

Sulfur Dioxide (SO₂) Detection Using Composite of Nickel Benzene Carboxylic (Ni₃BTC₂) and OH-Functionalized Single Walled Carbon Nanotubes (OH-SWNTs)

Nikesh Ingle¹, Savita Mane¹, Pasha Sayyad¹, Gajanan Bodkhe¹, Theeazen AL-Gahouari¹, Manasi Mahadik¹, Sumedh Shirsat² and Mahendra D. Shirsat^{1*}

¹ Department of Physics, RUSA Centre for Advanced Sensor Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India, ² Department of Electronics and Telecommunication Engineering, Jawaharlal Nehru Engineering College, Aurangabad, India

OPEN ACCESS

Edited by:

Jaehwan Kim, Inha University, South Korea

Reviewed by:

Jie Zhang, Chongqing University, China Roli Verma, Tel Aviv University, Israel

*Correspondence: Mahendra D. Shirsat mdshirsat.phy@bamu.ac.in

Specialty section:

This article was submitted to Smart Materials, a section of the journal Frontiers in Materials

Received: 09 December 2019 Accepted: 26 March 2020 Published: 15 May 2020

Citation:

Ingle N, Mane S, Sayyad P, Bodkhe G, AL-Gahouari T, Mahadik M, Shirsat S and Shirsat MD (2020) Sulfur Dioxide (SO₂) Detection Using Composite of Nickel Benzene Carboxylic (Ni₃BTC₂) and OH-Functionalized Single Walled Carbon Nanotubes (OH-SWNTs). Front. Mater. 7:93. doi: 10.3389/fmats.2020.00093 In the present investigation, a composite of "nickel benzene carboxylic (Ni_3BTC_2)" and "OH-functionalized single walled carbon nanotubes (OH-SWNTs)" was synthesized using the solvothermal method. The synthesized Ni_3BTC_2 /OH-SWNTs were drop casted on gold micro electrode tip on Si/SiO₂ substrate. The synthesized composite materials were characterized by X-ray diffraction (XRD) for structural analysis, electrical analysis using current-voltage (I/V) characteristics, Field emission scanning electron microscopy (FESEM) for surface morphology, Field effect transistor (FET) by using transfer and output characteristics, and spectroscopic analysis using Fourier-transform infrared spectroscopy (FTIR). This composite was used for the detection of SO₂. The proper incorporated OH-SWNTs in Ni_3BTC_2 MOF exhibits increased conductivity and sensing performance (better response and recovery time and repeatability). This work reveals that the composite of Ni_3BTC_2 /OH-SWNTs can be used for reversible sensing of SO₂ gas in ChemFET modality at room temperature.

Keywords: metal-organic framework, single walled carbon nanotube, chemiresistive sensor, SO_2 gas sensing, reproducibility

INTRODUCTION

During the last two decades, Metal-Organic frameworks (MOFs) have attracted considerable attention among research communities due to their unique tunable physical and chemical properties which build on the selecting organic linker and central metal (Campbell et al., 2015; Avery et al., 2016; Bodkhe et al., 2019). MOFs have large surface areas with high porosity. MOFs have been used for various applications like gas adsorption, storage, separation, sensors, and catalysis (Koo et al., 2016; Ullman et al., 2016; Dmello et al., 2018; Li H. et al., 2018). MOFs are newly introduced materials in electronics and optoelectronic devices (Dolgopolova and Shustova, 2016; Campbell and Dincă, 2017; Stassen et al., 2017). Campbell and Dincă (2017) reported successful synthesis of Cu₃(HITP)₂ and Ni₃(HITP)₂ MOFs with high electrical conductivity and reported that it was able to be used for chemiresistive ammonia vapor sensing. The results obtained

1

for $Cu_3(HITP)_2$ show a good response to ammonia, whereas $Ni_3(HITP)_2$ did not show any observable response to ammonia vapor under identical experimental conditions.

SWNTs are well known for their unique electrical, mechanical, and thermal properties (Patil et al., 2017; Deshmukh et al., 2018). These properties make them a unique material for sensing applications. Pristine CNTs are not very active in a chemical process. Therefore, activation/functionalization of CNTs need to be performed through various methods viz. wet chemical methods, photo-oxidation, and oxygen-plasma or gas phase treatment, which shows great chemical reactivity of carbon nanotubes (Patil et al., 2017; Gurova et al., 2019; Hoang et al., 2019). The CNTs are familiarized with a graphite surface which contains oxygen-containing groups, mainly carboxyl and hydroxyl (Zhang et al., 2003; Yook et al., 2010; Liang et al., 2016). This introduces the possibility of further modification which will affect the solubility and reactivity of OH-SWNTs.

There are many research groups focusing on SO_2 gas sensor due to its toxicity (Farmanzadeh and Ardehjani, 2018; Li Q. et al., 2018; Nagarajan and Chandiramouli, 2018; Khan et al., 2019; Zhou et al., 2019). The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for SO_2 is 5 ppm. Advancement in civilization has had severe impacts on the environment. Researchers across the globe are taking crucial efforts to scale new materials for the detection hazardous gases. Some of them are using functionalized or composites of OH-SWNTs for SO_2 detection (Li Q. et al., 2018; Nagarajan and Chandiramouli, 2018).

SWNTs have walls of graphene sheet which leads to π - π electron conjugation to interact with functional group. The functional groups on the SWNTs outer side and tips make them more active channels in a chemical reaction, which is why they have better sensitivity and repeatability. Importantly, Wen et al., 2015 reported that the SWNTs act as an excellent backbone and conductive surface with Ni-MOF. In the present investigation, the composite of Ni₃BTC₂/OH-SWNTs was synthesized through a solvothermal method and it was used for the detection of Sulfur dioxide (SO₂) in ChemFET modality. To the best of our knowledge, no one has yet reported reversible SO₂ gas sensing on a Ni₃BTC₂/OH-SWNTs composite.

EXPERIMENTAL

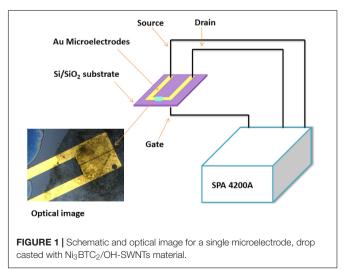
The Gold Microelectrodes Pattern

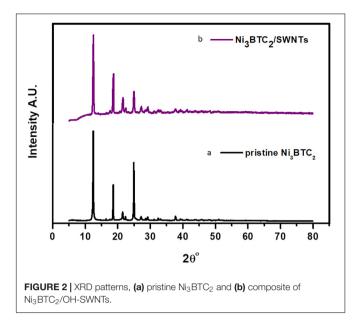
The gold micro electrodes on Si/SiO₂ substrate were prepared as reported earlier (Shirsat et al., 2009). The gold microelectrodes had a 3 μ m gap between the two electrode tips, which had a length of 200 μ m, and these microelectrodes were deposited on Si (thickness 525 μ m) /SiO₂ (100 nm thickness) using a standard photolithography process. The gold (Au) had a thickness of 180 nm and the underneath layer of chromium (Cr) had a thickness of 20 nm, and these were deposited on Si/SiO₂ substrate. Finally, the desired micro-pattern was developed using Lift-off technique.

Functionalization of SWNTs

The SWNTs oxidation process was carried out by using HNO₃ oxidizing agent (Hu et al., 2003). The purified 0.1 g of SWNTs (Sigma Aldrich) was mixed with 20 ml of HNO₃. Then the mixture was continuously stirred for 20 h. The prepared suspension releases bubbles which indicates oxygen formation. Then, resultant suspension was ultrasonicated for 60 min at medium power level (VWR 100C ultrasonic bath) followed by centrifugation (REMI R-24) at 12,000 rpm for 60 min. The decanted suspension was sucked using a syringe and used for further process.

Synthesis of Ni₃BTC₂/OH-SWNTs Composite

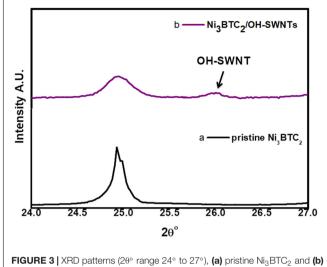

0.1 mol of oxidized OH-SWNTs mixed with nickel (II) acetate tetrahydrate (molychem, 98%) and 3 mmol Trimesic acid (Sigma-Aldrich, 95%) mixed with 20 ml of N,N-Dimethylformamide (DMF) (Sigma-Aldrich, 99.8%) was continuously stirred for 30 min. at 1000 rpm. The solvothermal method was used for the synthesis of the desired material by using a Teflon-lined stainless-steel autoclave, sealed, and placed in a furnace. The mixture was heated for 140°C for 24 h. After the completion of the reaction, the mixture was cooled at room temperature. The resultant composite was filtered and washed with DMF. Remaining pure precipitate powder was dried at room temperature.

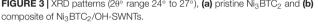

Finally, 0.1 mmol composite of Ni₃BTC₂/OH-SWNTs was mixed with 10 ml DMF solvent and sonicated for 60 min. at medium power. A 0.2 μ l drop from the resultant suspension was used to bridge a 3 μ m gap between two gold microelectrodes on Si/SiO₂ substrate, as shown in the schematic and optical image (**Figure 1**).

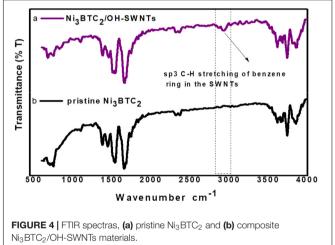
RESULTS AND DISCUSSION

X-Ray Diffraction

The X-ray diffraction patterns were measured using Bruker D8 Advanced system, with a potential difference of 40 kV




and a current of 40 mA with source Cu K α λ = 1.5406 Å radiation. The XRD patterns of pristine Ni3BTC2 and Ni₃BTC₂/OH-SWNTs composite were shown in Figure 2. The pristine Ni₃BTC₂ signature peaks (12.54°, 18.49°, 21.29°, and 25°) of the diffraction pattern are well matched with reported data (Jin et al., 2013; Figure 2a). The percentage of crystallinity for pristine Ni₃BTC₂ was 43.3%. The reduction in crystallinity was observed (27.1%) after incorporation of OH-SWNTs in Ni₃BTC₂, calculated by DIFFRAC.EVA software. The composite of Ni₃BTC₂/OH-SWNTs diffraction pattern (**Figure 2b**) having the same $2\theta^{\circ}$ peaks position with a decrease in intensity compared with pristine Ni3BTC2 pattern confirms there was no change in the crystal structure of Ni₃BTC₂. The peak intensity decreased for Ni3BTC2/OH-SWNTs diffraction pattern, indicating incorporation of OH-SWNTs inside the Ni₃BTC₂ MOF. The XRD pattern of functionalized OH-SWNTs incorporated in Ni₃BTC₂ is shown in Figure 2b, whereas the extra peak at $2\theta^o = 26^o$ confirms the existence of OH-SWNTs (Figure 3b) which is attributed to the graphite structure (002) of OH-SWNTs (Xiao and Xu, 2012).


The crystallite size of pristine Ni_3BTC_2 and composite Ni_3BTC_2/OH -SWNTs was calculated using the Debye–Scherrer's formula in Equation (1).

$$D = \frac{0.9\lambda}{\beta \cos\theta} \tag{1}$$

where D is crystallite size, λ is the wavelength of x-ray source radiation, i.e., CuK α wavelength is 1.5406Å, β is full width at half maxima (FWHM) calculated from Gauss fitting, pristine Ni₃BTC₂ is 0.126, and composite Ni₃BTC₂/OH-SWNTs is 0.122. The θ° (12.44°) is the Braggs angle of diffraction. The calculated crystallite size for pristine Ni₃BTC₂ was 705.2 Å and for composite Ni₃BTC₂/OH-SWNTs was 730.1 Å.

Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR spectra was recorded using Bruker Alpha ATR with a ZnSe window in the range of 4000–500 cm⁻¹. The recorded graph shows a transmittance spectra of pristine Ni₃BTC₂ and composite of Ni₃BTC₂/OH-SWNTs as shown in Figures 4a,b, respectively). The spectra of pristine Ni₃BTC₂ and composite of Ni₃BTC₂/OH-SWNTs samples have been confirmed by the asymmetric and symmetric stretching peaks of the -C = O group at 1620 and 1416 cm⁻¹, respectively. The -C-OC stretching (etheric) group was found at 1080 cm⁻¹ (Saber-Samandari and Gazi, 2013). The peaks at 1145 cm^{-1} were attributed to C-O group, whereas the C-C vibrations band presented at 1456 cm^{-1} . The peak at 1632 cm⁻¹ was attributed to C = O functional group. The aromatic C = C stretching vibration band corresponds with 1539-1658 cm⁻¹. The intensity of mentioned peak decreases in composite Ni₃BTC₂/OH-SWNTs spectra (Figure 4b) as compared to pristine Ni3BTC2 is due to the interaction between

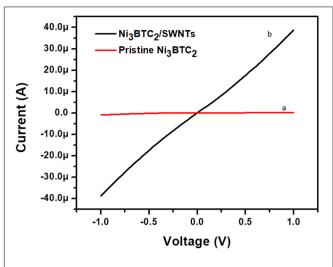
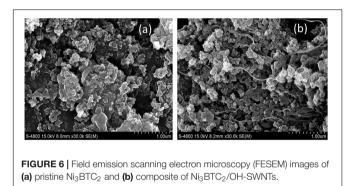
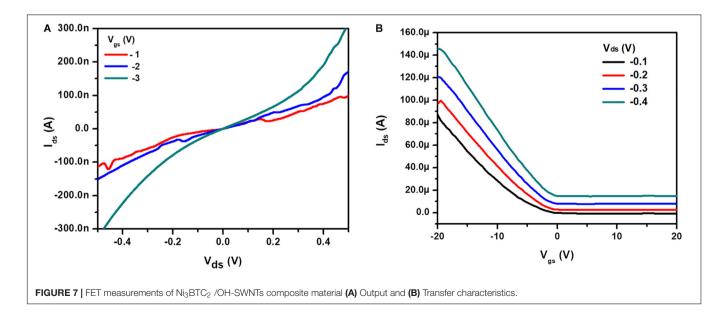



FIGURE 5 | Electrical (I-V) characteristics of (a) pristine Ni_3BTC_2 and (b) composite of Ni_3BTC_2 /OH-SWNTs.

carboxyl groups of Ni₃BTC₂ and amide groups of functionalized SWNTs (Karkeh-abadi et al., 2016). The stretching peak of


O-H at 3024 cm⁻¹ appeared in the composite material, which confirms the carboxylic group gained oxidation with HNO₃. Defect formation in sp3 C-H stretching of the benzene ring in the OH-SWNTs is shown in **Figure 4b**.

Current-Voltage (I/V) Characterization

The I/V studies were carried out using a semiconductor parameter analyzer (SPA, Keithley 4200A) at room temperature. West bond wire bounder 7476D was used to have electrical contact from gold microelectrodes to PCB for further measurements. Experimental measurements were carried out at a constant voltage range from -1 V to 1 V. Resistance of pristine Ni3BTC2 and composite of Ni3BTC2/OH-SWNTs was determined by using an inverse slope of I-V curve. Both curves of pristine and composite materials were passed through origin and show an ohmic nature of materials (Figure 5). The pristine material resistance was 8.85 M Ω and after incorporation of OH-SWNTs resistance decreased substantially to 25.5 KΩ. It was clearly observed that functionalized OH-SWNTs actively help in the enhancement of conduction. The micro network of OH-SWNTs into Ni₃BTC₂ has created a channel connectivity. Moreover, free electron mobility was increased due to the incorporation of OH-SWNTs into pristine Ni3BTC2 material. This new network has provided a conductive pathway that can charge transport though the micro network of SWNTs into Ni₃BTC₂ (Choi et al., 2012; Eletskii et al., 2015).

Field Emission Scanning Electron Microscopy (FESEM)

The morphology of pristine Ni_3BTC_2 and composite of $Ni_3BTC_2/SWNTs$ was studied using a Field emission scanning electron microscopy (FESEM) (using Hitachi High-Tech, S-4800) (**Figure 6**). **Figure 6a** reveals the microstructure of pristine Ni_3BTC_2 in which the OH-SWNTs were apparently encapsulated, forming a micro-network structure which is visible in **Figure 6b**.

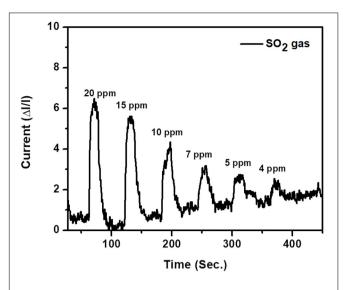
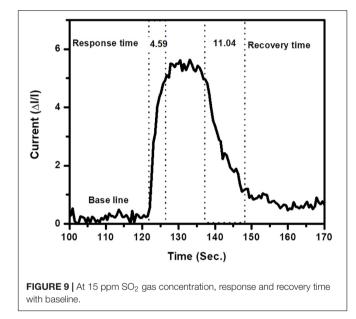



FIGURE 8 | Dynamic sensor response curve of $\rm Ni_3BTC_2$ /OH-SWNTs for various concentration of SO_2.

Field Effect Transistor (FET) Measurements

The transfer and output characteristics of Ni₃BTC₂/OH-SWNTs were studied to understand the FET behavior using SPA-4200A (**Figure 7**). In this case, composite material Ni₃BTC₂/OH-SWNTs shows p-channel behavior. For FET measurement, OH-SWNTs conducting nature has effectively contributed in composite material. In output characteristics V_{ds} measurements were carried out between -0.5 to 0.5 V by varying V_{gs} -1 to -3 V with step 1V. Negative back gated voltage has created a repulsive force between the oxide layer (free charge carrier) and the silicon substrates. It has affected the depletion region populated by positive charges, which is attracted toward electrons

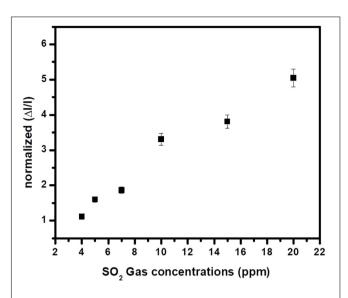
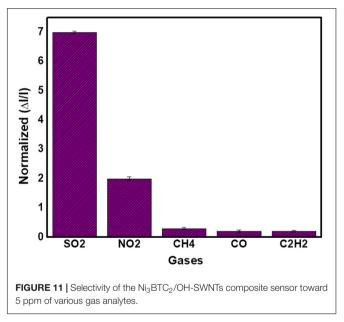



FIGURE 10 | Standard error bar at SO_2 gas concentration varies from 20 to 4 ppm.

and results in a decrease in the depletion barrier. This confirms the presence of holes as a majority charge carrier in channel. This in turn confirms the p-type behavior of Ni₃BTC₂/OH-SWNTs composite. Transfer characteristic was recorded at V_{ds} –0.1 to –0.4V with step 0.1 V by changing V_{gs} –20 to 20 V. This confirms the switching behavior of the device with threshold voltage (V_{TH}) 1.5 V at –0.1V V_{ds}.

The charge carrier mobility was calculated by using Equation (2),

$$\mu = \pm \left(\frac{\partial \sigma}{\partial \mathrm{Vgs}}\right) \left(\frac{t}{\mathrm{Cox}}\right) \tag{1}$$

The $\frac{\partial \sigma}{\partial Vgs}$ was calculated from linear fit slope from transfer characteristics at V_{ds} -0.1, where t was thickness of

composite material Ni₃BTC₂/OH-SWNTs deposited on gold microelectrodes \sim 50 μ m and C_{ox} is capacitance per unit area of 100nm SiO₂ layer calculated by Equation (3)

$$C_{\rm ox} = \frac{3.9\varepsilon_0}{t_0} \tag{2}$$

where, ϵ_0 is the permittivity of free space constant, i.e., 8.85 $\times 10^{-12} \ C^2/Nm^2$ and t_0 is the thickness of SiO₂ layer, i.e., 100 nm. The charge carrier mobility of $\sim 2.18 \times 10^{-6} \ cm^2 \ V^{-1} \ s^{-1}$ was calculated from Equation (2) at V_{ds} –0.1 V.

CHEMFET SENSING STUDIES

The sensing study was carried out by using an indigenously developed dynamic gas sensing system. The Vgs (-3 V) and V_{ds} (-0.4 V) was kept constant. Data collection was done by Keithley SPA-4200A source measuring unit at room temperature. The gas measuring device (Ni₃BTC₂/OH-SWNTs) was kept in an $\sim 8 \text{ cm}^3$ seal packed chamber. Inserting gas concentration was balanced by using a mass flow controller (Alicat) flow rate 200 SCCM. A tedlar bag was used for accumulating different concentrations of SO₂ gas. Dry air was used to inhabit initial conditions, i.e., for baseline and balancing gas concentrations to avoid any impact from humidity. Once the initial condition was achieved, the sensor was exposed to gas analytes with various concentrations ranging from 4 to 20 ppm at a constant value of V_{qs} (-3 V) and V_{ds} (-0.4 V). The sensor device having composite material Ni₃BTC₂/OH-SWNTs shows excellence response and recovery for various (higher to lower) concentrations of SO2 (Figure 8). The response time of 4.59 s. with a recovery time of 11.04 s. was recorded at 15 ppm of SO₂ concentration (Figure 9). The calibration plot is shown in Figure 10. It shows a little more deviation at higher concentrations as compared to lower concentrations.

The FET study confirms p-type Ni_3BTC_2/OH -SWNTs composite material with holes as a majority carrier. When electron acceptor (SO₂) gas analytes (Yao et al., 2011) come in contact with p-type material, it causes a transfer of electrons from the composite material, as shown in Equation (4), and generates a number of vacancies (holes). It was responsible for decreasing the resistance of the material while interacting with SO₂ gas analytes.

$$SO_2 + e^- = SO_2^- \tag{3}$$

The sensitivity of Ni_3BTC_2/OH -SWNTs composite sensor was investigated by exposing 5 ppm concentration of various gas analytes like NO_2 , CH_4 , CO, and C_2H_2 , as shown in **Figure 11**. Using the same experimental conditions, SO_2 gas showed a much

REFERENCES

Avery, A. D., Zhou, B. H., Lee, J., Lee, E.-S., Miller, E. M., Ihly, R., et al. (2016). Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. *Nat. Energy* 1:16033. higher sensitivity when compared with other tested gas analytes. These indicate that Ni_3BTC_2/OH -SWNTs composite sensor was highly sensitive toward SO₂ gas. The low response for CH₄, CO, and C₂H₂ was attributed to the nucleophilic nature of these gases (Zhang et al., 2017).

CONCLUSION

Pristine Ni₃BTC₂ and composite of Ni₃BTC₂/OH-SWNTs were successfully synthesized using the solvothermal method. The electrical, structural, surface morphological, and spectroscopic characterization confirms the successful incorporation of OH-SWNTs in Ni₃BTC₂ MOF. The FET measurement confirms p-type behavior of Ni₃BTC₂/OH-SWNTs composite material. The ChemFET sensing at constant value of V_{gs} (-3 V) and V_{ds} (-0.4 V) shows an excellent response. The incorporated OH-SWNTs in Ni₃BTC₂ MOF enhances the sensing properties of the composite material. The lower detection limit of 4ppm with a response time of 5 s. and recovery time of 10 s. was observed. The sensor shows excellent repeatability.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/supplementary material.

AUTHOR CONTRIBUTIONS

NI, SM, and PS contributed to experimental work. NI contributed to formal analysis, GB contributed to XRD and FTIR analysis, and TA-G, MM, and SS contributed to FET analysis and gas sensing. NI contributed to the investigation and writing of the original draft. MS contributed to conceptualization, writing the review, editing, and supervision.

FUNDING

We extend their sincere thanks to Inter University Accelerator Center (IUAC), New Delhi, India (UFR nos. 62320 and 62321), UGC-DAE CSR (RRCAT), Indore (Project No. CSR-IC BL66/CRS- 183/2016-17/847), DST-SERB, New Delhi (Project No. EEQ/2017/000645), Rashtria Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra, UGC-SAP Programme (F.530/16/DRS-I/2016 (SAP-II) Dt.16-04-2016) and DST-FIST (Project No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016) for providing financial support.

Bodkhe, G. A., Deshmukh, M. A., Patil, H. K., Shirsat, S. M., Srihari, V., Pandey, K. K., et al. (2019). Field effect transistor based on proton conductive metal organic framework (CuBTC). J. Phys. D 52:335105. doi: 10.1088/1361-6463/ ab1987

Campbell, M., and Dincă, M. (2017). Metal-organic frameworks as active materials in electronic sensor devices. *Sensors* 17:1108. doi: 10.3390/s17051108

- Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M., and Dincã, M. (2015). Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal-organic framework for chemiresistive sensing. *Angew. Chem. Int. Ed.* 54, 4349–4352. doi: 10.1002/anie.201411854
- Choi, H. H., Lee, J., Dong, K.-Y., Ju, B.-K., and Lee, W. (2012). Gas sensing performance of composite materials using conducting polymer/single-walled carbon nanotubes. *Macromol. Res.* 20, 143–146. doi: 10.1007/s13233-012-0030-5
- Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanaviciene, A., et al. (2018). EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu (II) ions. *Sens. Actuators B Chem.* 260, 331–338. doi: 10.1016/j.snb.2017.12.160
- Dmello, M. E., Sundaram, N. G., and Kalidindi, S. B. (2018). Assembly of ZIF-67 metal-organic framework over tin oxide nanoparticles for synergistic chemiresistive CO2 gas sensing. *Chem. A Eur. J.* 24, 9220–9223. doi: 10.1002/ chem.201800847
- Dolgopolova, E. A., and Shustova, N. B. (2016). Metal-organic framework photophysics: optoelectronic devices, photoswitches, sensors, and photocatalysts. MRSBulletin 41, 890–896. doi: 10.1557/mrs.2016.246
- Eletskii, A. V., Knizhnik, A. A., Potapkin, B. V., and Kenny, J. M. (2015). Electrical characteristics of carbon nanotube-doped composites. *Phys. Uspekhi* 58, 209–251. doi: 10.3367/ufne.0185.201503a.0225
- Farmanzadeh, D., and Ardehjani, N. A. (2018). Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: a computational study. *Appl. Surf. Sci.* 462, 685–692. doi: 10.1016/j.apsusc.2018. 08.150
- Gurova, O. A., Arhipov, V. E., Koroteev, V. O., Guselnikova, T. Y., Asanov, I. P., Sedelnikova, O. V., et al. (2019). Purification of single-walled carbon nanotubes using acid treatment and magnetic separation. *Physi. Stat. Solidi* 256:1800742. doi: 10.1002/pssb.201800742
- Hoang, N. D., Van Cat, V., Nam, M. H., Phan, V. N., Le, A. T., and Van Quy, N. (2019). Enhanced SO2 sensing characteristics of multi-wall carbon nanotubes based mass-type sensor using two-step purification process. *Sens. Actuators A Phys.* 295, 696–702. doi: 10.1016/j.sna.2019.06.046
- Hu, H., Zhao, B., Itkis, M. E., and Haddon, R. C. (2003). Nitric acid purification of single-walled carbon nanotubes. I. *Phys. Chem. B* 107, 13838–13842. doi: 10.1021/jp035719i
- Jin, L.-N., Liu, Q., and Sun, W.-Y. (2013). Room temperature solution-phase synthesis of flower-like nanostructures of [Ni3 (BTC) 2·12H2O] and their conversion to porous NiO. *Chin. Chem. Lett.* 24, 663–667. doi: 10.1016/j.cclet. 2013.05.001
- Karkeh-abadi, F., Saber-Samandari, S., and Saber-Samandari, S. (2016). The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions. *J. Hazard. Mater.* 312, 224–233. doi: 10.1016/j.jhazmat.2016.03.074
- Khan, M. A. H., Rao, M. V., and Li, Q. (2019). Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. *Sensors* 19:905. doi: 10.3390/s19040905
- Koo, W.-T., Choi, S.-J., Kim, S.-J., Jang, J.-S., Tuller, H. L., and Kim, I.-D. (2016). Heterogeneous sensitization of metal-organic framework driven metal@ metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138, 13431–13437. doi: 10.1021/jacs. 6b09167
- Li, H., Wang, K., Sun, Y., Lollar, C. T., Li, J., and Zhou, H.-C. (2018). Recent advances in gas storage and separation using metal-organic frameworks. *Materialstoday* 21, 108–121. doi: 10.1016/j.mattod.2017. 07.006
- Li, Q., Wu, J., Huang, L., Gao, J., Zhou, H., Shi, Y., et al. (2018). Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. *J. Mater. Chem. A* 6, 12115–12124. doi: 10.1039/c8ta0 2036a

- Liang, S., Li, G., and Tian, R. (2016). Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasoundassisted oxidation. J. Mater. Sci. 51, 3513–3524. doi: 10.1007/s10853-015-9671-z
- Nagarajan, V., and Chandiramouli, R. (2018). A novel approach for detection of NO2 and SO2 gas molecules using graphane nanosheet and nanotubes-A density functional application. *Diam. Relat. Mater.* 85, 53–62. doi: 10.1016/j. diamond.2018.03.028
- Patil, H. K., Deshmukh, M. A., Gaikwad, S. D., Bodkhe, G. A., Asokan, K., Yasuzawa, M., et al. (2017). Influence of oxygen ions irradiation on polyaniline/single walled carbon nanotubes nanocomposite. *RPC* 130, 47–51. doi: 10.1016/j.radphyschem.2016.07.030
- Saber-Samandari, S., and Gazi, M. (2013). Removal of mercury (II) from aqueous solution using chitosan-graft-polyacrylamide semi-IPN hydrogels. *Separ. Sci. Technol.* 48, 1382–1390. doi: 10.1080/01496395.2012.729121
- Shirsat, M. D., Bangar, M. A., Deshusses, M. A., Myung, N. V., and Mulchandani, A. (2009). Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. *Appl. Phys. Lett.* 94:083502. doi: 10. 1063/1.3070237
- Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., and Ameloot, R. (2017). An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. *Chem. Soc. Rev.* 46, 3185–3241. doi: 10.1039/c7cs00122c
- Ullman, A. M., Brown, J. W., Foster, M. E., Léonard, F., Leong, K., Stavila, V., et al. (2016). Transforming MOFs for energy applications using the guest@MOF concept. *Inorg. Chem.* 55, 7233–7249. doi: 10.1021/acs.inorgchem.6b00909
- Wen, P., Gong, P., Sun, J., Wang, J., and Yang, S. (2015). Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for anasymmetric supercapacitor with high energy andpower density. J. Mater. Chem. A 3, 13874–13883.
- Xiao, F., and Xu, Y. (2012). Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci. Mater. Electron. 24, 1913–1920. doi: 10.1007/s10854-012-1034-9
- Yao, F., Duong, D. L., Lim, S. C., Yang, S. B., Hwang, H. R., Yu, W. J., et al. (2011). Humidity-assisted selective reactivity between NO2and SO2gas on carbonnanotubes. *J. Mater. Chem.* 21:4502. doi: 10.1039/c0jm03227a
- Yook, J. Y., Jun, J., and Kwak, S. (2010). Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment. *Appl. Surf. Sci.* 256, 6941–6944. doi: 10.1016/j.apsusc.2010.04.075
- Zhang, D., Liu, J., Jiang, C., Li, P., and Sun, Y. (2017). High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. *Sens. Actuators B Chem.* 245, 560–567. doi: 10.1016/j.snb.2017.01.200
- Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., et al. (2003). Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107, 3712–3718.
- Zhou, Q., Zeng, W., Chen, W., Xu, L., Kumar, R., and Umare, A. (2019). High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. *Sens. Actuators B Chem.* 298:126870.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ingle, Mane, Sayyad, Bodkhe, AL-Gahouari, Mahadik, Shirsat and Shirsat. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.