AUTHOR=Khern Yih Chen , Paul Suvash Chandra , Kong Sih Ying , Babafemi Adewumi John , Anggraini Vivi , Miah Md Jihad , Ĺ avija Branko TITLE=Impact of Chemically Treated Waste Rubber Tire Aggregates on Mechanical, Durability and Thermal Properties of Concrete JOURNAL=Frontiers in Materials VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2020.00090 DOI=10.3389/fmats.2020.00090 ISSN=2296-8016 ABSTRACT=
Studies have shown that the incorporation of waste tire rubber aggregates reduces the strength, increases permeability and decrease thermal conductivity of concrete. However, only a few studies have investigated the effect of surface-modified rubber aggregates on the properties of concrete. This study investigates the effect of the surface treatment of waste tire rubber as coarse aggregates with different oxidizing solutions and different treatment durations on the mechanical, durability and thermal properties of concrete. The properties of concrete incorporated with 8% rubber coarse aggregates (by volume of natural aggregates) which were treated with three different solutions: water (H2O), 20% sodium hydroxide (NaOH) and 5% calcium hypochlorite [Ca(ClO)2] (both as% weight of water) for durations of 2, 24, and 72 h, respectively. The effect of these treatments on the compressive strength, splitting tensile strength, water permeability, thermal conductivity and diffusivity of concrete was investigated. Results show that Ca(ClO)2 has a more positive effect on the strength and permeability compared to NaOH solution and water. Experimental results were statistically analyzed using ANOVA and