain a high operating voltage
and hence a high energy density (Sawai et al., 1994). However,
this feature comes at the cost of several safety and stability
issues. Such low intercalation potentials result in a much higher
possibility of dendrite formation. The occurrence of dendrites
eventually leads to short-circuiting of the battery, and this is
a serious safety concern (Barai et al., 2017; Jana and García,
2017). At such a low potential, the electrolyte is reduced and
a solid electrolyte interphase (SEI) layer is formed (Aurbach,
2002), which in one sense is beneficial as it stops further reaction
of the anode with the electrolyte, but the layer also hinders
lithium ion insertion/removal, leading to a poor cycle life and
irreversible capacity during the first few cycles (Winter et al.,
1998). In addition, graphite is prone to changes in volume due
to the Li+ intercalation/deintercalation processes. This volume
change compromises the electrode’s mechanical stability, and due
to this, electrode materials shred from the current collector, and
this eventually compromises the battery life cycle (Jansen et al.,
1999; Scrosati and Garche, 2010). At this juncture, the use of
lithium titanate (Li4Ti5O12, LTO) as an anode turned out to be
an excellent alternative to the graphite anode. The LTO anode
operates at a much higher voltage (∼1.55V vs. Li+/Li) and hence
provides superior safety features by eliminating the production
of any type of dendrite formation. Moreover, the LTO anode has
been demonstrated to have excellent cyclic stability thanks to its
negligible volume change during intercalation, hence the good
structural stability. In addition, the LTO has been shown to have
a higher working temperature stability and higher charging rate
capability in comparison to the graphite anode (Hernandez et al.,
1996; Doh et al., 2002; Park et al., 2002; Yao et al., 2005). However,
the LTO is highly active and because of its catalytic activity, the
electrode can participate in many different types of reactions
with electrolytes and create instability and safety concerns within
the cell. Therefore, physical and chemical characterization of the
electrode/electrolyte interface is of critical importance in terms
of gaining an improved understanding of the stability and safety
issues which affect LTO-based batteries. In this mini review, we
will focus specifically on this interface and discuss the associated
stability of LTO-based batteries.

THE CHEMISTRY OF LITHIUM TITANATE
ANODES AND THE MECHANISM OF
OPERATION

LTO is a spinel oxide, having a crystal structure with an Fd3m
space group and cubic symmetry (Ohzuku, 1995; Sorensen et al.,
2006). In this structure, each unit cell contains eight formula
units of (Li)8a(Li1/3Ti5/3)16dO32e

4 . All 8a sites and 1/6 of the 16d
octahedral sites are occupied by lithium ions. The rest of the
octahedral 16d sites are occupied by tetravalent Ti+4 ions, and
the ratio of lithium ions to titanium ions is 1:5. The oxygen
ions are located at the 32e sites (Wang et al., 1999; Aldon et al.,
2004). The octahedral 16c sites and the tetrahedral 8b and 48f

sites are empty, and these sites can participate in Li+ insertion–
extraction processes (Jovic et al., 2003; Shu, 2009). One formula
unit of Li4Ti5O12, after accepting three Li+ insertions within the
structure, gets converted into the rock-salt structure with the
chemical formula Li7Ti5O12. These three Li+ insertions result
in a theoretical capacity of 175 mAh/g. This electrochemical
conversion from spinel-LTO to rock-salt-LTO is a two-phase
process whereby a solid solution is formed between these two
phases, and the phase transition corresponds to the voltage
plateau at 1.55V vs. Li+/Li. There is very little difference in
the lattice parameters between the two phases, that is, 8.3595 Å
for spinel-LTO and 8.3538 Å for rock-salt-LTO (Kubiak et al.,
2003); therefore, the phase change results in an almost negligible
volume change, which is 0.2% (Chen et al., 2013). In contrast,
Li+ insertion within graphite gives a volume change of about
∼10–13% (Schweidler et al., 2018). Therefore, LTO is known as
a “zero-strain” material for Li+ insertion (Sun et al., 2015). It is
worth mentioning that [TiO6] functions as the mainframe for
the Li+ insertions/extractions, and the lithium ions, which had
preoccupied the 8a sites (before the insertion process), move out
and then occupy the 16c sites during the insertion process; at the
same time, the three newly inserted lithium ions also fill-in other
available 16c sites via the 8a sites. A mutual repulsive force is
established between the newly inserted ions and the preexisting
ions at the 8a sites. This force knocks off the 8a sites’ ions and
moves them out to the 16c sites. The extraction process happens
exactly in the reverse direction; that is, three lithium ions from
the 16c sites leave the crystal, and other ions move back to the
8a sites (Shu, 2009). It is also of interest to note that during the
phase transition, three Ti4+ ions (spinel-LTO) are reduced to
Ti3+ (rock-salt-LTO) ions (Ohzuku, 1995; Zaghib et al., 1999;
Shu, 2009; Yi et al., 2010). The corresponding electrochemical
reaction is as follows:

(spinel− LTO)Li4Ti5O12 + 3Li+ + 3e ⇔ 2Li7Ti5O12

(rock− salt− LTO) (1)

This Ti4+/Ti3+ redox couple gives the steady-state plateau at
1.55V vs. Li+/Li, and therefore at this voltage, the LTO can
accept three inserted lithium ions, and this is the plateau that
LTO batteries utilize in their applications. However, it has been
shown that if the discharge voltage is extended to 0V, then
based on the reduction of all Ti4+ ions, the theoretical capacity
of 293–296 mAhg−1 can be obtained (Ge et al., 2009; Shu,
2009; Hsieh and Lin, 2010). This extension in discharge voltage
provides an opportunity to improve the energy density of LTO
batteries; however, the enhancement has been attributed to the
higher surface area derived from the nano-sized particles, or from
the epitaxial thin film’s specific planner orientations (Borghols
et al., 2009; Cunha et al., 2019). However, in both situations,
the higher surface area provides a higher risk of irreversible
capacity, as indicated in a previous report (Borghols et al.,
2009), and high irreversible capacity is undesirable for full cell
configurations. Therefore, the standard potential was kept at
the lower voltage of 1.55V vs. Li+/Li. LTO anodes may be
coupled to different cathodes, such as LiCoO2 (LCO), LiNiO2
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(LNO), LiMn2O4 (LMO), or LiFePO4 (LFP) to construct lithium
ion batteries.

ELECTROLYTE AND ELECTRODE
INTERFACE OF LITHIUM TITANATE
BATTERIES: SOLID ELECTROLYTE
INTERPHASE/SOLID ELECTROLYTE
INTERPHASE-LIKE LAYERS

Electrode and electrolyte interfaces have special importance for
LTO anodes, as they behave differently compared with the
interfaces for graphite anodes. For graphite interfaces, well-
formed SEI layers are observed, but for LTO-based anodes, this
is not always seen. LTO-based anodes have a charge–discharge
plateau at 1.55V vs. Li+/Li, and that value is higher than the
reduction potential for most electrolytes. As a result, LTO anodes,
unlike graphite, do not form stable SEI layers. Therefore, initially,
it was assumed wrongly that the LTO anode is a completely
SEI-free material. Later, however, many observations were made
that suggested the existence/formation of SEI layers or SEI-like
layers. These SEI layers are very important for LTO battery
safety and stability, given that LTO electrodes are highly catalytic
in nature. LTO anodes participate in several types of reactions
with the electrolyte of the cell and produce many different types
of composites and various associated gases. The bare surface
of the LTO is a major source of gassing phenomena in LTO
batteries (Ganapathy andWagemaker, 2012; Lu et al., 2012). The
outermost surface (∼3 nm thick) of the LTO is highly reactive
(He et al., 2012a), having active surface-terminating ions, such
as Li+, O2−, and Ti4+ on the (111) crystal plane of the LTO
anode; these ions have been proposed as catalysts for gaseous
CO2 production. Other sources proposed include electronic
holes on the oxygen-rich LTO surface; these holes can lead to
electron exchange processes with electrolytes to generate CO2

(Kitta et al., 2014). Surface energy states of LTO anodes can
control reactions such as dehydrogenation and decarbonylation
(Qin et al., 2011; He et al., 2012a) and can generate H2 and
CO. Thus, the LTO surface itself behaves as a catalyst for gas
generation processes and produces many different gases; the
associated detailed mechanisms for gas formation are described
elsewhere (Qin et al., 2011; Ganapathy andWagemaker, 2012; He
et al., 2012a; Wu et al., 2013a; Guo et al., 2015; Lu et al., 2015;
Tikhonov and Lin, 2015).

Clearly, it is very important to protect the electrolyte from
this highly reactive LTO surface. As indicated above, however,
the mechanical stabilities of these SEI-like layers are very
different from each other, especially given that various cell
configurations and different operating conditions including
different temperatures, charging rates, etc., are used. It is worth
noting that some of the layers consist of deposits, which
form stable SEI-like layers. Occasionally, the layers have been
found to consist of loosely bound material (Kitta et al., 2012),
which was deposited on the anode surface. In some occasions,
the deposits were not generated from the anode interfaces,
but rather from the layers’ constituent particles/components

which were found to have migrated from the sides of the
cathode. For example, in a series of studies, Dedryvère et al.
(2010) showed that the SEI layers formed had two components,
namely, an organic part and an inorganic part. The inorganic
component (“LiF”) originated from the decomposition of LiPF6
and was formed on the top of the LTO-based anode surface.
However, the organic counterpart, which was produced due to
the oxidation of the organic solvents, originated from the sides
of the cathode (Dedryvere et al., 2005; Dedryvère et al., 2010;
El Ouatani et al., 2009). Similar observations were made when
LTO anodes were cycled against two different cathodes with
LTO/LMO and LTO/nickel manganese cobalt oxide (NMC) cell
configurations. In both situations, the inorganic components
of the SEI were observed on the top surface of the LTO and
the organic components were present deep within the SEI.
The bulk compositions of both SEI layers were similar, but
the respective morphologies were dependent on the cathodes.
For the LTO/LMO configuration, the layer was thicker and
contained small amounts of manganese compounds which had
originated from the positive electrode since the first cycle.
The manganese was produced as a result of dissolution of
the LMO positive electrode with subsequent migration of the
manganese ions through the electrolyte to the negative electrode
during the cycling. In addition, the presence of titanium (from
dissolution of the LTO electrode) at a low level was detected
on the surface of the positive electrode. Even if this layer at the
surface of the positive electrode had only a minimal impact on
the electrochemical performance of the cell, this was another
example of interaction between the electrodes, that is, from
the positive electrode to the negative electrode and vice versa
(Gauthier et al., 2020a). Electrode interactions (crosstalk) were
found to be responsible for a greater degree of parasitic reactions
at the LTO electrode, relative to the LiNi0.5Mn1.5O4 (LNMO)
electrode within an LTO/LNMO full cell. A greater amount of
reactions resulted in lower coulombic efficiencies, which was
again increased in an elevated temperature atmosphere (Aktekin
et al., 2018). The interaction between the anode and the cathode
was further confirmed in another study where the various upper
cutoff voltages were used during constant current cycling. Below
4.3V (potential of NMC electrode vs. Li+/Li), good capacity
retention and low impedance were observed. However, at a
higher cathode potential, serious capacity loss and a critical
increase of electrochemical impedance were observed. These
changes in performance occurred due to electrolyte degradation
at the NMC cathode. The study indicated that the electrolyte
(LiF and fluorophosphate) and solvent (–CO containing species)
degradation products, and the NMC dissolution products, such
as manganese or nickel species, were formed at the NMC
electrodes which then migrated to the anode surface (Gauthier
et al., 2020b). It was also observed that the formation of an
SEI layer was dependent on the particle morphology and the
discharge profile (He et al., 2012a, 2013). On some occasions,
it has been observed that, even though the compositions of the
formed SEI layers can be similar, the same SEI layer may affect
battery performance to differing extents; in one scenario, an
improvement in performance was observed, whereas in another
situation, performance degradation became an issue (Belharouak
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et al., 2012). However, all these observations clearly indicate
the presence of some type of surface layer and demonstrate
that the assumption of an “SEI-free anode” was not correct.
Given this situation, in-depth studies on the surface chemistry
of LTO anodes have been performed in recent years, and
interesting observations have been made. It can be stated
categorically that the formation of SEI layers in the case of
LTO anodes follows different mechanisms to that for graphite
anodes, and both the anode and cathode contribute to the
formation pathways.

It is worth mentioning that these SEI-like layers play very
important roles within an LTO anode-based system. The SEI-
like layers can be the key to protecting the anode, which would
otherwise be prone to reacting with the different components of
the electrolytes to generate gases. Such gases tend to create many
safety issues for LTO batteries. It has been observed that in the
first stage, gas generation processes resulted in a sharp increase in
the internal pressure of an LTO/NMC battery pouch, resulting in
detaching of the internal components of the battery. The active
interface between the anode and the electrolyte got isolated by
the gas layers. Such loss in direct contact severely affected the
migration of lithium ions. In the second stage of gas generation,
when internal pressure (pressure inside the pouch cell) equaled
external pressures (pressure outside the pouch cell), a constant
rate gas generation was observed. In the third stage, an SEI film
was slowly formed on the surface of the LTO during the gassing
process, which eventually reduced the direct contact of LTO with
the electrolyte, and lowered the interaction between LTO and
the electrolyte, and thus the gassing rate (Liu et al., 2017; Wang
et al., 2019). It was also observed that the gassing mechanism
was different in different stages of gas generations, resulting in
different gas compositions at different stages (Liu et al., 2017;
Wang et al., 2019). It was also observed in the gas generation
process that the relative amount of the component gases was
different during different stages of the cycled time, when
the LTO/NMC pouch was cycled and gas compositions were
considered for a time window of 75–553 h (Figure 1A) (Wang
et al., 2019). In another work in a similar observation, it was
found that LTO electrode initiated the side reactions to produce
gases, and the deposits formed SEI film, which slowly covered
the electrode/electrolyte interface. The film suppressed the direct
contact in the interface, pushing the internal pressure to gently
increase during the following cycles. The SEI layer eventually
became denser and covered the interface completely, suppressing
side reactions and stabilizing internal pressure (Wang Q. et al.,
2017). It was also possible to distinguish between the irreversible
pressure changes within a pouch cell due to gas formation and
the reversible pressure changes caused by structural changes of
the electrodes, namely, the deposition and dissolution of lithium
(Schiele et al., 2017). It has been consistently noticed that at
the elevated temperatures, gas generations have been accelerated
and hence more instabilities can be observed at the elevated
temperatures compared to the room temperatures (He et al.,
2015; Lv et al., 2017; Xu et al., 2017; Wang et al., 2019).

Therefore, it is very important to understand the role of
the electrolyte and the associated instabilities at the interfaces.
Further, depending on the nature of the interaction between

the electrode and the electrolyte, it is sometimes beneficial
to construct artificially an SEI-like layer to promote assisted
formation of a protective layer on the anode surface. These types
of externally assisted artificial layers can be deposited/coated in
different ways. Also, various surface modifications of the anode
can induce the formation of stable SEI layers (Charles-Blin et al.,
2019). It was observed that, for the purpose of suppressing the
gas generation of LMO//LTO/C LIB systems, a high-potential
formation protocol was developed, which resulted in a stable
SEI film on the surfaces of LTO/C materials. A formation
potential above 3.0–3.2V was applied, and a larger portion of
the flexible polyethylene oxide (PEO) component was formed in
the interface layer, resulting in less gas generation and improved
cycling performance (Wen et al., 2019). Further, there are several
options for modifying the composition of the electrolytes with
chemical additives to realize stable SEI layers. These procedures
are discussed in the next section.

ELECTROLYTE COMPOSITION AND
STABILITY OF LITHIUM TITANATE
BATTERIES

The stability and safety of a battery system are largely dependent
upon the composition of the electrolyte, and LTO batteries are no
exception. The most common electrolyte used in LTO batteries
is LiPF6 dissolved in various alkyl carbonates such as ethylene
carbonate (EC), propylene carbonate (PC), dimethyl carbonate
(DMC), diethyl carbonate (DEC), and ethyl-methyl carbonate
(EMC) (Goodenough and Kim, 2010; Shkrob et al., 2013; Kalhoff
et al., 2015). Here, both the solute and the solvent play key roles
in influencing the stability of the electrolyte. In the case of LiPF6,
the solute can dissociate in accord with the following equation:
LiPF6 ⇌ PF5 + LiF. The equation has a high value for the
equilibrium constant with PF5 being produced in the system.
PF5 is highly reactive with organic solvents and, in addition,
can react with different SEI components to produce gases (Sloop
et al., 2001, 2003; Okamoto, 2013; Wilken et al., 2013; Wang R.
et al., 2015). Also, alkyl carbonates including their decomposition
products decompose faster in the presence of LiPF6 (Belharouak
et al., 2012). PF5 has been reported to react with the SEI-like
layer of the LTO anode and release CO2 gas (Wang R. et al.,
2015).

The solvent perhaps plays an even bigger role in terms of
the stability and safety of the LTO batteries. For example, a cell
with DMC as solvent has shown larger swelling for a pouch cell
battery compared to the situation when PC has been added to
it. Also, the nature of the evolved gas is influenced highly by
the solvent in use and on the relative amounts of the solvents
present in a mixture. For example, when the mix ratio of PC–
DMC and PC–DEC changed from 1:1 to 1:4, C3H6 evolution was
observed instead of H2 due to the different solvent activities (Wu
et al., 2013b). The type of solvent can also control the rate of
gas evolution, as well as the total volume of gas evolution from
a cell. EC and PC behaved very differently when they were mixed
with EMC, DMC, and DEC. For instance, EC yielded a larger gas
volume relative to that for PC. The mixture EC–DMC exhibited
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FIGURE 1 | (A) Lithium tantanate (LTO)/nickel manganese cobalt oxide (NMC) pouch cell, the relative amount of the component gases during different stages of the

cycled time. (A) is plotted from the data of He et al. (2012a), Wang et al. (2019). (B) Total emitted gas volumes from an NCM/LTO battery when LTO is soaked under

conditions with only solvents (blue) and within the electrolytes (red) for 3 months. (C) Relative amount of gas emissions from an NCM/LTO cell under conditions

(A,B,D,E) are plotted from the data of He et al. (2012a). (D) Comparison of capacity retentions and associated images of formed solid electrolyte interface (SEI) layers

for the two systems; with and without additives. Reproduced from Wang R. et al. (2015). (E) Effect of temperature on cycling of an LTO electrode; samples were

cycled at 23◦C and an elevated 55◦C. Reproduced from Wang et al. (2019).

the highest gas volume, and PC–DMC showed the lowest gas
volume, as a result of the high quality of the protective layers
(Wu et al., 2013b). It was also observed that more gas was evolved
when the cell was stored at a higher state of the charge, and the
corresponding cell also demonstrated that the presence of PC had
less gassing than cells stored in the presence of EC, which can be
attributed to the fact that PC-based electrolyte formed a thicker
and denser surface film on LTO compared to the EC-based

electrolytes (Liu et al., 2015). In an LTO/LCO system, a similar
observation was made. There, FEC-based electrolyte exhibited
more generated gas than EC- and PC-based electrolytes, with
PC-based electrolytes producing a minimum amount of gas (Li
et al., 2017). In addition, the types of solvents control the nature
of the emitted gases. Solvents with cyclic carbonate components,
such as PC, emit alkene gases, while linear carbonates such as
DMC emit H2, CH4, and other alkyl gases (Wu et al., 2013b).
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For example, in the case of EC-based cells, the dominant gases
are CO2 and CO. Compositions of emitted gas mixtures change
with change in the solvents such as for PC-based cells where
the dominant gases are CO together with smaller amounts of
CO2 and C3H8/C3H6. Figure 1, which is based on data reported
elsewhere (He et al., 2012a), depicts such behavior for an LTO
battery. For the same anode and cathode couple comprising LTO
and Li(Ni1/3Co1/3Mn1/3)O2 (NCM), respectively, the amount
of total emitted gas varied widely depending upon the nature
of the solvent used. Also, it was observed that the amount of
emitted gas varied when only solvent and electrolyte (solvent with
the salt) were used. Figure 1B shows how battery chemistry and
conditions can influence the nature and amount of different gas
species (He et al., 2012a).

Sulfone-based electrolytes find application with more
stable LTO anodes for high-energy battery applications
which require the highest levels of safety. Sulfone-based
solvents are electrochemically more stable at higher voltages,
being less prone to oxidation at higher voltages compared
to that of carbonate solvents and can provide better high-
voltage stability for cathodes (Demeaux et al., 2013). In
an LTO/LNMO cell, the flammability and electrochemical
performance of a tetramethyl sulfone (TMS)-based electrolyte
was tested. The exceptional electrochemical stability of the
sulfone electrolytes and their compatibility with the LTO
is the main reason behind the outstanding electrochemical
performance observed with high-voltage spinel cathode
materials (Abouimrane et al., 2009). Electrolytes such as lithium
bis[(trifluoromethyl)sulfonyl]imide (LiTFSI) in glutaronitrile
(GLN) or in 2-methylglutaronitrile (MGLN) were investigated
for use in the Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 (LTO/NMC)
battery. These electrolytes provided alkyl carbonate and LiPF6-
free LTO batteries, as well as larger operational temperatures
(Farhat et al., 2019).

The water content within the system is a very critical factor
regarding the stability of the LTO battery. Trace amounts
of water can be present within both the electrodes and the
electrolyte. This water can be detrimental in high-voltage window
aprotic electrolytes (free water can be highly reactive to LiPF6
salt and lithium alkyl carbonates) (Kawamura et al., 2006).
Water can cause the hydrolysis of the LiPF6 salt present in
the electrolyte and, thereafter, can decompose the electrolyte
solvents (Aurbach, 2000; Verma et al., 2010). Synthesis of
nanostructured LTO-based electrode materials, for example,
the Li2O–TiO2 composition line, often requires water-based
synthesis routes. Processes such as hydrothermal and sol-gel are
used and, therefore, there can be some reactive intermediate
composites, like Li2O–TiO2-H2O (lithium titanate hydrates or
LTH), which can have water trapped within their structure.
This trapped water can be categorized as two different groups,
the loosely bound group which includes crystallographic water
and adsorbed water and the other group consisting of deeply
trapped water inside LTHs or pseudohydrates (i.e., hydroxide or
hydroxonium ions or –OH and –H groups) (Franks et al., 1973;
Cho et al., 2003). Recent research has clearly demonstrated that
deeply trapped water is not problematic in terms of the stability
of the LTO batteries, rather the work has demonstrated the

advantages of such trapped water, which can promote a structural
diversity of hydrated crystals (2D layered), and dehydration-
induced phase transformation and nanostructure refinement
(Wang S. et al., 2017).

However, loosely bound water and trace amounts of water
present in the electrolyte are the main sources of the problems.
The water itself can lead to water splitting reactions due to the
higher working potential range of the LTO batteries (Belharouak
et al., 2012; Bernhard et al., 2014). In addition, the LTO
surface can work as a catalyst and promote water splitting, as
observed for TiO2 which acted as a photocatalyst for water
splitting in the production of H2 (Khan et al., 2002). It was
found that the amount of gas generation was a direct function
of the trace levels of water present within the electrolyte. In
an experiment, where different LTO batteries with different
controlled amounts of trace levels of water were annealed, a
99% increase in the cell volume was observed when the trace
amounts of water were increased from 15 to 20,000 ppm (Wu
et al., 2013b).

ASSISTED FORMATION OF SOLID
ELECTROLYTE INTERPHASE LAYERS
INCLUDING MODIFICATIONS AND/OR
COATINGS ON THE SURFACE OF THE
LITHIUM TITANATE

The gas evolution takes place mainly at the electrode/electrolyte
interfaces of the LTO battery system. Therefore, the main
function of a stable SEI or SEI-like layer on the LTO surface
is to prevent or at least to reduce direct contact between
the electrodes and the electrolytes. Coatings on the LTO
surfaces can be a promising way to form a stable layer on
the LTO surfaces which would prevent the electrode surface
from the direct contact of the electrolyte. Coatings on the LTO
anodes are preferably made of chemically inactive materials
to avoid unwanted side reactions. These materials should be
good conductors for Li+ transport and have high electron
mobility, and these materials should provide enough protection
to the electrode from the electrolyte, especially for operation at
high temperatures.

Carbon materials are an excellent choice for coating purposes
where the LTO surface is concerned (Jung et al., 2011; Zhao
et al., 2011; Li et al., 2013; Sun et al., 2015). Carbon sources
are not only chemically inactive but also good electrical
conductors; in addition, the porosity of carbon can enhance Li+

transport significantly (Jung et al., 2011). It has been shown
that LTO electrodes with carbon coatings can show resistance
to gas formation and ensure higher stability for the battery.
The electrolyte/electrode interface was coated with amorphous
carbon, which successfully covered the catalytically active gassing
sites on the LTO anodes. In this way, the anode surfaces, which
were covered by the amorphous carbon, further suppressed the
gassing phenomena, and hence provided an enhanced stability.
It was reported that these amorphous coatings were stable and
provided a stable SEI-protective layer (He et al., 2012a,b). As
a result, the NCM111/(LTO/C) battery exhibited better cycling
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stability than the NCM111/LTO battery over 400 cycles (He
et al., 2012a). Carbon coatings are beneficial due to their
good conductivity, low-temperature performance, and good rate
capabilities, and it is worth emphasizing that the thickness of the
coating plays a key role in terms of controlling the performance
of such electrodes (Yuan et al., 2010; Jung et al., 2011; Zhao
et al., 2011; Li et al., 2013; Sun et al., 2015; Cheng et al.,
2017).

Also, other ceramics and oxide materials may be used to
coat the LTO surface for the purpose of suppression of gas
generation (Han et al., 2015; Xiao et al., 2015; Charles-Blin
et al., 2019). An SiO2-coated LTO has shown better Li+ diffusion
and greater cyclic stability over 100 cycles. The improved
electrochemical performance and stability were attributed to
the coated layer on the surface of LTO, which prevented
further decomposition of the electrolyte on the LTO surface,
and thus stopped formation of unwanted solid deposits on
the surface (Li et al., 2015). Similar observations were made
when an ultrathin Al2O3 oxide layer was formed on the LTO
surface, serving as a passivation film stabilizing LTO structure,
and simultaneously suppressing unwanted chemical reactions
(Ahn and Xiao, 2011). In another work, ZrO2 was coated on
the LTO surface, which similarly suppressed the formation of
unwanted interphase layers and improved electron transport
through the ultrathin coating (Liu et al., 2013). Aluminum-
doped zinc oxide (AZO) films were coated on the surface of
LTO particles via atomic layer deposition, and the coated film
with an optimal composition and film thickness exhibited higher
capacity and better capacity retention, exhibiting a high capacity
at 55◦C after 250 cycles, which was 61% higher than that of
uncoated LTO (Jin et al., 2019). A zinc oxide (ZnO; 2 wt.%)
coating was tested, and it was shown to provide stability for
200 cycles, whereas in the absence of the coating, the stability
lasted only 50 cycles (Han et al., 2015). A chemically formed
TiO2 coating was used to obtain a high discharge capacity of
212 mAhg−1 at 10C rate while the bare-LTO delivers only
138 mAhg−1, along with ultra-high rate capability (150C) and
a long cyclic stability of 1,000 cycles (with 80% retention).
Moreover, the TiO2 coating was helpful in decreasing charge
transfer resistance, and there was no phase transition observed
on the surface even at an elevated temperature (Gangaja et al.,
2019).

Other than coating, surface modifications and controlling
other parameters were the ways to achieve stability of the LTO
electrodes. To generate an SEI layer, fluorination of the LTO
surface was performed using XeF2, which resulted in suppression
of side reactions with the electrolyte. Moreover, the “Li-F”
environment on the LTO surface did not alter the LTO structure,
which retained its “zero-strain” characteristics (Charles-Blin
et al., 2019). Variation of the temperature of the charge–discharge
cycle is another way to control the quality and structure of the
SEI layers. An LTO half-cell was cycled at different temperatures,
namely, room temperature, 60◦C, and 85◦C, and it was observed
that a thicker SEI layer was obtained at a higher temperature. It
was also confirmed that the thicker electrode gradually passivated
the LTO surface compared to the low-temperature cycled anodes
(Gieu et al., 2016). A similar result was obtained for a full cell

configuration (LTO/LMO system), where higher temperature
cycling provided a thicker SEI layer; also, differences in the
chemical composition and in-depth spatial distribution of the SEI
layers were observed for different temperatures (Gauthier et al.,
2020c). Table 1 (section A) summarizes some of the performance
improvements after surface treatments/formation of coatings.

ADDITIVES IN THE ELECTROLYTE

It has been observed that the addition of specific additives
to the electrolyte has greatly influenced the performance of
LTO batteries by facilitating the formation of stable, protective
layers on the electrode surface, such layers being considered
as a form of SEI. For instance, it was found that without
additives, lithium acetate-based LTO (LA-LTO) initially did not
form a stable SEI film until the 160th cycle (He et al., 2013).
However, after the addition of 2% vinylene carbonate (VC) in
the electrolyte composed of 1M LiPF6 in EC/DMC/EMC, the
SEI layer gained the required stability, and the total charge
storage capacity was improved. However, it is of interest to
note that lithium hydroxide-based LTO (LH-LTO) did not
require any additive and exhibited excellent stability (He et al.,
2013). The addition of VC increased the relative amount of
organic species (at the expense of LiF) within the SEI layer
formed on the surface of the LTO electrode compared to the
scenario for the electrolyte without VC (Gieu et al., 2017).
P-toluenesulfonyl isocyanate (PTSI) was used to form a thin
and stable SEI layer, which improved the cycling performance
of a Li/Li4Ti5O12 cell (with 0.5 wt.% PTSI) after 400 cycles
(Wang R. H. et al., 2015). Succinonitrile (SN), an additive
with a nitrile group, formed a barrier layer as a result of the
reaction between Ti3+ on the LTO and the nitrile group (Gao
et al., 2015). Methylene methanedisulfonate (MMDS) formed
a thin SEI layer with good conductivity, and this provided
improved stability and better Li+ diffusion (Okamoto, 2013).
Schiff base [1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)] additive
was used to induce polymerization of the cyclic carbonates
in the electrolyte, which resulted in the formation of an SEI
layer on the surface of LTO, then leading to reduced gas
formation. However, the addition of DBU also reduced cell
capacity. Therefore, the concentration of the additive was
reduced and a compromise between capacity retention and
gas generation was achieved (Daigle et al., 2017). Therefore,
addition of additives was not always a straightforward beneficial
event. Such as, in an LTO/LMO system, when the additives
lithium bisoxalato borate (LiBOB) and lithium difluorooxalato
borate (LiDFOB) were incorporated, it resulted in the generation
of a thicker surface film, which prevented H2 evolution and
produced less H2. However, at the same time, an increase in CO2

evolution was observed in the system due to the incorporation
of oxalato borates, and a net increase in gas evolution upon
long-term cycling was observed. Whereas in the same system,
incorporation of Tris(trimethylsilyl)borate (TMSB) resulted in
a larger reduction in cell gassing, but that was accompanied by
the lowest capacity retention (Milien et al., 2018). Therefore,
an optimization of the performance and gas reduction turned
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TABLE 1 | Section A: modification and/or coating on the LTO anodes, and corresponding performance summary.

Anode chemistry Performance summary References

LTO/coating of thin layer of carbon (sucrose

as carbon source)

Conductivity of composite anode increased by three orders. Improved low temperature

performance and improved kinetics (high charge/discharge rate) were obtained. Yuan et al., 2010

Amorphous carbon coated LTO (C-LTO) and

carbon nanotube coated LTO (CNT-LTO)

Both exhibited good initial discharge capacity more than 200 mAh/g. However,

amorphous carbon later exhibited high irreversible capacity; whereas CNT-LTO had

good reversibility.

Sun et al., 2014

Nitrogen-doped carbon-coated LTO Superior rate performance and improved capacity retention
Zhao et al., 2011; Li

et al., 2013

Microscale C-LTO particles (pitch precursor) Excellent conductivity and high rate capability (100C)
Jung et al., 2011

Carbon encapsulated LTO Conductive carbon coating reduced the charge transfer resistance making it favorable

for the electron and Li+ ions transportation Cheng et al., 2017

SiO2/LTO

Al2O3/LTO

ZrO2/LTO

These layers prevented direct contact between electrode/electrolytes, stopped

unwanted side reactions, and material depositions Ahn and Xiao, 2011; Liu

et al., 2013; Li et al.,

2015

Aluminum-doped zinc oxide (AZO)/LTO With an optimal composition and film thickness, exhibited a higher capacity and better

capacity retention. Jin et al., 2019

LTO/ZnO-2 wt% Without ZnO coating specific capacity degraded after 50 cycles. With 2 wt% ZnO

coating it was stable until 200 cycles and beyond probably (it was tested until 200

cycles).

Han et al., 2015

Atomic layer fluorination on LTO surface The resulting “Li-F” environment lead to improve the coulombic efficiency
Charles-Blin et al., 2019

Section B: Additives, used in electrolytes, and corresponding performance summary

Additives Performance summary References

2% vinylene carbonate (VC) Without VC, formed SEI layer was porous and of poor quality and SEI layer formation

took long time (after 160 cycles)

Whereas, 2 wt% VC promoted firm SEI layer, and improved capacity, rate performance,

and stability.

He et al., 2013

0.5 wt% PTSI With additive thinner SEI layer was formed. PTSI exhibited a 1.25V SEI formation

voltage. SEI layer suppressed HF formation and electrolyte decomposition. Wang R. H. et al., 2015

0.5 wt.% succinonitrile With the addition of additive, the gassing behavior of the LTO was suppressed and the

cyclic performance was improved. Gao et al., 2015

0.5 wt.% MMDS The additive provided SEI layer with good conductivity, better Li+ ion migration and

improved stability.

MMDS suppressed reduction decomposition of the electrolyte and reduced the

consumption of electrolyte compared to the without additive scenario

Wang R. et al., 2015

2% glutaric anhydride (GA) Passivation films were formed at the surface of both anode and cathode. The resultant

film was thick, but a good conductor thanks to better ionic conductivity of the film, and

provided better cyclic stability

Bouayad et al., 2014

out to be important. Other additives studied have included
glutaric anhydride (GA) (Bouayad et al., 2014), phosphazene
(Tan et al., 2012), chloro[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]
dimethylsilane (Chen et al., 2012), and chlorosilane (Qin et al.,
2011), all of which have had a positive impact in suppressing
gassing. Table 1 (section B) summarizes a few key observations
and performance attributes for the additives used for obtaining
stable SEI layers in LTO battery chemistry.

OUTLOOK

LTO anodes provide the most promising alternative chemistries
to graphite-based anodes. Even though in the above discussion
we have highlighted several stability issues, most of the problems
can be addressed by taking appropriate corrective measures. It

was also found that suitable surface modifications or coatings
on the LTO surfaces can prevent unwanted contact between the
electrolytes and the electrodes, and this aspect can significantly
improve battery stability and resolve safety issues. We also
observed that modifications of the electrolyte chemistry via
suitable additives are the key to forming stable SEI layers, which
can prevent gassing phenomena and enhance the stability of
the LTO anodes. Electrolytes, which may operate at very high
potential, provide an option for operating the cathode at very
high voltage, and this has the potential for improving the overall
energy density of LTO-based batteries. Developing new additives
is a promising future research direction for LTO batteries, and
additives which reduce the flammability of solvents are the key to
operating cathodes at a high voltage. Even though LTO batteries
are discharged mainly at the 1.55V vs. Li+/Li plateau, the
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discharge potential can be lowered to improve capacity. However,
the lower discharge potential should be achieved by avoiding
dendrite formation and improving the associated irreversibility.
It is worth emphasizing that the absence of dendrite formation is
one of the key advantages of LTO batteries. Nevertheless, the fast
charging ability, safety, and very high cycle life of LTO batteries
make them an ideal choice for electric vehicles (EVs, PHEV,
etc.) and stationary energy storage applications. Also, the very
high cycle life makes them an ideal candidate for second life
battery applications.
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