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Electrochemical recognition of Hg (II) ions utilizing EDTA modified polyaniline
(PANI)/Graphene Oxide (GO) composite is reported in the present communication.
Graphene Oxide (GO) synthesis was carried out by a modified Hummer’s method.
Electrochemical characterizations, namely cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS), were performed before and after modification of
the composite. The topographies of the PANI/GO composite and EDTA_PANI/GO
electrodes were studied using AFM. Roughness parameter values were compared for
confirmation of surface modification. Fourier transform infrared spectroscopy (FTIR) was
utilized for the compositional analysis of PANI/GO and EDTA_PANI/GO electrodes. The
EDTA_PANI/GO composite exhibits sensitivity toward Hg (II) ions when probed using
the differential pulse stripping voltammetry (DPSV) technique with a lower detection
limit of 2 ppb. EDTA modified SS_PANI/GO composite (PANI/GO composite deposited
on a stainless-steel substrate) showed superior sensitivity in the detection of Hg (II)
ions. The sensitivity was observed to extend to 1 ppb, which is smaller than the
maximum contaminant level (MCL) endorsed by the Environment Protection Agency
(EPA, United States).

Keywords: PANI, GO, EDTA_PANI/GO, EIS, DPSV, Hg (II) ion detection

INTRODUCTION

Heavy metals are moderately scarce in the crust of the Earth. These heavy metals are characterized
by comparatively high densities and atomic numbers (Tekaya et al., 2013). Heavy metals can
harm air, water, and soil quality, and in this manner, cause hazards to human wellbeing and the
environment (Bánfalvi, 2011; Turdean, 2011). Among them, some metals like iron, cobalt, and
zinc provide crucial nutrients or are relatively innocuous (such as ruthenium, silver, and indium)
but yet can be fatal in larger amounts. Some heavy metals like cadmium, mercury, and lead are
profoundly poisonous and cancer-causing above trace levels (Nagajyoti et al., 2010; Lansdown,
2013). Of these, mercury has a greater affinity to sulfur and thiol-containing molecules, resulting
also in nephrotoxicity and neurotoxicity (Gumpu et al., 2015; Jan et al., 2015). For these reasons,
the need arises for sensors that can acquire real-time measurements of heavy metals in water.

Electrochemical detection of heavy metal ion concentration is a versatile tool. Anodic stripping
voltammetry (ASV) is the commonly used technique (Bansod et al., 2017; Deshmukh et al., 2018a).
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FIGURE 1 | Schematic diagram of the formation of EDTA_PANI/GO modified
composite on an SS electrode for the detection of Hg (II) ions by the DPSV
technique.

However, ASV has weaknesses such as instability, low sensitivity,
and limits to detection (Zhao et al., 2014; Patil et al., 2018).

To conquer this problem, many advanced materials are
being investigated, such as conducting polymers, carbon
nanotubes (CNTs), graphene and its derivatives, and metal
oxides (Choi et al., 2011; Oztekin et al., 2011; Strong et al.,
2012; Lei et al., 2014). However, these advanced materials
have certain limitations, e.g., organic conducting polymers
have low selectivity, sensitivity, and a lack of environmental
stability (Zhang et al., 2011; Das and Prusty, 2012). One of the
shortcomings of carbon nanotubes (CNTs) is the entrapment
of molecules at interstitial sites, which decreases reproducibility
(Musameh et al., 2011; Herrera-Herrera et al., 2012).

To overcome such limitations, composite or functionalized
materials are employed for the effective detection of metal ion
concentration (Chen et al., 2012; Deshmukh et al., 2018b).
Zhou et al. (2014) have reported on conducting polymers
such as polyaniline (PANI), which performs as a p-type

semiconductor and has demonstrated incredible potential for
application because of its electrical conductivity, solubility,
optical activity, easy processing, good sensitivity at room
temperature, and good environmental stability. Graphene-based
sensors are comparatively novel and can possibly meet the
objective of quick in situ estimation of metals in water (Wang
et al., 2010; Chang et al., 2014). It was reported that graphene
has a huge hypothetical explicit surface area, high intrinsic
mobility, and good electrical conductivity (Zhu et al., 2010).
Graphene additionally has a honeycomb lattice with two sub-
lattices bonded together with a σ-bond. Every carbon atom in
the lattice contains a π orbital that offers ascent to a delocalized
electron (Charlier et al., 2007; Roth and Carroll, 2015). Aside
from these astounding properties, the remarkably low electronic
clamor of graphene provides the opportunity to sensitively detect
numerous analytes using graphene (Roth and Carroll, 2015).

It was as well reported that Graphene Oxides (GO) have
layered, oxygenated graphene sheets that contain oxygen
functional groups, for example, epoxides, carboxyls, hydroxyls,
and alcohols, on their basal planes and edges. These groups
in GO can be utilized as decent sites for surface alteration. As
indicated by chemical examination, the carbon to oxygen ratio
is 3:1 (Stankovich et al., 2006). GO can be reduced to nearly
graphene by various chemical reduction methods; however,
some promising applications of GO have recently been reported
(Gilje et al., 2007; McAllister et al., 2007; Rao et al., 2009;
Chen et al., 2012).

In recent years, compositing or modification of polyaniline
(PANI) with carbon-based materials has received much attention.
The properties of GO, such as its flat structure, charge transfer
ability, incorporation of hydrophilic functional groups, and good
dispersion ability in aqueous media, lead to more sites at which
PANI can become attached (Dreyer et al., 2010; Vadivel et al.,
2016). Also, the interaction of PANI with GO is by 5-5
stacking, electrostatic interaction, and hydrogen bonding (Wang
et al., 2010). The 5-5 interaction will support faster signal
processing and enhancement of the sensitivity of the sensor.
Moreover, in coordination chemistry, EDTA falls within the

FIGURE 2 | Cyclic voltammogram recorded during the synthesis of (A) PANI and (B) PANI/GO composite for 20 potential cycles.
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FIGURE 3 | Cyclic voltammogram of (A) PANI, (B) PANI/GO composite, and
(C) EDTA modified PANI/GO composite electrodes in 0.5 M H2SO4

electrolyte.

aminopolycarboxylic acid family of ligands. Typically, EDTA ties
to a metal cation through its two amines and four carboxylates.
A significant number of the subsequent coordination compounds
bear octahedral geometry. This octahedral geometrical structure
assists with attaching the metal ion and furthermore expands
the level of cross-linking inside the PANI film (Zagal et al.,
1996). This implies that a composite of PANI/GO modified by
EDTA will have better discrimination toward Hg (II) ion. The
differential pulse stripping voltammetry (DPSV) technique is
utilized for the identification of heavy metal ions.

In the present investigation, we have amalgamated a
composite of polyaniline (PANI) and graphene oxide (GO),
which was then modified by ethylenediaminetetraacetic acid
(EDTA) for the detection of mercury ions (Hg II) using DPSV.

Over the most recent couple of years, the greater part of the
information revealed shows the simultaneous identification of
different heavy metal ions, which reflects the issue of selectivity
(Gumpu et al., 2017; Ullah et al., 2018; Yi et al., 2019). In
the present investigation, this problem is substantially resolved.
Moreover, the present investigation also achieves the detection
of Hg (II) ions beneath the MCL level, i.e., up to 1 ppb, with a
quantifiable yield current.

MATERIALS AND METHODS

Materials
Aniline of reagent grade, sulfuric acid, and
ethylenediaminetetraacetic acid (EDTA) were bought from Fluka
(Germany), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

FIGURE 4 | EIS Nyquist plots of PANI/GO composite and EDTA modified
PANI/GO composite electrodes in 0.5 M H2SO4 electrolyte.

(EDC) was acquired from Sigma Aldrich (Germany). The
phosphate buffer solution (PBS) used was of pH 7. Graphene
powder (∼60 mesh size) was procured from Molychem
(Mumbai, India), and potassium permanganate was from
Kemphasol (India). An acetate buffer solution was set up by
regulating 0.1 M sodium acetate (Aldrich) to the desired pH, 4.1.
All the progressions were carried out in aqueous media using
deionized water (DI).

Preparation of PANI/GO Composite
Graphene Oxide was produced from graphite powder using
the Modified Hummer’s Method (Shahriary and Athawale,
2014). Separately, PANI/GO composite was synthesized by an
electrochemical method. First, 50 mL of aqueous 0.25 M aniline
and 0.5 M H2SO4 suspension were mixed and maintained for

FIGURE 5 | FTIR spectrum of GO, PANI/GO composite, and EDTA modified
PANI/GO composite.
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FIGURE 6 | Comparative atomic force microscope (AFM) images with respective line profiles of (A) GO, (B) PANI/GO composite, and (C) EDTA modified PANI/GO
composite.

FIGURE 7 | Surface roughness parameters of bare GO, PANI/GO composite,
and EDTA modified PANI/GO composite.

20 min, stirring. Then, 10 ml of GO in the ratio 0.1 mg/ml
was mixed with the above electrolyte solution. The mixture was
kept for 20 min, stirring, followed by 20 min sonication. The
electrochemical synthesis of PANI/GO composite was carried
out by the cyclic voltammetry method inside the potential
scope of 0 to +1 V at a scan rate of 0.1 V/s for 20 cycles,
with a stainless steel (SS) electrode as the working electrode,
platinum as the counter electrode, and Ag/AgCl as the reference
electrode. It was performed on a CHI 660C electrochemical
workstation. After applying the voltage for 20 cycles, a blackish
green-colored coating was observed on the working electrode.
The deposited film was washed with deionized water to evacuate
the concentration of electrolyte at the substrate surface, and the
electrode was afterward dried at room temperature. A schematic
of the synthesis of PANI/GO composite and the subsequent
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FIGURE 8 | Height distribution of (A) GO, (B) PANI/GO composite, (C) EDTA
modified PANI/GO composite.

modification of the composite through the EDTA chelating
ligand is represented in Figure 1.

Modification of SS_PANI/GO Composite
The SS_PANI/GO composite electrode (PANI/GO composite
synthesized on a stainless steel substrate) was modified by EDTA
chelation by a dip-coating method because, after polymerization
of a conducting polymer, it is easy to attach another active group
covalently. For modification, an EDTA suspension was set up
in a 0.2 M phosphate buffer solution (PBS) at pH 7.2, having
0.1 M EDC as a triggering operator and 0.01 M EDTA. The
SS PANI/GO electrode was inundated in the readied solution
of EDTA and left for 12 h under non-stop stirring at room
temperature. This resulted in the formation of covalent bonding
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FIGURE 9 | Determination of Hg(II) ions by the DPSV technique (A) with three different electrodes at 30 ppb [(A) PANI/GO composite, (B) only PANI, and (C) EDTA
modified PANI/GO composite] and (B) from 1 to 30 ppb with an EDTA modified PANI/GO composite electrode. (C) Enlarged image for 1 to 3 ppb with an EDTA
modified PANI/GO composite electrode.

FIGURE 10 | (A) Linear relationship between Hg(II) ion concentration (in ppb) and measured current (mA). (B) Calibration plot of EDTA modified PANI/GO composite.

of COOH- with the NH2 group of the composite. The electrodes
were subsequently cautiously washed with deionized water to
expel the gently bound molecules.

Electrochemical Detection of Mercury
[Hg (II)] Ions
Electrochemical detection of mercury ions was carried out
by differential pulse stripping voltammetry (DPSV) employing

a three-terminal arrangement at room temperature. The
SS_PANI/GO/EDTA electrode filled in as the working electrode
(1 cm2) and Ag/AgCl and platinum as the reference and counter
electrodes, respectively. The modified electrode was drenched in
acetate buffer solution of pH 4.1 with different concentrations
of Hg (II) ion and kept under continuous stirring for 2 min at
600 rpm for accumulation. This 120 s was the deposition time
for Hg (II) ions. Since EDTA has the capacity of multidentate
ligands to make a complex with many metal ions at various pH
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FIGURE 11 | Selective determination of Hg (II) ions from a Cu, Pb, and Hg
ion-containing solution.

values, the pH for Hg (II) ions has been optimized as 4.1, achieved
via the acetate buffer solution. After completing accumulation,
DPSV scan was applied in the potential range of 0.0 to 0.4 V to
oxidize mercury ions from the electrode surface.

RESULTS AND DISCUSSION

Electrochemical Synthesis of PANI/GO
Composite
Electrochemical synthesis of PANI/GO composite was performed
by cyclic voltammetry, as portrayed in Figure 1, between the
range 0 to +1 V for 20 cycles on the SS electrode at a 0.1 V/s
scan rate. Figure 2 illustrates the relative cyclic voltammogram
recorded during the amalgamation of PANI and PANI/GO
composite film. During the synthesis of PANI, a greenish-colored
film was observed to form, while for, the composite, a blackish
green-colored film formed.

During synthesis, increase in the current in the PANI/GO
composite as compared to PANI is clearly exhibited in Figure 2B,
which relates to the development of composite film on the
SS electrode. The conductivity of the film increments by
expanding the applied potential, which affirms the formation of
PANI/GO composite.

Electrochemical Characterization
Figure 3 represents the electrochemical behavior of PANI,
PANI/GO Composite, and EDTA modified PANI/GO Composite
in 0.5 M H2SO4 solution. The oxidation and reduction peaks
of PANI are easily observed, and PANI/GO composite exhibits
lower oxidation potential compared to PANI and EDTA modified
PANI/GO composite. The PANI/GO composite exhibits an
increase in oxidation potential after modification by EDTA
due to the electrostatic interaction present on the surfaces of
the electrodes.

The PANI/GO composite and EDTA modified PANI/GO
electrodes were characterized by EIS in the frequency range of
1to 1000 Hz in 0.5 M H2SO4, which is a functioning strategy
for evaluation of procedures occurring at electrode surfaces.
Figure 4 shows the EIS Nyquist plots of the PANI/GO composite
and EDTA modified PANI/GO composite electrodes. The EIS
for EDTA modified PANI/GO composite electrodes indicates
a moderately large semi-circular province, which exhibits a
large interfacial electron transfer resistance between the redox
probe and the modified PANI/GO composite electrode. The
PANI/GO electrodes show lower interfacial electron resistance
in the Nyquist plot, which indicates that the structure of the
PANI/GO composite electrode stimulates electron transfer, which
demonstrates the superb electrochemical action of the PANI/GO
composite electrode.

FTIR Analysis
The PANI/GO composite and EDTA modified PANI/GO
composite were further characterized by FTIR spectroscopy, as
depicted in Figure 5. Peaks at 1690 cm−1 and 1510 cm−1 in every
spectrum confirm the presence of C = O and C-O functional
groups. C = N stretching is clearly observed at 1120 cm−1 in the
EDTA modified PANI/GO composite. This stretching indicates
strong interaction with the EDTA ligand. The peak perceived
at 2340 cm−1 relates to the (isocyanate group) N = C = O
asymmetric vibrations.

Surface Morphologies of GO, PANI/GO
Composite, and EDTA Modified PANI/GO
The surface morphologies of the prepared samples were studied
with an atomic force microscope (AFM). Figure 6 represents the
surface morphology of (A) bare GO, (B) PANI/GO composite,
and (C) EDTA modified PANI/GO composite, which plainly
reveals the transformations in surface morphology. The plot in
Figure 7 distinguishes the roughness parameters of graphene
oxide drop-casted on a glass substrate, PANI/GO composite
synthesized by the electrochemical method, and PANI/GO
composite modified with EDTA by dip coating.

Figure 8 shows the height distribution of (A) GO, (B)
PANI/GO composite, and (C) EDTA modified PANI/GO
composite. Figure 8 evidently shows that there is an increasing
distribution height from bare graphene oxide to PANI/GO
composite to EDTA modified PANI/GO composite.

COMPARATIVE AND SELECTIVE
DETERMINATION OF HG(II) IONS BY
THE DPSV METHOD

The best method for the determination of mercury ions
was elaborated on in section “Electrochemical Detection of
Mercury [Hg (II)] Ions,” Determination was performed by
the differential pulse stripping voltammetry technique (DPSV)
with EDTA modified PANI/GO composite on an SS electrode.
The modified SS electrode was immersed in a mercury ion
solution and, by following the methodology mentioned in
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section “Electrochemical Detection of Mercury [Hg (II)] Ions,”
measurement was carried out. Figure 9A, represents the
comparative detection of Hg (II) ions at 30 ppb with three
different electrodes, that is, (A) PANI/GO composite, (B) only
PANI, and (C) EDTA modified PANI/GO composite. From
this, it can be easily concluded that EDTA modified PANI/GO
composite is more sensitive than the PANI and PANI/GO
composite electrode. Thereafter, the determination of Hg (II)
ions with the EDTA modified PANI/GO composite electrode
was performed at different concentrations down to as low as
1 ppb (Figure 9B). As the concentration increases, the measured
value of the current also increases linearly, as depicted in
Figure 10A. An estimation of the determination and linearity
of the device has been made by way of the calibration plot in
Figure 10B. The gadget revealed a linearity factor R2 = 0.91283
for room temperature estimation. The sensitivity of the SS_
EDTA modified PANI/GO composite was 12.42 mA/ppb, and the
limit of detection (LOD) was 0.612 ppb.

The limit of detection was determined by utilizing the
equation,

LOD = 3.3 × (Standard deviation of the regression line/Slope)

Selective determination was carried out from the solution
containing Cu, Pb, and Hg ions. For selectivity, the potential (vs.
Ag/AgCl) was applied from −0.6 to 0.4 V. The sharp apex is
observed at 0.2 V, which clearly indicates the presence of Hg (II)
ions (Figure 11). It can be concluded that the EDTA modified
PANI/GO composite electrode is selective to Hg (II) ions only.

CONCLUSION

An EDTA modified PANI/GO composite on stainless steel (SS)
electrode for use in the detection of Hg (II) ions was synthesized
and characterized effectively. Electron transfer resistance between
the redox probe and EDTA modified PANI/GO composite
or PANI/GO composite was clearly observed. Modification by

the EDTA chelating ligand increases the affinity of PANI/GO
composite toward Hg (II) ions. An EDTA modified PANI/GO
electrode shows excellent response to Hg (II) ions from 30 to
1 ppb, which is well below MCL (2 ppb). A successful and linear
determination of Hg (II) was performed by differential pulse
stripping voltammetry (DPSV) down to 1 ppb.
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