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Layered double hydroxides (LDHs) are promising solid electrolytes for all solid-state

alkaline fuel cells (AFCs) because of inorganic clay-like materials. However, LDHs were

usually obtained as powder, and the formation of thin membranes as a separator of a

fuel cell is rather difficult. In this study, a glass paper, non-woven fabric of fine glass

fibers with more than 90% porosity, was used as a support for Mg-Al LDH powder,

and self-standing, thin membranes for all solid-state AFCs were fabricated. Crystals of

Mg-Al LDH were deposited in the inside of the glass paper by repeated immersion in

Mg-Al LDH-dispersed solution and drying. Thickness of the obtained Mg-Al LDH thin

membrane was about 150µm, and LDH layer showed c-axis orientation because of

the plate-like structure. The H2-O2 fuel cell using the Mg-Al LDH thin membrane as an

electrolyte showed open circuit voltage of more than 0.9 V, indicating that the Mg-Al LDH

thin membrane is dense and has high gas barrier property. The H2-O2 fuel cell using

the Mg-Al LDH thin membrane showed higher power density compared with that using

pelletized Mg-Al LDH powder as the electrolyte. The glass paper is proved to be very

effective support for making thin Mg-Al LDH electrolyte membrane.

Keywords: glass paper, layered double hydroxide, alkaline fuel cells, hydroxide ion conductivity, electrolyte

membrane

INTRODUCTION

Alkaline fuel cells (AFCs) using electrolytes such as aqueous KOH solution are known to show
higher performance compared with well-known fuel cells operable below 200◦C such as polymer
electrolyte membrane fuel cells and direct alcohol fuel cells because of the faster kinetics for oxygen
reduction reaction (Strasser, 1990; Spendelow and Wieckowski, 2007; Cheng et al., 2015; Serov
et al., 2018). The wider selection of fuels and electrode materials in AFCs is also well-known
(Matsuoka et al., 2005; Kruusenberg et al., 2012). However, KOH aqueous solution used as the
electrolyte is very sensitive to the presence of carbon dioxide. The formation of solid carbonate
salts in the electrode/electrolyte interface causes the degradation of the cell performance (Gultekin
et al., 1994; Gulzow and Schulze, 2004; Merle et al., 2011). Thus, AFCs using solid electrolytes
such as anion exchange membranes (AEM) have attracted attention in recent years because AEM
which contains no alkali-metal cation is insusceptible to carbon dioxide in air (Adams et al., 2008;
Fujiwara et al., 2011; Cheng et al., 2015; Serov et al., 2018).
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Layered double hydroxides (LDHs) have been studied as a
hydroxide ion conducting material (Kim et al., 2010; Tadanaga
et al., 2010; Furukawa et al., 2011; Kubo et al., 2012, 2013a,b;
Sun et al., 2017; Ishiyama et al., 2019). LDHs are anionic
clay-like material, and the general formula for LDHs is [MII

1−x
MIII

x (OH)2][(A n−)x/nÂmH 2O], where MII is a divalent cation
such as Mg 2+, Ni 2+, Zn 2+, etc., and MIII is a trivalent cation
such as Al 3+, Cr3+, Fe3+, etc., and A n− is an anion such
as CO3

2−, Cl −, NO3
−, etc. The inorganic clay-like material

LDHs are expected to have higher durability and thermal stability
compared with organic polymer-based AEM (Tadanaga et al.,
2010). We reported that LDHs intercalated with CO3

2− showed
high hydroxide ion conductivity of the order of 10−3 S cm −1

under 80% relative humidity (Tadanaga et al., 2010; Furukawa
et al., 2011; Kubo et al., 2012). We also reported that LDHs can
be applied to the solid electrolyte of alkaline-type direct ethanol
fuel cells (Tadanaga et al., 2010; Furukawa et al., 2011; Kubo et al.,
2012), and aqueous ammonia fuel cell (Ishiyama et al., 2019). To
improve the cell performance using LDHs as electrolyte, thin and
large area membranes with LDHs must be prepared. However,
LDHs are usually obtained as powder, and the formation of thin
membrane as a separator of a fuel cell is rather difficult.

On the other hands, in our previous reports, we used a glass
paper as a support for thin membrane for fuel cells (Tezuka
et al., 2005a,b). Glass paper is non-woven fabric of fine glass
fibers with high porosity. We reported that glass paper can be
used as a support of proton conductive inorganic-organic hybrid
electrolyte (Tezuka et al., 2005a,b). Self-standing membranes
with a small thickness and a high mechanical strength were
obtained, and improved fuel cell performances were shown.

In the present study, self-standing Mg-Al LDH thin
membranes were prepared using a glass paper as a support,
and the structure, morphology and electrochemical properties of
the membrane were examined. In addition, the H2-O2 fuel cell
using the prepared Mg-Al LDH thin membrane as electrolyte
was fabricated. The cell performance of the H2-O2 fuel cell using
Mg-Al LDH thinmembrane as electrolyte and impedance spectra
under an operating condition were evaluated.

EXPERIMENTAL

Mg-Al CO2−
3 LDH powder was prepared by using the co-

precipitation process. Mg(NO3)2·6H2O and Al(NO3)3·9H2O
were dissolved in deionized water in a Mg: Al ratio of 3: 1
(Furukawa et al., 2011). Themixture of 0.3MMg(NO3)2 solution
and 0.1M Al(NO3)3 solution was dropped into 0.3M Na2CO3

solution with stirring at 80◦C. During dropping of the solution,
pH of the reaction mixture was controlled to 10 by using 2M
NaOH solution. The obtained mixture was then aged at 80◦C
for 17 h. The white precipitates were separated with filtration,
washed with distilled water, and dried at 80◦C.

Thin Mg-Al LDH membrane was fabricated using the Mg-Al
LDH re-dispersed solution and a glass paper. The obtained Mg-
Al LDH powder by the co-precipitation method was re-dispersed
into distilled water. Then, glass paper provided by Nippon Sheet
Glass Co. Ltd., [C-glass (soda-lime-borosilicate glass Cameron

FIGURE 1 | Schematic illustration of H2-O2 fuel cell.

FIGURE 2 | XRD pattern of the obtained Mg-Al LDH intercalated with CO2−
3 .

and Rapp, 2001)] fibers, nominal thickness of 50µm, about
90% porosity) was immersed into the Mg-Al LDH re-dispersed
solution. Immediately after the most area of the glass paper was
immersed, the glass paper was removed from the solution with
withdrawal speed of 3mm s−1, and the obtained glass paper with
LDH precipitates was dried at 50◦C for 1 h. This immersion-
drying procedure was repeated five times because the dense Mg-
Al LDH thin membrane was not obtained by the immersion less
than five times. Consequently, the crystals were deposited in the
inside and surface of the glass paper, and the self-standing Mg-Al
LDH thin membranes were obtained. The thickness of the Mg-Al
LDH thin membranes was measured by a micrometer with the
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FIGURE 3 | Cross sectional SEM images of the glass paper (A) and the obtained Mg-Al LDH membrane (B).

FIGURE 4 | Surface SEM images of Mg-Al LDH thin membrane (A) and pelletized Mg-Al LDH powder (B) with 10% PTFE binder.

error of 5% or less. The membranes were pressed from both sides
before the conductivity and fuel cell evaluations. Pelletized Mg-
Al LDH powder electrolyte was also prepared for comparison, by
mixing Mg-Al LDH powder and 5 wt% polytetrafluoroethylene
(PTFE) or 10 wt% PTFE as binder for pellet molding. The
thickness of Mg-Al LDH thin membrane with the glass paper
was about 150µm and that of pelletized Mg-Al LDH powder was
about 250 µm.

Powder X-ray diffraction (XRD) was used to characterize
crystalline phases. The electrical conductivities of the pelletized
Mg-Al LDH powder and LDH thin membrane were evaluated
using impedance data in a frequency range of 1–8 × 106 Hz.
The samples were kept for 1 h at each measurement condition in
a temperature and humidity-controlled chamber to ensure that
samples reached an equilibrium. The pellets of Mg-Al LDH were
obtained by cold pressing under 200 MPa. Gold electrodes were
sputtered on both sides of the pelletizedMg-Al LDH and theMg-
Al LDH thin membrane. To evaluate the fuel cell performance of
the Mg-Al LDH thin membrane as electrolyte, a H2-O2 fuel cell
was fabricated using the pelletized Mg-Al LDH powder or Mg-Al
LDH thin membrane as electrolyte, as presented in Figure 1. The
anode electrode catalyst was prepared bymixing Pt/C (EC-20-10-
10; Electrochem Inc.), Mg-Al CO2−

3 LDH and PTFE as a binder
with a weight ratio of 1:1:0.6. The cathode electrode catalyst was

prepared by mixing Pt/C, Ni-Al CO2−
3 LDH and PTFE with the

same ratio as anode electrode catalyst. Catalysts were loaded on
a carbon sheet by painting the catalyst ink. In this study, the
loading amount of Pt was 1.9mg cm−2, the LDH loading amount
as ionomer was the same amount as the Pt catalyst. Then, these
electrolytes were sandwiched with the prepared catalyst layers on
carbon sheet. The cell performance was measured at 60◦C by
exposing a flow of 25 mL/min humidified H2 gas to anode side
and 50 mL/min humidified air to cathode side.

RESULTS AND DISCUSSION

Figure 2 shows XRD pattern of the Mg-Al CO2−
3 LDH powder

obtained by the coprecipitation method. The XRD pattern
shows characteristic 003, 006, 0012, etc. reflections attributed to
the layered structure (brucite-like structure) of LDHs, and the
formation of Mg-Al CO2−

3 LDH single phase was confirmed.
Figure 3A shows cross-sectional scanning electron

microscope (SEM) image of the glass paper used in this
study. The cross-section of the membranes was obtained by
mechanical cutting with a knife. The glass paper is non-woven
fabric and consists of glass fibers with a diameter of about 5µm
and 0.5µm. Figure 3B shows the image of the cross-section of
the obtained Mg-Al LDH thin membrane (five-time immersion).
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FIGURE 5 | Temperature dependence of the ionic conductivity of Mg-Al LDH

thin membrane and pelletized Mg-Al LDH powder.

FIGURE 6 | Performance of H2-O2 fuel cells using Mg-Al CO2−
3 LDH thin

membrane (without PTFE) using the glass paper as support medium, and

Mg-Al CO2−
3 LDH pellet containing 5, 10 wt.% PTFE as a binder.

Mg-Al LDH particles were confirmed to be deposited on the
inside of the glass paper. The deposited Mg-Al LDH crystals in
the inside of the glass papers are assumed to be weakly attached
with the glass fibers.

Figure 4 shows surface SEM images of Mg-Al LDH thin
membrane with the glass paper support and the pelletized Mg-
Al LDH powder. The surface of the pelletized LDH powder
(Figure 4B) is rather smooth. This may be because shape
and size of LDH crystals are rather easy to be changed
by pressing. On the surface of the pelletized sample, the
presence of mixed PTFE binder are also confirmed. However,
some cracks are present on the surface. On the other

hand, in Mg-Al LDH thin membrane (Figure 4A), Mg-Al
CO2−

3 LDH powder are deposited on glass paper, and LDH
hexagonal particles are well-oriented parallel to the plane
of glass paper. The characteristic morphology of the Mg-
Al LDH thin membrane electrolyte and the pressure applied
in the fabrication of membrane-electrolyte assembly for fuel
cell is expected to result in dense structure and high gas
barrier property.

Electrical properties of the pelletized Mg-Al LDH
powder and Mg-Al LDH thin membrane were determined
using the impedance spectroscopy. The temperature
dependence of the ionic conductivities under 80% relative
humidity for the pelletized Mg-Al LDH powder and
Mg-Al LDH thin membrane is shown in Figure 5. The
ionic conductivity of Mg-Al LDH thin membrane is
almost the same as that of the pelletized Mg-Al LDH
powder. Mg-Al LDH crystals on glass paper seem to be
connected each other. Thus, the moderate difference of the
conductivity may be because of the decrease of the grain
boundary resistance.

Alkaline-type H2-O2 fuel cells using the pelletized Mg-
Al LDH powder with PTFE binder and Mg-Al LDH thin
membrane as electrolyte were fabricated. Figure 6 shows the
cell performance for the alkaline-type H2-O2 fuel cell under
80% relative humidity. The power density (P = V × I) of
the fuel cell is calculated from the measured I-V data and the
active area of the electrode. The H2-O2 fuel cell using Mg-Al
LDH thin membrane as electrolyte shows open circuit voltage
(OCV) of more than 0.9V, indicating that the thin membrane
with well-oriented Mg-Al LDH crystals has high gas barrier
property. The H2-O2 fuel cell using Mg-Al LDH thin membrane
as electrolyte shows higher cell performance than the cell using
pelletized Mg-Al LDH powder. The maximum power density of
the H2-O2 fuel cell using Mg-Al LDH thin membrane is about
5 times higher than that using pelletized Mg-Al LDH powder.
The effect of PTFE content in the pelletized electrolyte on the cell
performance is much smaller at the same experiment. Therefore,
the improvement of the cell performance must be because of the
smaller thickness in the Mg-Al LDH thin membrane. The better
performance should mainly be attributed to the lower resistance
of the electrolyte.

For detail analysis of the high cell performance using Mg-
Al LDH thin membrane as electrolyte, the impedance spectra
under the cell working condition were measured. Figure 7

shows the impedance plot under the cell working condition.
The intercept in high frequency range is electrolyte resistance
because this value is almost proportional to the thickness
of the electrolytes. The circle in low frequency range is
attributable to the overlap of activation overpotential and
concentration overpotential (Springer et al., 1996; Yuan et al.,
2007). The impedance plot of H2-O2 fuel cell using Mg-
Al LDH thin membrane as electrolyte shows that electrolyte
resistance is small compared to the pelletized Mg-Al LDH
powder. The circle in the H2-O2 fuel cell using Mg-Al
LDH thin membrane as electrolyte in low frequency range is
rather small, indicating that the concentration overpotential is
also lowered.
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FIGURE 7 | Nyquist plots of H2-O2 fuel cells using Mg-Al CO2−
3 LDH thin membrane using the glass paper as support medium and Mg-Al CO2−

3 LDH pellet containing

5, 10 wt.% PTFE as a binder at 0.6 V.

The glass paper is proved to be very effective support
for making thin electrolyte membranes for fuel cells.
Thin membrane with smaller thickness or larger area
can be prepared by using an appropriate glass paper.
This procedure can also be applied to a separator
of other all solid-state electrochemical cells, such as
all solid state lithium batteries, by using powder of
solid electrolytes.

CONCLUSIONS

Self-standing Mg-Al LDH thin membranes were prepared
using a glass paper as support. The H2-O2 fuel cell with
using the Mg-Al LDH thin membrane as the separator
showed high OCV, indicating that Mg-Al LDH thin
membrane has high gas barrier property. The H2-O2

fuel cell showed higher cell performance compared with
the H2-O2 fuel cell using the pelletized Mg-Al LDH
powder. These results indicate that the glass paper is
very effective support for making thin Mg-Al LDH
electrolyte membrane.
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