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The exceptional characteristics and uniqueness of two-dimensional nickel-cobalt

layered double hydroxides (Ni-Co LDHs) make them highly desirable material for

supercapacitors. A combination of Ni-Co LDHs with carbon-based materials has

given stupendous improvement to the performance of supercapacitors in terms of

specific energy, specific capacitance, and specific power. Herein, a comprehensive

insight into the recent progress of Ni-Co LDHs/carbon composites for supercapacitors

is provided to the readers. Beginning with the description on the classification of

supercapacitors and the detailed explanation on LDHs and carbon materials. The

morphology, properties and electrochemical performances of the Ni-Co LDHs/carbon

composites are well-elaborated in this review. The review also discusses the structural

identification and important factors that influence the synthesis of LDHs.
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INTRODUCTION

Abundant fossil fuels in the earth converted agricultural society to an industrial society, known as
the industrial revolution. Since then, due to the growing need for energy to support economic
growth and sustainable society, non-renewable fossil fuels are limited in supply. Based on the
report provided in the British Petroleum (BP) Statistical Review of World Energy 2018 by the BP
Company PLC, the growth of global primary energy consumption was estimated to increase in
the rate of 2.2% as of 2017 and, the world set the highest fuel consumption record for natural gas
(BP, 2018). Throughout industrialization, an alarming level of fossil fuel consumption is associated
with environmental issues. The massive carbon dioxide emission from fossil fuel consumption
has caused major climate change faced by today’s world and this is also responsible for global
warming and pollutions. This has triggered the quest for effective usage of renewable energy
sources to replace fossil fuels. Despite the cost and efficiency, energy storage is the main hurdle in
keeping up with renewable energies. Therefore, electrochemical energy storage systems are usually
integrated with renewable energy sources to store and to deliver the energies efficiently. In that
context, the development of nanotechnology, exploration for nano-sized materials, devices and
systems has shed light on producing energy conversion and storage systems. Notably, in recent
years, many significant efforts have been devoted to developing next-generation high-performance
energy storage devices, particularly electrochemical supercapacitors. In 1957, General Electric
had introduced the first double layer capacitor and patented the work (Becker, 1957). However,
the outbreak of the era of supercapacitors is from Standard Oil of Ohio (SOHIO) when they
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commercialized double layer supercapacitors as an official energy
storage device (Pandolfo and Hollenkamp, 2006). Since then, it
continues to tempt the attention of scientific communities as
pointed by the number of articles published in supercapacitors
(Figures 1A,B). To date, the devices exemplified as state-of-
the-art for its impressive performance and also regarded as a
highly promising electrochemical energy storage system among
the available energy storage devices. It has unearthed profound
impacts on today’s world.

ELECTROCHEMICAL SUPERCAPACITOR

Electrochemical supercapacitors or more commonly known
as supercapacitors differ from conventional capacitors in
terms of performance. Generally, conventional capacitors and
supercapacitors are governed by the same principals. Both
systems are separated by a separator between the two conductive
electrodes. However, the separator in the conventional capacitor
is an insulating dielectric material, for instance, ceramic
and glass. Contrarily, in supercapacitors, the two conductive
electrodes are separated by a permeable insulating separator

FIGURE 1 | (A) Trends in the number of articles published on supercapacitor, (B) proportions of overall publications by countries from 2004 to 2019 using the keyword

“supercapacitor.” (Data is collected from Scopus on 30 November 2019.), (C) schematic diagram of electrochemical supercapacitor, and (D) conventional capacitor.

soaked in an electrolyte. Adding to this, the conductive
electrodes of a supercapacitor mainly consists of highly porous
electrodes with a high surface area instead of planar plates
used in conventional capacitors. The permeable separator in
supercapacitors allows ions from the electrolyte to move across
the separator penetrating the material utilizing the porosity
upon electrode polarization (Figure 1C). Whereas, when the
electrodes are polarized in conventional capacitors, the charges
will accumulate along the surface of dielectric material, creating
electric fields as shown in Figure 1D (Kim et al., 2015). The
superiority of supercapacitors accessing the porosity of electrodes
makes it better performance than conventional capacitors.

The principles of supercapacitors have been widely reviewed
in literature (Wang et al., 2012; Yu et al., 2015; Liu
et al., 2018a). Briefly, supercapacitors are classified into two
types, electrochemical double layer capacitors (EDLCs) and
pseudocapacitors based on their charge storage mechanisms.

i. EDLCs stores energy by forming an electrochemical double
layer at the interface of an electrode and electrolyte. An
EDLC utilizes high-surface-area carbon-based materials as
electrodes. It has excellent cycling stability that is able
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FIGURE 2 | Configuration, types, performance, and factor affecting electrochemical performance of supercapacitors.

to withstand a thousand continuous cycles without any
significant changes in performance. However, EDLC has
inadequate specific energy (Simon and Gogotsi, 2008).

ii. The charge storage of pseudocapacitors is based on the
fast and reversible redox reactions of electroactive materials.
Conducting polymers and transition metal oxides/hydroxides
are common pseudocapacitive materials. In contrary to
EDLC, pseudocapacitors have excellent specific capacitance.
However, the poor cycling stability of pseudocapacitors
due to the reversible oxidation-reduction reaction at/or
near the electrode surface causing swelling and shrinkage
of the materials. As a consequence, pseudocapacitors
exhibit lower specific power performance than EDLC
(Simon and Gogotsi, 2008).

By combining the energy storage mechanisms of EDLCs and
pseudocapacitors, hybrid supercapacitors are produced. Hybrid
supercapacitors were introduced as an effort to enhance the
performance of the existing EDLCs and pseudocapacitors. It
can be assembled symmetrically or asymmetrically depending
on the configuration assembly (Figure 2). A symmetrical
supercapacitor is configured with two similar electrode materials
consisting of EDLC materials or pseudocapacitive materials
(Sun et al., 2017). Whereas, an asymmetrical supercapacitor is
made with different anode and cathode electrode materials (Fan
et al., 2011). Theoretically, hybrid supercapacitors have better
energy storage performances than EDLCs and pseudocapacitors
(Kulandaivalu and Sulaiman, 2019). The alluring characteristics
of electrochemical supercapacitors outperformed the lithium-
ion batteries in terms of its high specific power (> 10 kW
kg−1), fast charging-discharging abilities (within few seconds)

and long shelf life (>100,000 cycles) (Liu et al., 2016). However,
it is still competing with lithium-ion batteries to achieve
better specific energy.

Pointing on the specific energy and specific power, these two
are the most imperative parameters comparing the performances
of energy storage systems and it is commonly represented in
a chart known as the Ragone plot. The specific energy (Wh
kg−1) typifies the energy capacity that the device is able to
hold, whereas specific power (W kg−1) represents the rate of the
energy deliverable at a constant current density. This information
is usually derived from galvanostatic charge-discharge (GCD)
curves by the following equations:

Specific energy =
0.5 ×

(

1V2
)

× Csp

3.6
(1)

Specific power =
E × 3600

1t
(2)

where 1V is cell operation potential, Csp is specific capacitance,
E is specific energy and 1t is the discharge time (Luan et al.,
2013). Based on Equation (1), specific energy can be enhanced
by increasing the specific capacitance and cell operation potential
(Guo et al., 2019b). The ability of the materials to accommodate
the charges is reflected by the specific capacitance. Hence, the
electrode material is significantly important to enhance the
specific capacitance. Selecting electrode materials should be
placed equally on the porosity and surface area of the materials
(Shi et al., 2011). However, it is worth to note, not all the
surface area of the materials is accessible to the ions from
the electrolytes (Lobato et al., 2017). Therefore, the effective
surface area is the most accurate term to describe the influence

Frontiers in Materials | www.frontiersin.org 3 June 2020 | Volume 7 | Article 147

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Kulandaivalu et al. LDH/Carbon for Supercapacitors

of the surface area of materials on the specific capacitance
enhancement. Notably, pore size playing a crucial role for
the electrolyte ion accessibilities within the materials utilizing
the surface area, and thus increases the specific capacitance.
Young et al. (2018) reported that the pore size of materials
should be larger than the size of electrolyte ions for ions
penetration. However, the best or suitable material pore size is
still in disagreements (Largeot et al., 2008); thus, the authors
concluded that each electrode material has its own critical pore
size for ion penetration. Additionally, the electrode materials
should also possess good electrical conductivity and satisfactory
stability for high-performance supercapacitors. Apart from this,
an alternative approach to increase the specific capacitance is by
widening the cell operation potential. The operating potential of
a supercapacitor relies on electrolyte (Pandolfo and Hollenkamp,
2006). The selection of electrolytes is based on (i) type of
electrolyte, (ii) compatibility of electrolyte with the electrode
material, (iii) the size of electrolyte ions and (iv) contacts between
electrolyte and electrode material. As reviewed by Zhong et al.
(2015), the electrolyte can be classified into liquid electrolyte
comprising aqueous electrolyte (acid, alkaline and neutral) and
non-aqueous electrolyte (organic electrolyte and ionic liquids),
solid-state electrolyte (dry solid polymer electrolyte, gel polymer
electrolyte and inorganic electrolyte) and redox active electrolyte
(aqueous electrolyte, organic electrolyte, ionic liquid, and gel
polymer electrolyte). Each electrolyte has its own advantages
and disadvantages. For example, non-aqueous electrolytes have
a wider cell operating potential window compared to aqueous
electrolytes (Haas and Cairns, 1999). However, the aqueous
electrolyte has greater specific capacitance and conductivity
than non-aqueous electrolytes. Therefore, a careful selection of
electrolyte is a must to obtain high performance supercapacitors.
Another way to maximize the cell potential is by assembling
asymmetrical supercapacitors. Asymmetrical supercapacitors
with different positive and negative electrodes are able to extend
the potential window compared to symmetrical assembly.

There is so much fascinating information on supercapacitors
and a single review article is not enough to cover all of it.
In the pursuit of producing high performing supercapacitors,
a variety of materials have been explored. In light of this,
conducting polymers, carbon-based materials and transition
metal oxides/hydroxides are the most prospected electrode
materials (Kulandaivalu et al., 2018; Mohd Abdah et al., 2018a,b).
In recent times, the research is directed toward the development
of composites to impede the demerits of these single constituents
and to produce high-performance nanostructured materials.
Over the last decades, we have seen tremendous improvement in
the supercapacitors by designing new nanocomposite electrode
materials. The attraction of electrode material for supercapacitor
should be based on the following criteria:
a) low cost and easy to prepare.
b) high electronic conductivity to ease the ion transport

within the electrode materials. Therefore, will increase the
specific capacitance, specific energy, specific power and
rate capability.

c) the high surface area with desirable pore size to increase the
specific capacitance.

d) high mechanical and chemical stability to withstand the long
charge-discharge cycles

The utilization of carbon-based materials in the fabrication
of active materials for hybrid supercapacitors is a common
practice. This is because of the versatility of carbon-based
materials serve as a backbone due to their high mechanical
strength, high hardness and excellent thermal properties.
In most instances, carbonaceous materials often introduced
with pseudocapacitive materials to enhance the supercapacitive
performance, such as stability during charge-discharge cycles, the
electrical conductivity of the composites and reduce the volume
expansion of the composites. In recent years, metal hydroxides
including layered double hydroxides (LDHs) have been explored
widely as active materials for their multiple oxidation states.
Herein, we highlight the advances in the investigation of LDHs
containing Ni2+ and Co2+/3+ with carbon-based materials as
electrode materials for supercapacitors. There are several reviews
on LDHs that disclose valuable insights on the LDHs and its
related composites on their structures, preparation methods,
applications and functionalities as summarized in Table 1.
However, to the best of our knowledge, an extensive review of
Ni-Co LDH/carbon nanocomposites for supercapacitors has not
been previously reported. This review is intended to provide
broad insight into the fundamental understanding of LDHs as
well as Ni-Co LDH and Ni-Co LDH/carbon nanocomposites as
electrode materials for supercapacitors.

LAYERED DOUBLE HYDROXIDES

LDHs are one of the most captivating 2D inorganic materials
that have been applied in various fields, such as anticancer
nanomedicine (Kim et al., 2018), photocatalysts (Shao et al.,
2015), electrocatalysts (Long et al., 2014), and electrodes in
energy storage and conversion technologies (Wang et al.,
2018a; Kulandaivalu et al., 2019). The breakthrough of LDHs
began with the amazing discovery of hydrotalcite minerals as
synthetic materials in the 1940s by Feitknecht and Gerber
(1942). However, when it was first described in 1842 by
Hochstetter (1842), it was not widely acknowledged by
the world as hydrotalcite but rather as mixed hydroxides,
magnesium–aluminum hydroxycarbonate with the composition
of Mg6Al2(OH)16CO3·4H2O. In addition, it is also the first
natural occurring hydrotalcite reported in history. Yet, it was
not until the 1960s after the discovery of hydrotalcite minerals
that the detailed structure analysis on these minerals was fully
outlined by Allmann and Taylor using the single crystal X-ray
diffraction technique and identified it as the LDHs (Allmann,
1968; Taylor, 2018).

The LDHs are ionic lamellar compounds and better known
as hydrotalcite-like clay materials. The name hydrotalcite is due
to the similarities to the talc and high water content. Generally,
the hydrotalcite-like clay materials can be classified into two
types; cationic clays and anionic clays. The naturally occurring
hydrotalcites are referred to as cationic clays. They have a
stacking of negatively charged layers that have cations within
the interlayer regions (Figure 3). The layers contain octahedral
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TABLE 1 | The recent reviews on layered double hydroxide for supercapacitors.

Title Summary References

Research progress of Ni-Mn layered double

hydroxide for supercapacitor

This review covers Ni-Mn LDHs as electrode materials for supercapacitors. A

brief discussion on the synthesis method of Ni-Mn LDHs and the detailed

research developments of Ni-Mn LDHs and its composites in asymmetrical

supercapacitors were also discussed

Yan et al., 2018

Recent advances in layered double hydroxide as

electrode materials for high-performance

electrochemical energy storage devices

In this review, the author discussed the direct and indirect preparation method of

various LDHs in detail. Adding to it, the authors also disclose the significant

progress on the LDHs in electrochemical energy storage systems including

supercapacitors and batteries

Sarfraz and Shakir,

2017

Layered double hydroxides toward high

performance supercapacitor

In this review, the authors summarize the recent works of various LDHs as

electrode materials for supercapacitors. Moreover, the composition adjustment

of LDHs comprising the interlayer anions and host layer metal ions also

discussed in detail

Li et al., 2017c

Chemical power source based on layered double

hydroxides

The authors highlighted the recent progress of various LDHs in supercapacitors,

fuel cells, metal-air batteries, lithium-ion batteries

Wang et al., 2015

Layered Double Hydroxide/Graphene Composites

and Their Applications for Energy Storage and

Conversion

The synthesis of LDHs/graphene-based composites was discussed in this

article. Their performances in supercapacitors and electrochemical oxygen

evolution reaction catalysis were also addressed

Hai-Yan Wang, 2018

Layered double hydroxide-graphene-based

hierarchical nanocomposites: Synthetic strategies

and promising applications in energy conversion

and conservation

Methods in designing LDHs/graphene-based composites, and their applications

as electrode materials in supercapacitors and as electrochemical or solar

energy-driven photocatalytic water oxidation catalysts were addressed in detail

Varadwaj and

Nyamori, 2016

Graphene/layered double hydroxides

nanocomposites: review of recent progress in

synthesis and application

This review covers the recent developments of LDHs/graphene-based

composites along with their synthesis methods in various applications including

oxygen evolution reaction, supercapacitors, hybrid sensors, adsorption,

catalysis, water purification and flame retardant materials

Daud et al., 2016

Recent progress in layered double hydroxide based

materials for electrochemical capacitors: Design,

synthesis and performance

This review focuses on the broad aspect of LDHs and their composites with

carbon materials, metals, metal oxides, metal sulfides, metal phosphides and

polymers and further reviewing their performances for supercapacitors

Zhao et al., 2017

sheets in between the tetrahedral sheets, where typically cations
in the tetrahedral sheets are silicon ion (Si4+) and aluminum ion
(Al3+), whereas in octahedral are Al3+, ferric ion (Fe3+), and
magnesium ion (Mg2+) (Vaccari, 1998).

Unlike cationic clays, the anionic clays are commonly referred
to LDHs that stacking brucite-like layers. Typically, the mirror
image of cationic clays is the anionic clays. Instead of cations
as in cationic clays, the anionic clays consist of anions in the
positively charged interlayers (Abellán et al., 2020). In order
to understand the structure of LDHs, the insights on the
structure of brucite, Mg(OH)2 is very crucial. In brucite, the
hydroxyl ions are placed in the six vertices of the octahedral
surrounding the divalent Mg2+ ion, which are located in the
middle (Figure 4A). Each individual octahedral unit shares
its edges with each other forming electrically neutral infinite
layers. These layers are stacked one on top of another and
bonded through hydrogen bonds, forming the brucite. The
hydroxyl ions in these layers are closely packed giving 2D
triangle symmetrical geometry. Then, the positive charges are
introduced in the layers by partially replacing the Mg2+ ions
with Al3+ forming the Mg-Al LDHs. The layers are then
neutralized by the anions that intercalated in the interlayer
region (in between the successive layers of layered double
hydroxides). Water molecules also present in between the layers
that bound with the hydroxide ions through hydrogen bonds
(Sun et al., 2015). Various combinations of metal ions in LDHs

also synthesized in a similar manner which can be expressed by
the general formula:

[Me2+1−χMe3+χ(OH)2]
χ+(Aα−)χ/α·yH2O

where, Me2+ is divalent metal cations (Zn2+, Ni2+, Co2+,
Ca2+, etc.) and Me3+ is trivalent cations (Al3+, Cr3+, Fe3+

etc) as shown in Figure 4A. Aα− is abbreviated for anions
with negative charges (Cl−, CO2−

3 , NO−
3 , etc). A broad range

of χ values have been reported in the preparation of LDHs,
however, there is still disagreement is fixing the limit of the
values. Nevertheless, in the preparation of pure LDHs, the
χ values are fall in the range of 0.2 ≤ χ ≤0.33 (Walton,
2018).

The wide compositional and structural diversities in
the LDHs system such as tunability of metal cations in
the layers, easy adjustment of the molar ratio of metal
cations and exchangeability of interlayer anions bestow
various types of LDHs with unique architectures leading
to incomparable physical and chemical properties. Adding
to this, the variable oxidation states of metal cations in the
LDHs and substitution of metal cations in the layers which
provide high dispersion of metals boost the exploitation
of metals cations of LDHs. Thus, these properties aid in
enhancing the capacitive performances of LDHs as active
materials particularly in supercapacitors as summarized in
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Figure 4B. Indeed, over the last decades, there are ever-growing
publications related to the LDHs as electrode materials for
supercapacitors (Figure 4C).

FIGURE 3 | Schematic illustration of cationic clay (Ghadiri et al., 2015).

STRUCTURAL IDENTIFICATION OF LDHs

One must be aware that X-ray diffraction (XRD) is a
primary technique to analyze the crystalline phases, degree of
crystallinity, and crystallite sizes of layered compounds (Cullity,
1957). Practically, in order to develop the layered compounds
involving intercalation, knowledge on its crystalline structure is
a must.

Prior to the XRD measurements, it is crucial to obtain a good
Me2+/Me3+ stoichiometry (the χ values) based on the molarity
of species in LDHs. As mentioned earlier, the often reported χ

values to fall between 0.2 ≤ χ ≤ 0.33, where the Me2+/Me3+

ratio is between 2 and 4. The χ value is obtained using the
following formula:

χ =
Me3+

Me3+ +Me2+
(3)

There are some arguments on the purity and structures of
the compound formed if the χ values fall beyond the above-
mentioned range. If the χ value is above 0.33, most likely
Me3+-O–Me3+ linkages will occur causing the electrostatic

FIGURE 4 | (A) Schematic illustration of the layered double hydroxides structures (Sarfraz and Shakir, 2017), (B) properties of layered double hydroxides as suitable

electrode material in supercapacitor, and (C) number of articles published on layered double hydroxides as electrode material in supercapacitors from 2004 to 2019

using the keyword “supercapacitor and layered double hydroxide” (Data is collected from Scopus on November 30, 2019).
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FIGURE 5 | XRD pattern of NiAl (Li et al., 2017a).

repulsion which eventually disturbs the lattice position. This
phenomenon is termed as the cation avoidance rule. This rule
defines from the secondary coordination sphere’s point of view,
where a 3+ metal cation could not contain another 3+ metal
cation (Forano et al., 2006; Wang et al., 2013b). However, in a
rare occurrence, χ values more than 0.33 are found, but it is
believed this might be due to the experimental errors such as
the presence of hydroxide compounds with amorphous phases
that undetectable by the XRD or anions intercalated outside
the hydrated layer galleries (Arias et al., 2013). On the other
hand, if the χ < 0.33 (which means Me2+/Me3+ ratio is below
2) it will cause damages to the structure of LDHs due to the
substitution of large Me3+ in LDHs (Wang et al., 2013b). Also,
unusually very low or very high range of stoichiometry will result
in the formation of LDHs with a mixture of other hydroxide
compounds, Me2+(OH)2 or Me2+(OH)3 or Me3+OOH that
provide inaccurate results. Therefore, stoichiometry is very
important to produce pure LDHs.

Themolar ratio ofMe2+/Me3+ is also equally important in the
particle size of the resultant LDHs. LDHs prepared with a molar
ratio between 1 and 3 provide a highly monodispersed particle
size distribution (Chang et al., 2013). Yet, it is also expected that
the LDHs might grow in disordered orientation when the molar
ratio is approaching 1 (Cavani et al., 1991). Still, the root cause for
the disordered phase could not be centered solely on the molar
ratio. The preparation criteria, e.g., temperature, pressure, choice
of precursors, and co-precipitation pH is also responsible for this
formation (Pausch et al., 1986). However, when the molar ratio
exceeds 3, noticeable enlargement in the particle size is normally
observed due to agglomeration (Sun et al., 2015).

XRD is an important method in evaluating the LDHs
formation. The confirmation of LDHs formation is accomplished
by the presence of basal reflections (00l), at lower degrees
(2θ = 10 to 35◦). The basal reflections indexed as (003) and
(006) appear as strong/sharp, narrow and symmetrical diffraction

peaks (Figure 5). These peaks designate to the basal reflection
of intercalated anions (e.g., Cl−, NO−

3 , SO
2−
4 ) in the galleries

and ordered stacking sequence of LDHs (Mahjoubi et al., 2017;
Richetta et al., 2018). Moreover, it is an indication of the
formation of highly crystalline LDHs. The first basal reflection
(003), more commonly appears with higher intensity than the
second basal reflection, (006). However, in certain cases, the
(006) reflection emerges more intense than the reflection of (003)
which is related to the presence of complex metal anion in the
interlayer of LDHs which increases the electron density in the
midplane (Boclair et al., 1999; Beaudot et al., 2004).

The basal spacing is another important aspect of the
LDHs and it can be calculated from the XRD pattern using
the Bragg law:

nλ = 2dhkl sin θ (4)

where n is the diffraction order (an integer), λ is the wavelength
of the X-rays (nm), d is the basal spacing (Å) and θ is the
diffraction angle. Basal spacing is defined as the distance from the
plane of a layer with its adjoining layer as shown in Figure 4A.
The value of basal spacing is determined from the reflections of
basal peaks (00l) and in some cases from the reflections of non-
basal peaks (hk6= 0). Of course, when preparing the LDHs, the
basal spacing will arise differently depending on the preparation
condition as mentioned earlier. Nevertheless, the molecular
symmetry, charge, structure, size, type and orientations of anions
used in the preparation of LDHs have a great influence on
the basal spacing (Albiston et al., 1996; Kameda et al., 2006).
Adding to this, intercalation and removal of water molecules
into/from the interlayers also have an impact on the basal spacing
(Li et al., 2017b).

Another essential step in analyzing the LDHs structure is
determining the unit cell parameters. The basal spacing of
reflection (003) defines unit cell parameter c or known as an
interlayer distance along the c-axis and it represents the thickness
of one brucite-like layer and one interlamellar space (Li et al.,
2004). Note that, the c parameter would appear larger if there is
a presence of impurities in the interlamellar space. Additionally,
by assuming the thickness of the brucite-like layer to 4.769 Å as
reported by Miyata (1975), the value interlamellar spacing can be
deduced. Whereas, the basal spacing of reflection (110) defines
the unit cell parameter a which reflecting the distance between
the two metal cations within the layers. These values could be
obtained using the expression, c= 3d(003) and a= 2d(110).

Ni-Co LAYERED DOUBLE HYDROXIDES

As it has been described earlier, redox active materials such as
transition metal-based hydroxides and oxides have been used as
active materials over a long period of time in supercapacitors due
to their extraordinary properties such as high theoretical specific
capacitance, multiple oxidation states and easy modification (Liu
et al., 2018b; Qiu et al., 2018). Particularly, ruthenium oxides
with high proton conductivity and high reversible oxidation-
reduction process inevitably stand as a promising active material
for supercapacitors. Nevertheless, this material is also known
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for its high toxicity, high-priced and rareness in nature obstruct
its wide applicability (Kim and Kim, 2006; Vellacheri et al.,
2012). Apart from ruthenium oxides, nickel-based redox active
materials and cobalt-based redox active materials are considered
as promising active materials. In that context, to date, nickel
hydroxides, Ni(OH)2 and cobalt hydroxides, Co(OH)2 are the
most notably explored single metal hydroxides particularly
in supercapacitors.

Ni(OH)2 is extensively studied due to its low toxicity,
abundance in nature, inexpensive and environmental
friendliness. Nevertheless, it exhibits a low electrical conductivity
ranges from 10−13 to 10−17 S cm−1 which consequently
decreases the rate capability and life span (Motori et al., 1994).
Moreover, slow ion diffusion rates and volume expansion during
the charge-discharge cycles also restraining its electrochemical
storage applications. α and β-Ni(OH)2 have a high theoretical
capacitance of 2,081 F g−1 within the potential window of
0.5V (Wang et al., 2018c). α-Ni(OH)2 is thermodynamically
less stable than β-Ni(OH)2 and easily converted to β-phase
material by aging in alkaline solution or during continuous
charge-discharge process. However, the former has a higher
specific capacitance and good ionic conductivity than the latter
due to high charge capacity and electrochemical reversibility
(Meng and Deng, 2016). Additionally, despite the fact that both
α-Ni(OH)2 and β-Ni(OH)2 contain close-stacked 2D Ni(OH)2
layers, only α-Ni(OH)2 comprises intercalated species (anions
and water molecules). Thereby, resulting in differences in the
electrochemical properties (Bastakoti et al., 2012).

Co(OH)2 also possesses merits similar to Ni(OH)2
such as low cost, environmental compatibility and high
reversibility. Co(OH)2 also exists in two polymorphs, α and
β-Co(OH)2. Compared to β-Co(OH)2, α-Co(OH)2 has higher
electrochemical activity due to its larger interlayer spacing.
The α-Co(OH)2 with hydrotalcite structure is highly unstable
structure and easily convert into brucite-like β-Co(OH)2 (Cui
et al., 2013). Additionally, this single hydroxide material also
has a high theoretical capacitance of ∼3,460 F g−1 in a potential
window of 0.6V (Cao et al., 2004).

Undoubtedly, both of these materials exhibit exceptional
properties. The great feasibility of these layered materials with
large interlayer spacing endows effective accommodation of
ions from the electrolyte in interlayers (Cui et al., 2013).
Hence, the specific capacitance and rate capability can be
enhanced significantly. Therefore, by combining these materials
in the formation of Ni-Co LDHs can improve the overall
performances in supercapacitors in terms of specific capacitance,
cycling stability and rate capability. Incorporating nickel into
the Co(OH)2 system and vice versa gains benefits from the
other and overcomes the drawbacks. The presence of nickel
help in strengthening the electrochemical performances, while
cobalt increases the electrical conductivity of the LDHs system
(Windisch et al., 2001). It is reported that the formation
of γ-NiOOH from Ni(OH)2 is responsible for the volume
expansion. Therefore, by incorporating cobalt into the Ni(OH)2
the formation of γ-NiOOH can be surpassed as it can improve
the oxygen over potential. While, during the charge-discharge
process, the oxidation of Co2+ to highly conductive CoOOH

improves the overall conductivity of the electrode material
(Chen et al., 1999).

The performance of Ni-Co LDHs depends on the faradaic
redox reaction of cobalt and nickel hydroxides. The charge
storage of Ni-Co LDHs is related to chemical state changes of
Ni2+/Ni3+ and Co2+/Co3+/Co4+, which refers to the adsorption
of ions onto the surface of active materials during the redox
reaction. The charge storage mechanism of Ni-Co LDHs during
electrochemical measurements in the aqueous electrolyte is
shown in the Equations 3–5 (Xie et al., 2012):

Ni(OH)2 + OH− → NiOOH + H2O + e− (5)

Co(OH)2 + OH− → CoOOH + H2O + e− (6)

CoOOH + OH− → CoO2 + H2O + e− (7)

FACTORS INFLUENCING THE FORMATION
OF Ni-Co LDHS

Ni-Co LDHs have been an ideal candidate for supercapacitors
for their distinctive layered structures, flexible tunability of
anions/cations, and multiple oxidation states. In recent years,
researchers have done astounding works on Ni-Co LDHs and
they have focussed mainly on the composition, morphology,
particle size and surface area of the LDHs in order to obtain high
performance materials. It should be noted that the effectiveness
of the charge storage of Ni-Co LDHs in supercapacitor varies
with the properties of this active material. Morphologies,
crystallinity, electrical conductivity and surface area of LDHs are
very important to determine the electrochemical performances.
Therefore, the factors influencing these factors will be reviewed
in this section.

pH
Among the different fabrication routes for the LDHs, the co-
precipitation method at a constant pH is commonly used.
The pH value has a pivotal role in the formation of LDHs,
particularly on the structure of LDHs. Typically, an alkaline
solution (precipitant) added into the mixed metal salt solution
to control the pH at a selected value has resulted in the co-
precipitation of metals. Various type of alkaline solution is
utilized to control the pH. With regard to Ni-Co LDHs, Li
et al. (2016c) and Wang et al. (2018b) have chosen pH 8 as the
optimal value to prepare the Ni-Co LDHs. Whereas, Cheng et al.
(2013) andMehrabimatin et al. (2019) have synthesized the LDHs
by adjusting the pH at 9 through the addition of ammonium
hydroxide solution. While, Shen et al. (2019) have used sodium
hydroxide to maintain the pH to 9. On the contrary, pH 10
was also reported as the optimum medium to prepare the Ni-Co
LDHs (Cao et al., 2019). In this study, the author used L-ascorbic
acid and ammonia to control the pH. The precipitation pH value
of 7.34 has also been reported using 2-methylimidazole (Wang
et al., 2017b). The rule of thumb in this whole synthesis process
is the pH value should exceed 4.0 and the pH range from 7 to
10 is commonly used to synthesize the Ni-Co LDHs. This is due
to the fact that in the acidic condition the brucite-like layer in
the LDHs will collapse. It also greatly argued that at lower pH
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FIGURE 6 | TEM images for Ni/Al LDHs synthesized at different pH values. (a) 5.5, (b) 8.5, (c) 10.0 (Zhao et al., 2011).

values, an amorphous compound is produced, while at higher
pH values, the brucite-like layer of LDHs with high crystallinity
will evolve. However, there is no extensive works have been
carried out to prove this statement. Furthermore, the addition
of precipitant in the synthesis of LDHs produces hydroxide ions
which involve in the redox reaction and eventually increase the
crystallinity and hydrophilicity of the LDHs (Wang et al., 2013a).
Thus, the charge transport and ion movement will be reinforced.
Additionally, the basic growth condition also encourages the
fast and uniform growth of LDHs whether in the form of
nanoparticles or flower-like structure or flakes-like morphologies
(Wang et al., 2013a). Talking about morphology, pH has a great
impact on the morphology of LDHs which indirectly reflects
the surface area (Figure 6). One must notice that different pH
values resulted in different morphologies, such as nanorods,
nanosheets, 3D nanoparticles, etc. (Zhao et al., 2011; Li et al.,
2016c). However, there are little references which have been
reported on the effect of pH on the morphology of Ni-Co LDHs.
Nevertheless, the selection of pH for the formation of LDHs
should be suitable for both metal ions (in the case of LDHs with
two types of metals) to precipitate simultaneously. Therefore,
it is always preferred to choose a pH value higher or equal
to the precipitation pH value of a respective metal hydroxide
considering their solubility equilibrium constants. In contrast
with the usual basic condition, a study reported pH 6, as the
optimal pH to prepare the Ni-Co LDHs using electrodeposition
method (Chen et al., 2014c). The author claimed that at pH ≥

7, pre-precipitation of hydroxides occurs causing higher rate of
Co(OH)2 formation than LDHs due to its low solubility at this
pH. Whereas, at pH 6, the rate of nickel and cobalt hydroxides
formation in LDHs is equal. Adding to this, a significant variation
in values of specific capacitance is also noted when the pH is
varied. When deciding the value of pH for LDHs synthesis,
a fair consideration need to place on the type and nature of
anions of the LDHs. This is due to the solubility of anions
(e.g., Cl−, NO−

3 , SO
2−
4 ) which differ from each other. Therefore,

the amount of anions intercalated in the LDHs and the size of

LDHs nanoparticles are also vary (Li et al., 2010). Moreover, the
stability of LDHs is determined by the stability of intercalated
anions. For example, Ni-Co LDHs containing chloride anion in
the interlayer are stable in the pH ranging from 3.8 to 8.9 (Sun
et al., 2013).

In general, Ni-Co LDHs can be synthesized in basic aqueous
solution and mild acidic or near a neutral aqueous solution.
Nevertheless, the selection of pH is not solely relied on one
particular factor but other criteria for instance concentration of
metals salts, the ratio of Me2+/Me3+ ions, type of anions and
preparation method which need to be taken into consideration.

Ratio
The optimization of the Me2+/Me3+ ratio in LDHs is pivotal
in the morphology, phase structure and capacitive behavior.
Pointing to Ni-Co LDHs, plenty of work has been performed
on the optimization of Ni2+/Co2+ ratio (Wang et al., 2017b,
2019a). Synthesizing the Ni-Co LDHs by varying the metal ion
ratios may result in variation in growth rates, nanostructures and
pore size/size distribution (Table 2). Sun et al. (2013) studied
the changes in the structure of Ni-Co LDHs when the metal ion
ratios are altered. From the morphological point of view, when
the ratio of cobalt is increased with respect to nickel (Ni:Co),
changes from flower-like nanosheets (1:0) to nanosheets (1:1),
nanospheres enclosed in nanoplates (1:2), highly porous 1D
nanorods (1:4) and nanoparticles (0:1) is noticed. Interestingly,
the Ni-Co LDHs (1:4) with 1D nanorods exhibited excellent
electrochemical performances regardless of their average specific
surface area than the ratio of 1:2. It was deduced that the
broad pore size distribution (2 to 15 nm) in the former sample
compared with other metal ratios reduces the charge transfer
resistance and promotes the movement of electrolyte. In contrast
with this finding, Kulkarni et al. (2013) demonstrated nanoflakes
morphology for all Ni-Co LDHs (1:0, 0.75:0.25, 0.5:0.5, 0.4:0.6,
0.25:0.75, and 0:1), however, they showed variation in flakes
size, pore size/distribution and the number of layers. The
authors claimed that the amount of nickel in the layer is the
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TABLE 2 | Summary of preparation condition, morphology, and specific capacitance of Ni-Co LDHs as supercapacitor electrode.

Method pH Ni/Co

ratio

Temperature (◦C)/

Reaction time (hour)

Capacitance Nanostructure References

Solvothermal 7.34 1:1 120/14 2,242.9 F g−1 at 1A g−1 Nanosheets Wang et al., 2017b

Solvothermal – 2:3 160/6 2,158.7 F g−1 at 1A g−1 3D hydrangea-like microspheres Yan et al., 2015

Hydrothermal – 2:1 100/10 293.9C g−1 at 1mA cm−1 Nanowires Zhang et al., 2019

Hydrothermal – 9:1 100/48 808.4C g−1 at 1A g−1 3D sea urchin-like nanosheets Hou et al., 2019

Co-precipitation 8.72 6:4 55/15 2,228 F g−1 at 1A g−1 3D flower-like nanosheets Li et al., 2016c

Electrodeposition – 1:1 – ∼0.8 F cm−2 at 2mA cm−2 Nanosheets Wang et al., 2019c

Microwave-assisted hydrothermal – 3:2 200/2 1,720 F g−1 at 3A g−1 Flower-like nanosheets Wang et al., 2019b

i) Hot-air oven

ii) Electrodeposition

– 2:1 90/9 536.96 µAh cm−2 at 2mA cm−2 Nanosheets on nanoflakes Nagaraju et al., 2017

Co-precipitation – 1:1 140/24 777C g−1 at 1A g−1 Flower-like nanosheets Qin et al., 2019

Hydrothermal – 2:1 High temperature/2.5 – Nanoflower Wu et al., 2019b

Electrodeposition – 4:1 – 374.7 mAh g−1 at 2A g−1 Nanosheets Wu et al., 2019a

Co-precipitation 9 1:1 – 2,305 F g−1 at 1A g−1 Nanodisc Cheng et al., 2013

Electrodeposition – 1:1 – 2,200 F g−1 at 5A g−1 Nanotubes with nanosheets Liu et al., 2017

Electrodeposition – 2:1 – 1,862.4 F g−1 at 4A g−1 Nanosheets Nagaraju et al., 2016

Microwave-assisted hydrothermal – 1:1 100–140/1–3 1,580 F g−1 at 10A g−1 Nanocones Liu et al., 2012

Electrodeposition – 1:1.5 – 2,104 F g−1 at 1A g−1 Nanosheets Gupta et al., 2008

Co-precipitation – 1:4 80/6 1,030 F g−1 at 3A g−1 1D nanorod Sun et al., 2013

Electrodeposition – 1:1 – ∼1,300 F g−1 at 1A g−1 Nanoflakes Ge et al., 2019

Electrodeposition – 1;2 – ∼1,213 F g−1 at 5mV s−1 Nanoflakes Kulkarni et al., 2013

Electrodeposition – 1:2 – 1.536C cm−2 at 2mA cm−2 Flower-like nanosheets Yang and Li, 2019

Electrodeposition – 1:2 – 1,200 F g−1 at 1A g−1 Nanosheets on nanorods Wen et al., 2016

Solvothermal – 1.5:1 180/24 ∼900 F g−1 at 1A g−1 Nanosheets Cai et al., 2015

Co-precipitation – 1:2 Room temperature/6 ∼550 F g−1 at 2A g−1 Flower-like nanosheets Zhao et al., 2015

Electrodeposition – 1:2 – 1.52C cm−2 at 2mA cm−2 Open porous nanosheets Nguyen et al., 2017

Hydrothermal – 1:1 100/10 1,734 F g−1 at 6A g−1 Nanosheets Pu et al., 2014

Hydrothermal – 1:1 160/6 1,600 F g−1 at 1A g−1 Interconnected nanosheets Xia et al., 2015

Co-precipitation 9 1:1 Room temperature/12 1,809 F g−1 at 1A g−1 Flower-like nanosheets Hu et al., 2009

Electrodeposition – 2:1 – 1,587.5 F g−1 at 0.5 A g−1 Nanosheets Wei et al., 2018

Microwave-assisted hydrothermal – 4:1 – 1,170 F g−1 at 4A g−1 Hexagonal nanosheet Chen et al., 2014a

Co-precipitation – 2:1 – 774 F g−1 at 0.2 A g−1 Hexagonal crimpled nanosheet Wang et al., 2016

Hydrothermal 3:7 110/0.5 943 F g−1 at 20mV s−1 Interwoven fabric Jeong et al., 2019

Hydrothermal co-deposition 1.5:1 180/24 2,682 F g−1 at 3A g−1 Porous nanostructure Chen et al., 2014b

deciding factor for the morphology of LDHs. They support
their arguments with a wettability study where the LDHs with
high nickel contents showed superhydrophilic characteristics.
Regardless of the detailed explanation given in this study, the
authors missed to address the importance of cobalt in the LDHs,
and how does it influence the morphology of LDHs.

The metal ion ratios also influence the crystallinity and
phases of LDHs. Sun et al. (2013) have studied that when Ni-
Co ratio (which varies from 0 to 1) was lowered than 0.5,
mixed phases of nickel hydroxide hydrate and cobalt carbonate
hydroxide were more obvious in the LDHs. Moreover, the XRD
peak intensities also weaken with the decrement of nickel to
cobalt ratio exhibiting the poor crystallinity of LDHs. In another
study on Ni-Co metal ion ratios of 0, 0.3, 0.6,1, 3 and 1
revealed contrary crystallinity results (Kulkarni et al., 2013), in
which decrease of metal ion ratios leads to sharp and intense

peaks of hydrotalcite phase, showing the good crystallinity of
the LDHs.

Reaction Temperature
Unlike the carbon-based materials which are very stable in any
temperatures, LDHs are very delicate and sensitive, making the
selection of temperature in the synthesis of LDHs is very crucial.
There is no fixed value of temperature for the formation of
LDHs. The selection of temperature varies with a few factors
namely synthesis method, aging time, type of metal cation and
metal cation ratio etc. In most cases, even the same synthesis
method was applied, and different temperatures was used. For
instance, Hu et al. (2009) and Zhao et al. (2015) have prepared
Ni-Co LDHs with flower-like nanosheets via co-precipitation
method at room temperature. While, a few other studies reported
similar findings at a temperature of 55◦C (Li et al., 2016c) and
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140◦C (Qin et al., 2019) using the same method. The selection
of temperature also depends on methods. Mostly, solvothermal
and hydrothermal methods use higher reaction temperatures
compared to the co-precipitation method. In the formation of
LDHs, former methods are more preferable due to uniform
and homogenous particle size compared to co-precipitation.
Moreover, these methods produced LDHs with larger particle
size with high crystallinity. The reason is that the reactants are
exposed to thermal treatment at pressurized conditions. In a
study conducted by Oh et al. (2002), the author reported that
increasing the reaction temperature in the range of 100 to 180◦C
via hydrothermal method yielded LDHs with a larger particle size
varying from 115 to 350 nm. The authors have also manifested
that differences in the temperature have profound effect on the
crystallinity of the LDHs as shown by the reflection intensity in
the XRD.However, it is worth to note that at high temperature (>
300◦C), the structure of LDHs tend to collapse (Li et al., 2012a).

CARBON MATERIALS

In the past decades, carbon materials are designed with LDHs to
deliver high specific capacitance, specific energy, specific power
and remarkable stability. Looking into the history, the word
“carbon” is originated from the Latin word “Carbo” defining coal
is now taking the world by storm. Carbon is found abundantly on
the earth and almost all the living and non-living things on earth
are made up of carbon. In the scientific world, carbon has been
the most captivating material since the introduction of graphite
and diamond; the allotropes to the world. Basically, it consists
only of carbon atoms, but they have intriguing physical and
chemical properties due to its remarkable electronic structures
to adapt sp, sp2, and sp3 configurations. There are other several
carbon allotropes such as fullerenes, carbon quantum dots,
onion-like carbon, graphene-family nanomaterials (GFN), and so
forth. The existence of carbon materials in different dimensional
and forms made it stand out from other materials.

Generally, carbon materials can be classified according to
their dimensionality; zero-dimensional (0D), one-dimensional
(1D), two-dimensional (2D), and three-dimensional (3D)
nanostructured materials. These materials have their unique
characteristics that distinguish them from one to another. Briefly,
the 0D carbon nanostructures are defined as particles with
spherical-like shapes and their sizes are normally in nanometric
range. The 0D nanostructured can be further classified into
solid, hollow and core-shell nanostructured. The solid 0D carbon
nanostructures (e.g., porous carbon) are famous for their variety
pore size distributions; macroporous (>50 nm), mesoporous
(2–50 nm), and microporous (<2 nm) materials. On the other
hand, the volume density and high surface area-to-volume ratio
are the merits of the hollow 0D nanostructures (Lai et al.,
2012). Additionally, by controlling the inner and outer diameter,
the features of the hollow shell such as thickness and surface
porosity can also be tailored according to the needs. Whereas,
the uniqueness of core-shell lies in the versatility of the core-
shell which can be made of different materials as core or shell
and tunability of the properties by varying the shape, size,

morphologies and constituent of core-shell. The core-shell 0D
carbon nanostructures are often referred to as a spherical-shaped
core carbon coated with a carbon shell. The core-shells can also
be fabricated in the form of mesoporous nanostructures. It is also
feasible to fabricate carbon nanostructures withmultiple particles
of core coated with a sole shell or vice versa. A hollow carbon shell
with a hollow core or with a removable core is another form of
core-shell nanostructures (Feng et al., 2018). Fullerenes, onion-
like carbon, carbon quantum dots, graphene quantum dots, and
carbon nanoparticles are examples of 0D carbon nanostructures.

Whereas, fibers or wire-like shaped nanostructures are
categorized as 1D carbon materials such as carbon nanotubes,
carbon nanohorns, carbon nanofibers, carbon nanowires and
so forth. The 1D carbon nanostructures have a high surface
area-to-volume ratio and two-dimension restraints that give
superior chemical and physical properties (Weng et al., 2014).
Additionally, due to their unique geometrics, the 1D carbon
nanostructures have remarkable electron and ion transport
pathways. This will promote better electrochemical properties
and the ability to endure the volume changes and adapts to
the mechanical strain. The 1D nanostructures can be assorted
into three groups; (a) relative ratio between length-to-diameter
is < 10 (e.g., carbon nanorods), (b) relative ratio between
length-to-diameter is more than 10 (e.g., carbon nanowires) (Li
et al., 2019b) and (c) structure with hollow walls (e.g., carbon
nanotubes) (Pan et al., 2018).

The 2D carbon nanostructures are defined as materials with
two dimensions beyond the nanometric ranges (Tiwari et al.,
2012). Interestingly, the 2D materials are in a layered shape
resembling a planar sheet. The GFN including graphene, few-
layered graphene (FLG), graphene oxide (GO) and reduced
graphene oxide (rGO) are examples of 2D carbon nanostructures.
These materials are known for their extraordinary conductivity
and mechanical strength making them a suitable candidate
for supercapacitors. For supercapacitor applications, the higher
surface area to volume ratio makes GFN the most desirable
materials. As an outstanding electrode, GFN predominantly
graphene has a remarkably high theoretical surface area up
to > 2,500 m2/g (Singh, 2016). Yet, a propensity for self-
agglomeration due to the existence of strong van der Waal
forces between the graphene sheets is the main hurdle to
generate graphene-based electrodes (Wang and Liu, 2011).
The 2D graphene is the building block for 3D graphite.
Basically, the 3D carbon nanostructures are made of low-
dimensional building blocks and carbon foam and mesoporous
carbon are the most explored 3D nanostructures. They have
a high surface area and large electrode-electrolyte interface
which provides efficient ion pathways (Tiwari et al., 2012; Zhi
et al., 2013) as supercapacitor electrodes. Other than foams
and mesoporous materials, activated carbon, carbon aerogels,
nanopillars, nanoflowers, and nanocoils are also under the
category of 3D nanostructures.

Even though the above-mentioned carbon materials possess
fascinating properties, it is still a challenging endeavor for
researchers to produce high-performance carbon materials as
electrodes for supercapacitors. The collaboration of carbon
materials with pseudocapacitive materials is a route to augment
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TABLE 3 | Comparison of carbon materials, LDHs and carbon-LDHs composites as electrode materials for supercapacitors.

Materials Specific capacitance Conductivity Surface area Stability Cost

Carbon materials Low Low High High Cheap

LDHs High High Moderate Low Expensive

Carbon-LDHs composite Can be improved significantly depending on the suitable composition of the LDHs and carbon materials in the composite Moderate

the electrochemical properties for supercapacitors. In this
article, we will focus on the carbon materials combined
with LDHs as electrode materials for supercapacitors
and Table 3 compares the properties of carbon materials,
LDHs and carbon-LDHs composites as electrode materials
for supercapacitors.

Ni-Based LDHS Combining With
Carbon-Based Materials
In this section, Ni-based LDHs composite combined with carbon
materials as electrodes for supercapacitors will be discussed.
Li et al. (2015a) in-situ grown Ni-Al LDHs nanosheets on the
carbon nanotubes pre-coated by the alumina (γ-Al2O3) showed
decent improvement in term of capacitive performances. The
use of γ-Al2O3 is very crucial in this study as a source of
Al for the formation of LDHs. γ-Al2O3 has better dissolution
than commonly used AlOOH (Li et al., 2012b). The author
studied the asymmetrical configuration of this composite with
activated carbon as the negative electrode and discovered a
specific capacitance of 115 F g−1 with a specific energy of 52
Wh kg−1 at a current density of 1A g−1. He deduced that the
introduction of carbon nanotubes is responsible for the exquisite
performances shown by this composite, where carbon nanotubes
(i) hinder the restacking of LDHs during synthesis, (ii) bridge
the interfacial contact, and (iii) provide a conductive surface for
uniform growth of nanosheets.

While, Li et al. (2014) have developed Ni-Al LDHs/rGO
composite and compared the electrochemical performance of
the same composite that reduced thermally and reduced via
microwave irradiation. It has been shown that the former
has the highest specific capacitance of 1,208 F g−1 at 8A
g−1 and able to retain the value to 1,518 F g−1 at 1A g−1

(about 80%). The thermal treatment is responsible for creating
pores for the ion movement to the interior of the composite.
This highly porous composite also displayed an excellent life
cycle with above 80% over 2,000 cycles. Another similar
work has been reported by Yulian et al. (2013), where Ni-
Al LDHs nanoflakes anchored in-situ on activated graphene
nanosheets. This hybrid composite has a BET surface area of
3,026 m2 g−1 and showed a maximum specific capacitance
of 1,173 F g−1 at a current density of 1 F g−1. Gao et al.
(2011) have also fabricated Ni-Al LDHs/graphene nanosheets
via the hydrothermal method. The obtained composite displayed
a high specific capacitance of 781.5 F g−1 at 5mV s−1 and
excellent cycling retention in a three-electrode configuration.
While, Yang et al. (2013) have included graphene nanosheets
and carbon nanotubes with Ni-Al LDHs via one-step ethanol
solvothermal method. The obtained 3D flower-like composite

was able to overcome the limitations of 2D graphene nanosheets
i.e. aggregation, low surface area and deteriorations of ion
movements. In this study, the role of graphene nanosheets
was expected to be as a conductive scaffold to build a 3D
nanostructure. More importantly, the composite revealed to
possess 1,869 F g−1 at 1A g−1 with superior cycling stability over
1,000 cycles.

Comparative study on sandwich-like Ni-Mn LDHs/rGO,
Ni-Mn LDHs/carbon black, turbostratic-structured Ni-Mn
LDHs/carbon nantotubes and ternary Ni-Mn LDHs/carbon
nanotubes/rGO (Figure 7) were carried out by Li et al. (2016b).
Electrochemical study in 2M KOH revealed ternary Ni-Mn
LDHs/carbon nanotubes/rGO has higher specific capacitance
(1,268 F g−1 at 1A g−1) and superior cycle life (79% over 2,000
cycles) than other hybrid composites. This is due to the addition
of rGO and carbon nanotubes where, (i) LDHs anchored firmly
on the rGO, thus preventing restacking of LDHs nanosheets, (ii)
carbon nanotubes provides conductive scaffold, hence increasing
the conductivity of the composite, and (iii) the co-dispersed
carbon nanotubes and rGO open a conductive network pathway
for the ions.

Co-based LDHs Combining With
Carbon-Based Materials
Great efforts have been committed to study Co-based LDHs
composite combined with carbon materials as electrodes for
supercapacitors. For example, honeycomb-like Co-Fe LDHs were
in-situ deposited on the multi-layer graphene to be for energy
storage devices. They showed a high specific capacitance of
882.5 F g−1 at 1A g−1. However, the composite only able to
withstand 39% of its initial capacitance value over 2,000 cycles
due to the detachment and dissolution of active material during
the charge-discharge process (Xu et al., 2018).

Co-Al LDHs have also found its potential in energy storage
applications. The Co-Al LDHs/rGO composite was prepared
by the co-precipitation method, which formed nanosheets
grown perpendicularly on the rGO layer. The composite has
lesser agglomeration compared to pure LDHs with serious
agglomeration (Figures 8a,b). The BET surface area was found
to be 47.6 m2 g−1 compared to that pure LDHs (24.0 m2 g−1)
(Figures 8c,d). In an asymmetrical configuration, this composite
as the positive electrode and activated carbon as the negative
electrode was able to operate at a wide potential window (0
to 1.75V), which results in enhanced specific energy (35.5 Wh
kg−1) and specific power (8.75W kg−1) (Figure 8e). Moreover,
the asymmetrical assembly displayed excellent capacitance (90%
retention) after 6,000 cycles (Figure 8f) (Zhang et al., 2013).
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FIGURE 7 | SEM images of (a) Ni-Mn LDHs/rGO, (b) Ni-Mn LDHs/carbon nanotubes, (c) Ni-Mn LDHs/carbon black, and (d) Ni-Mn LDHs/carbon nanotubes/rGO

(Li et al., 2016b).

In another study, Zhang et al. (2012) have demonstrated for
the first time the fabrication of graphene nanosheets combined
with Co-Al LDHs using the one-pot refluxing method. A 3D
conductive networkmade of hexagonal flakes can be observed for
this composite. The hexagonal flakes of Co-Al LDHs are covered
on the surface of graphene nanosheets, preventing the re-stacking
of graphene and giving rise to the surface area (23.4 m2 g–1) of
the composite.

Ni-Co LDHs Combining With
Carbon-Based Materials
Despite the endless effort of researchers to produce high
performance Ni-Co LDHs electrode material with controlled
morphologies, optimized particle sizes, enhanced surface area
and broad pore size distribution, the main drawbacks including
poor stability and low electrical conductivity have a profound
effect on its practicability. In light of this, fabrication of composite
materials, specifically the introduction of carbonaceous materials
with Ni-Co LDHs could provide the right solution for this
conundrum. The uniqueness and significant benefits of this
combination are listed as follows (Xu et al., 2006; Li et al., 2016a;
Wang et al., 2018a):

a) The severe aggregation of Ni-Co LDHs can be avoided. The
charged surface of LDHs often aggregates by forming particles
or irregular clusters with size ranges from 1 to 10µm, thereby
resulted in an unstable colloidal solution, which causes a
serious impact on its electrochemical performances.

b) The electrical conductivity of the composite can be improved
significantly by preventing the agglomeration of LDHs. Thus,

electron transfer and rate of diffusion during the oxidation-
reduction process will be facilitated.

c) Carbon-based materials provide large ion accessible surface
areas with enhanced active sites facilitating efficient access
of ions from the electrolytes and eventually shorten the ion
diffusion pathway.

d) Importantly, the mechanical stability of the composite will
be improved significantly. As known to all, carbon-based
materials have extraordinary mechanical stability. In this
instance, carbon-based materials will act as a backbone or
scaffold to minimize the volume expansion of LDHs.

Thus, the introduction of carbon-based materials with Ni-
Co LDHs have a considerable impact on the electrochemical
performances of the composite. The studies conducted on the
Ni-Co LDHs with carbon-based materials are quite encouraging
(Table 4).

Most of the materials from carbon-based materials exhibit
high surface area and good electrical conductivity. Due to
these features, Ni-Co LDHs often introduced with graphene-
based materials to improve the electrochemical properties of
the composites. For example, Wang et al. (2019a) have directly
fabricated Ni-Co LDHs/rGO grown on carbon cloth (CC)
using a simple one-pot hydrothermal method. The Ni-Co
LDHs uniformly grow on the CC forming hydrangea petal-
like structure with 2D sheet-like morphology. While the rGO
grew between the LDHs sheets were greatly improved the
specific surface area of the composite. It was used directly as a
binder-free electrode in a symmetrical supercapacitor. The as-
prepared composite obtained specific capacitance of 151.46 F
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FIGURE 8 | SEM images of (a) LDHs, (b) low-magnification of rGO/LDHs, (c) nitrogen adsorption and desorption isotherm loops of LDHs and rGO/LDHs composite,

(d) pore size distribution of LDHs and rGO/LDHs, (e) Ragone plots of LDHs//AC, rGO/LDHs//AC asymmetric ECs, and AC//AC symmetric EC, and (f) Cycle stability

of LDHs//AC and rGO/LDHs//AC ECs during charge–discharge test at a current density of 4 A g−1 (Zhang et al., 2013).

g−1 at a current density of 2.5 A g−1 and prominent cycling
stability of 85.6% after 3,000 cycles at 5 A g−1. The author
claimed that the hydrangea petal-like morphology of the Ni-
Co LDHs/rGO/CC with large interlayer spacing facilitates the
transport of ions between the composite and electrolyte and
shorten the ion diffusion pathway endowing the electrode with
a specific energy of 30.29 Wh kg−1 at a specific power of
1,500W kg−1. Importantly, after the continuous 3,000 cycling

process, the structure of the composite does not undergo any
destruction indicating the importance of the rGO in the Ni-Co
LDHs and its role as the backbone for LDHs.

In another attempt to produce a binder-free supercapacitor
electrode, Yang et al. (2019) developed a hierarchical Ni-Co
LDH/rGO on nickel foam via a solvothermal process. The
composite has various merits : (i) upon the addition of rGO
in the Ni-Co LDHs the interlayer spacing increases drastically

Frontiers in Materials | www.frontiersin.org 14 June 2020 | Volume 7 | Article 147

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Kulandaivalu et al. LDH/Carbon for Supercapacitors

FIGURE 9 | (A) Schematic illustration for the shape conversion from rGO/NiAl-LDHs to the rGO/CoAl-LDHs composite, (B) Relationship between the specific

capacitance and the doped Co content in rGO/Ni1−xCoxAl-LDHs, and (C) The cycling performance and corresponding Coulombic efficiency of

rGO/Ni0.83Co0.17Al-LDHs at a current density of 10A g−1. The inset is the first 20 charge-discharge curves (Xu et al., 2014).

promoting the rapid movement of ions and electrons across
the sheets; (ii) As the rGO sufficiently decorated within the
LDHs, the agglomeration of the composite can be hindered,
thereby improves the electrolyte transport to the inner part of the
composite; and (iii) the flower-like structure with mesopores on
the 2D interconnected nickel foam avoid the formation of “dead
volume” which encourage the more active sites to involve in the
electrochemical reaction, thus decreases the internal resistance
of the composite. The produced asymmetrical supercapacitor
device based onNi-Co LDH/rGO/nickel foam delivered a specific
capacitance of 105.62 F g−1 at 0.5 A g−1 and remarkable specific
energy of 40.5 Wh kg−1 and a maximum specific power of 4,631
W kg−1.

Another similar composite, Ni-Co LDHs/rGO was prepared
via one-pot microwave-assisted synthesis (Kim et al., 2016). It
was found that the reaction time, temperature, type of solvent,
surfactant and precursor have a profound influence on the size,
shape, pore size distribution and crystallinity of Ni-Co LDHs.
The different molar ratios of nickel and cobalt also showed
a significant effect on the morphology and electrochemical
behavior of the composite. Among the different nickel/cobalt
ratios, the 2:1 ratio shows the best capacitive performances in a
three-electrode system such as the highest specific capacitance

(1,622 F g−1 at 5mV s−1) and good cycling stability (80%
retention over 5,000 cycles). The improved electrochemical
performances of this composite not only originate from the
bimetallic hydroxides, but rGO also played an important role
in enhancing the overall specific surface area of the composites.
In addition, the authors also revealed the influence of nickel
and cobalt where nickel controlled the capacitive performance of
the composite, while cobalt in maintaining the rate capability of
the composite. Likewise, Yan et al. (2014) also reported that the
addition of graphene resulted in a high specific surface area of
408.5 m2 g−1 with a pore diameter of 4.75 nm. It also revealed
that the basal spacing of the composites increases to 0.86 nm
compared to the pristine Ni-Co LDHs, which demonstrated a
high specific capacitance 1,980 F g−1 at 1A g−1 in a three-
electrode system.

Similar findings also were reported by Shahrokhian et al.
(2018) in the preparation of electrode material made of Ni-
Co LDHs electrodeposited on rGO/nickel foam with excellent
supercapacitive performances. In this study, the effect of
surfactant cetyltrimethylammonium bromide (CTAB) on the
morphology also has been described in detail. The addition of
CTAB showed variation in terms of the thickness of Ni-Co LDHs
on the rGO/nickel foam. Ni-Co LDHs with CTAB forms thinner
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TABLE 4 | Summary of nanocomposites containing carbon-based materials with Ni2+/Co2+ LDHs.

Materials LDH

preparation

method

Molar ratio of

precursor salt

(M2+:M3+)

Csp (F g−1) SE (Wh

kg−1)

SP (W kg−1) Electrolyte Stability References

+ve electrode –ve electrode

Carbon nanofibers/Ni-Co-Fe

LDHs

Activated carbon Hydrothermal Chlorides (5:1:1) *84.9 (at 1 A g−1) *30.2 *800.1 6M KOH *82.7% over

2,000 cycles

Wang et al.,

2017a

rGO/NiCoAl LDH – Hydrothermal Nitrates (1:2:1) #1962 (at 1 A g−1) – – 6M KOH #96.2% over

2,000 cycles

He et al., 2015

rGO/NiCoAl LDH – In-situ growth Nitrates (2:1:1) #1902 (at 1 A g−1) – – 6M KOH #62% over

1,500 cycles

Xu et al., 2014

Graphene sheets/Ni-Co LDHs – Microwave

heating reflux

Nitrates (2:1) #1980 (at 1 A g−1) – – 6M KOH # Increase 2.9%

over 1,500

cycles

Yan et al., 2014

Ni-Co LDHs/rGO – Hydrothermal Nitrates (1:1) *151.46 (at 2.5 A g−1) *30.29 *1,500 PVA/KOH

gel

*85.6% over

3,000 cycles

Wang et al.,

2019a

Ni-Co LDHs/rGO Activated carbon Hydrothermal Nitrates (3:3) *105.62 (at 0.5 A g−1) *40.54 *206.5 6M KOH *94.7% over

8,000 cycles

Yang et al., 2019

N-doped graphene/NiCo LDHs Activated carbon Microwave-

assisted

hydrothermal

process

Nitrates (3:2) *100 (at 0.5 A g−1) *31.2 *354 6M KOH *83% over

10,000 cycles

Wang et al.,

2019b

Ni-Co LDHs/rGO – One-pot

microwave-

assisted

synthesis

Chlorides (2:1) #1622 (at 5mV s−1) – – 6M KOH #80% over

5,000 cycles

Kim et al., 2016

Ni-Co LDHs/rGO/nickel foam rGO/nickel foam Electrodeposition Nitrates (1:2) *233.3 (at 4 A g−1) *68 *4,300 3M NaOH #90.5% over

1,000 cycles

Shahrokhian

et al., 2018

Ni-Co LDHs/CNTs/nickel foam – Chemical bath

deposition

Sulfate (1:2) #1151.2 (at 1 A g−1 – – 2M NaOH #77% over

10,000 cycles

Li et al., 2015b

Ni-Co LDHs/rGO/Ni-Co

LDHs/rGO

Activated carbon Electrodeposition Nitrates (1:1) – *84.9 *424 1M KOH *91.6% over

2,000 cycles

Li et al., 2020

Ni-Co LDHs/Ag NP/rGO Activated carbon Electrodeposition Nitrates (1:1) – *76 *480 1M KOH *79.8% over

5,000 cycles

Li et al., 2019a

Ni-Co LDHs/rGO Activated carbon Magnetic stirring Chlorides (3:2) #1703 (at 0.5 A g−1) *47.1 *399.9 2M KOH *73.3% over

10,000 cycles

Long et al., 2019

#the three-electrode system.

*the two-electrode system.

Csp is specific capacitance.

SE is a specific energy.

SP is a specific power.

F
ro
n
tie
rs

in
M
a
te
ria

ls
|w

w
w
.fro

n
tie
rsin

.o
rg

1
6

Ju
n
e
2
0
2
0
|V

o
lu
m
e
7
|
A
rtic

le
1
4
7

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Kulandaivalu et al. LDH/Carbon for Supercapacitors

nanosheets compared to hydroxides without CTAB. Moreover,
CTAB prevents the formation of bubbles at the solution-electrode
interface, thus allowing a uniform formation of Ni-Co LDHs with
high porosity on the rGO/nickel foam. In asymmetric assembly,
the composite showed good capacitive behavior with a specific
energy of 68 Wh kg−1 at a specific power of 1,070W kg−1. The
author claimed that the direct deposition of a highly porous thin
layer Ni-Co LDHs on highly conductive rGO helps in enhancing
the performances.

Li’s group (Li et al., 2020) has developed a novel multi-
layered Ni-Co LDHs|rGO|Ni-Co LDHs|rGO composite through
inkjet printing and electrodeposition method. They employed
rGO ink on the nickel foam to form a conductive layer for
the electrodeposition of Ni-Co LDHs. Then, the process was
continued to form the multi-layered composite. It has been
deduced that rGO thin layer on nickel foam not only acts as a
conductive scaffold but also provides an excellent charge transfer
path in the composite. Moreover, as a conductive scaffold,
rGO is also important in forming homogenous nanoflakes of
LDHs with good adherence, which are also observed by Guo
et al. (2019a). A high energy density of 84.9 Wh kg−1 with
a maximum power density of 424W kg−1 is achieved by
assembling an asymmetrical supercapacitor using this multi-
layered Ni-Co LDHs|rGO as the positive electrode and activated
carbon as the negative electrode. A similar strategy was also
reported by Li et al. (2019a) who have introduced conductive
silver nanoparticles (Ag NP) on top of the rGO layer coated on
carbon cloth before electrodepositing LDHs. The benefit of Ag
NP is to promote conductivity of the composite as Ag NP is
known for its high conductivity and excellent chemical stability.
This nanocomposite has a high capacity value of 173mA hg−1 at
1A g−1. The asymmetrical configuration of this nanocomposite
delivered a maximum energy density of 76 Wh kg−1 at a power
density of 480 W kg−1.

With the idea of increasing the capacitive behavior of Ni-
Co LDHs/rGO based system, the third transition metal, Al was
included (He et al., 2015). The unique nanoflakes structure of Ni-
Co-Al LDHs were grown uniformly on the 3D rGO nanosheets
created intact contact between the hydroxides and rGO, and
subsequently provides better ion movements. The hydroxides
may undergo aggregation. However, upon the addition of rGO,
such a phenomenon was avoided, resulting in better utilization
of both rGO and LDHs in the composites. A study on the
content of rGO nanosheets in the composites revealed that the
presence of rGO is highly important to increase the specific
surface area with desirable pore size distribution generating
improved ion transport to the intrinsic space. In a separate study
conducted by Xu et al. (2014) showed the influence of the cobalt
on the electrochemical performances of Ni-Co LDHs/rGO. At
optimized cobalt content of 17%, the composite was able to reach
a remarkable specific capacitance of 1,902 F g−1 at 1A g−1 in a
three-electrode system (Figure 9). Both studies disclosed that the
synergy between LDHs and rGO promotes electron transport,
thus enhance the electrochemical performances. Another work
reported by Long et al. (2019) which also used rGO incorporated
with Ni-Co LDHs via magnetic stirring. The Ni-Co LDHs/rGO
composite with uniform and loose nanostructure exhibited a

FIGURE 10 | Ragone plot summarizing specific energy and specific power of

some of the reported literature on Ni-Co LDHs combining with carbon-based

materials.

high specific capacitance of 1,703 F g−1 at 0.5 A g−1. The
incorporation of rGO greatly helps in preventing aggregation of
the Ni-Co hydroxides and, thus improves the supercapacitive
performance of the composite. The composite was then tested
as a device with activated carbon as the negative electrode. The
supercapacitor device demonstrated specific energy as high as
47.1 Wh kg−1 and specific power of 399.9 W kg−1 (Figure 10).

Instead of using rGO, another work reported on Ni-Co LDHs
coated on nitrogen-doped graphene via a simple microwave-
assisted hydrothermal process. Two significant improvements
were noticed, (a) the good hydrophilicity nature of N-doped
graphene serves as good nucleation sites for Ni-Co LDHs
growth and (b) N-doped graphene with high conductivity
provides large surface area improving the capacitive performance
of the composite. The as-prepared composite as a positive
electrode and activated carbon as a negative electrode delivers
specific energy of 31.2 Wh kg−1 at a specific power of 354W
kg−1 and extraordinary cycling stability of 83% retention over
10,000 cycles.

In another attempt, Li et al. (2015b) have reported a one-step
chemical bath deposition of Ni-Co LDHs nanoflakes uniformly
coated on highly porous carbon nanotubes. The functionalized
carbon nanotubes acted as a nucleation site for the growth
of gauze-like Ni-Co LDHs nanoflakes. The author in this
study varied the content of cobalt in the LDHs and found
that the rate capabilities increase with the content of cobalt.
Three reasons can explain this behavior; (1) the formation of
highly conductive CoOOH during oxidation/reduction process,
(2) Expansion of interlayer spacing and conductivity due to
the presence of intercalated anions and (3) carbon nanotubes
as the core in the composite ease the electron transfer in
the composite whilst minimizing electrochemical polarization.
This hybrid structure shows a maximum specific capacitance
of 701 F g−1 at a current density of 10A g−1 and a long
life span.
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SUMMARY AND PERSPECTIVES

In summary, two-dimensional layered double hydroxides,
particularly nickel-cobalt layered double hydroxides (Ni-Co
LDHs) and their composite with carbonmaterials have prompted
profound research attentions. Benefitting from their unique
layered structure, multiple oxidation states of Ni2+/Ni3+ and
Co2+/Co3+/Co4+, exchangeability of interlayer anions and
tunability of metal ion ratios, Ni-Co LDHs have gained incredible
demand in the field of the supercapacitor. pH and metal ion
ratio are the two most prominent factors to be considered to
produce LDHs with good crystallinity and phase with desirable
morphology. These factors also influence the electrochemical
behavior of Ni-Co LDHs and Ni-Co LDHs/carbon-based
supercapacitors. The incorporation of carbon-basedmaterial into
Ni-Co LDHs can help to prevent severe aggregation of Ni-
Co LDHs and enhance the supercapacitive performance of the
composite due to their high surface area, high conductivity and
excellent mechanical strength.

Although there are some encouraging results have been
reported on Ni-Co LDHs and Ni-Co LDHs/carbon-based
supercapacitors, the development of these electrodes for practical
use is still in the early stage. Therefore, substantial measures
and action need to be taken to promote the supercapacitor
performances of these electrodes, including:

a) Detailed studies on the effects of layered structures,
multiple oxidation states, exchangeability of interlayer anions,

tunability of metal ion ratio and interlayer spacing of Ni-
Co LDHs on the charge storage behavior are much needed.
A lot of theoretical understanding of Ni-Co LDHs has been
reported, however, advanced and detailed studies on the
behavior and charge storage mechanism with respect to the
mentioned factors are yet to be found.

b) Knowledge of widening the interlayer spacing of the Ni-Co
LDHs are appreciated. Interlayer spacing plays a pivotal role
in determining the capacitive behavior of supercapacitors,
whereby the larger spacing facilitating the ions intercalation
and de-intercalation. Compositing Ni-Co LDHs with carbon-
based materials indeed reduces mechanical stress and
improves capacitive behavior. However, its impact on
interlayer spacing should be explored. It also will be helpful
in prolonging the life span of LDHs.
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