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Non-linear structural responses offer a rich design space that can be integrated into

the development of novel (meta)-materials to enable transformative capabilities. By

exploiting robust, repeatable, non-linear elasticity the (meta)-material’s performance can

be tailored to significantly exceed what has been demonstrated through traditional linear

design paradigms. Embracing geometric non-linearity offers the designer the potential

for truly bespoke large-range elastic behavior. Herein we explore the behavior of bistable

elements that can be arranged into a space-filling triangular lattice, constructed in a

hierarchical manner. We develop an analysis of the system that can be readily extended

to more complex hierarchies, such as the hexagonal arrangement considered herein,

whilst retaining physical insight. Specifically, we present the geometric restrictions of

lattice elements that govern the existence of stable stress-free states and subsequently

characterize the transitions between such states by searching for the minimum energetic

transition pathway. Through our approach, we explore how hierarchical multi-stable

systems can be analyzed, thus contributing to the development of truly bespoke adaptive

(meta-)materials.

Keywords: elasticity, adaptive structures, morphing, non-linear materials, architected advanced materials,

meta-material, compliant structures

1. INTRODUCTION

Traditional structural design practice typically utilizes stiff components whose deformations are
purposefully minimized in order to exploit linear elastic behavior. Where large deformations are
required, such as in morphing or deployable systems, mechanical joints are typically used to
achieve the desired transformative behavior. With the advent of new manufacturing capabilities
and advanced analysis tools, a purely linear design philosophy is increasingly being challenged. One
example of this paradigm shift is the development of compliant mechanisms that utilize reversible
but large structural deformations to achieve adaptability, oftentimes facilitated by snapping across
regions of static instability. Advantages of such compliant mechanisms are decreased part count,
reduced design complexity and the introduction of preferable manufacturing techniques (Howell,
2001). Most importantly, in compliant systems the structural topology can be tailored to obtain
desirable transformative behavior (see e.g., Lu and Kota, 2003; Jutte and Kota, 2008; Krishnan et al.,
2013).

Harnessing structural instabilities is not without its own challenges, see e.g., Champneys et al.
(2019) who outline recent advances in the field. One prominent example is the buckling of an axially
compressed cylindrical shell, which, beyond the classical periodic buckling waveforms distributed
over the entire domain of the cylinder, has a strong proclivity to localize the buckling mode over
only a small portion of the domain, thereby forming localized dimples (Groh and Pirrera, 2019a).
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High-speed photography experiments of axially loaded cylinders
suggest that a single dimple forms to initiate buckling, and this
single dimple multiplies circumferentially to complete a single
row of buckles (Eßlinger, 1970). This pattern formation, known
as homoclinic snaking or cellular buckling, is also observed in
numerical simulations (e.g., Hunt et al., 1999, 2000a; Groh and
Pirrera, 2019a).

Owing to the rotational invariance of the cylinder, each
unique combination of dimples can occur anywhere around the
circumference, and the spatial multiplicity of these localizations
implies a large set of possible trajectories to instability, with
each trajectory affine to a particular imperfection signature
(Groh and Pirrera, 2019b). The resulting complexity of multiple
and oftentimes entangled post-buckling paths of this symmetric
problem creates unique challenges for numerical methods, for
the interpretation of results, and for obtaining physical insight
into problem. However, the sequence of instabilities can be
controlled more reliably by breaking the system’s inherent
symmetry through engineered imperfections (Lee et al., 2016) or
through tailored material properties (White et al., 2015).

Similar difficulties are indeed also faced in the (meta)-
material community that is developing novel material systems
constructed from multi-scale arrangements of mechanically
multi-stable snapping components (Mullin et al., 2007; Florijn
et al., 2014; Nadkarni et al., 2014; Rafsanjani et al., 2015,
2019; Shan et al., 2015). As the periodicity of the unit cells
is scaled-up, e.g., by placing multiple unit cells in rows and
columns to create a 2D array, the complexity in the number
of possible equilibrium states scales geometrically (Hunt and
Dodwell, 2019). This is because under load many different
deformation sequences can ensue; cells may snap individually,
together as a row or column, or together as an entire array.
The specific sequence of buckling is highly sensitive to the
initial configuration of the system and thus presents close
similarities to the cylinder buckling problem. The sequence of
instabilities can thus be choreographed by introducing a bias
into the system, either by varying the properties of individual
unit cells or by adding initial imperfections (Che et al., 2016).
These complexities oftenmake obtaining physical insight into the
behavior more difficult and the reliance on numerical methods
can lead to computationally expensive design and optimization
processes. Clearly, it is desirable to harness structural non-
linearities in a manner that allows physical intuition to be
retained and that permits an algorithmic approach to design.
One approach to meeting this challenge is to exploit constrained
non-linear behavior, which can be readily understood, to develop
hierarchical systems. For example, the helical lattices investigated
by Pirrera et al. (2013) may be thought of as well-understood
1D non-linear springs whose behavior is tuned by varying
stiffness, pre-stress and characteristic lengths (a macroscopic
example is shown in Figure 1). An extension to the analytical
model of Pirrera et al. (2013) for lattices with strips of nominal
width, thereby including their transverse curvature and in-plane
strains, demonstrates a robust consistency with finite element
simulation and experimental characterizations (McHale et al.,
2020b). Furthermore, the helical lattice can be tuned to exploit
external fields, such as thermal effects (O’Donnell et al., 2019;

FIGURE 1 | Prototype of a helical lattice structure that behaves as a

one-dimensional non-linear spring. Figure reproduced from O’Donnell et al.

(2019).

McHale et al., 2020a), to modulate the effective stiffness and
stability landscape. The potential of helical lattices to obtain truly
bespoke elastic responses was considered by Dixon et al. (2019).
By exploiting the helical lattice as a structural base-unit for non-
linear systems of coupled lattices, an algorithmic tuning process
that can match, to an arbitrary precision, any energetic function
up to a constant was developed (Dixon et al., 2019).

Emergent behavior is not restricted to the helical lattice alone
and there exists a range of non-linear units from which emergent
behavior is observed as system complexity is increased, such
as cylindrical ribbons (Lachenal et al., 2012; Aza et al., 2019;
Carey et al., 2019) and snapping arches (Hunt and Dodwell,
2019). This paper seeks to extend the design concepts explored in
Dixon et al. (2019) beyond their current one-dimensional nature
through an exploration of hierarchical space-filling lattices. In
doing so, we take one step closer toward the design of truly
bespoke (meta-)materials.

At smaller length-scales, the architecture of non-linear
(meta-)materials can be informed by structural behavior,
thereby reducing reliance on time-consuming and complex
investigations based onmaterial science—as is the case for tuning
the properties of shape memory alloys (Bhattacharya and James,
2005). Instead, using a structural approach, instabilities can be
integrated into the design and exploited to obtain a unique
richness in system response (Reis, 2015; Bertoldi, 2017). By
employing these structural response mechanisms at sufficiently
small length scales, a desirable macroscopic continuum response
can be achieved (O’Donnell et al., 2016; O’Donnell et al.,
2019). Herein, we propose a new approach for creating novel
material behavior from a hierarchy of non-linear elements;
namely, rather than utilizing complex topologies to achieve the
desired non-linear behavior, we can subsume this complexity into
well understood non-linear “springs” acting as base-units of a
hierarchical design. By combining robust base-units in simple
lattices, in this case triangular lattices, we can achieve desirable
morphing characteristics.

The paper proceeds as follows. First, we identify the base
bistable element from which our lattices derive. Then we explore
the stable stress-free configurations of a triangular framework,
the so-called first hierarchy, and describe its transitional
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FIGURE 2 | Energy function Equation (1) of a bistable element.

behavior. Finally, we extend the lattice to the second hierarchy,
namely a hexagonal framework, and identify the geometric
restrictions that dictate the existence of stable stress-free states.
We then explore the least-energy transitions between these states.

2. ONE-DIMENSIONAL BISTABLE
ELEMENTS

We seek to investigate the behavior of frameworks composed of
one-dimensional bistable elements which are non-linear springs
characterized by a non-dimensional length l ∈ R

+ and non-
dimensional energy 5(l) > 0. We assume that the two stable
equilibria, which have zero energy, occur at lengths l = l0 ∈
(0.5, 1) and l = 1. We also assume that the unstable equilibrium
at lp ∈ (l0, 1) has energy 5(lp) = 1, which is thus the energy
barrier 5B between the stable equilibria.

The energy profile of such elements can be tuned by tailoring
their characteristic properties and can even match a target energy
profile with an arbitrary level of accuracy (Dixon et al., 2019).

However for computational ease we choose lp = l0+1
2 and select

5 to be a fourth-order polynomial

5(l) =
4
∑

i=0

cil
i (1a)

with coefficients ci that satisfy
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The resulting energy is illustrated in Figure 2.
To characterize the zero-energy state of frameworks it is

convenient to assign a “sign” to the elements of {l0, 1, 1
l0
}

as follows:

sign l0 := −, sign 1 := 0, sign
1

l0
:= +. (2)

FIGURE 3 | Examples of systems with (A) two elements and (B) three

elements.

Wewill identify “+” with 1 and “−” with−1 so signs can be added
and multiplied, see section 5 below.

3. UNCOUPLED SYSTEMS. I. MINIMA,
SADDLES AND MAXIMA

Consider planar hinged structures, constructed from identical
bistable elements, for which the element lengths can be
prescribed independently of each other, restricted only by
satisfaction of the triangle inequality, see Figure 3. (The two-
element system in Figure 3A requires also specification of the
fixed-support separation, Lsep.) We refer to such systems as
uncoupled. Their energy is simply the sum of the energy of
each element,

5N(l) =
N
∑

n=1

5(ln). (3)

3.1. Triangles. I. Minima
In particular, the triangular structure in Figure 3B has 8
stable stress-free configurations, namely when its sides are
of length either l0 or 1. We label the (interior) angles of
these configurations as follows. Consider a triangle with sides
s1, s2, s3 ∈ {l0, 1}. We denote the angle subtended by the sides
s1, s2 by a symbol chosen from {φ0−,φ00,φ0+,φ±−,φ±+} as
follows: The first subscript is 0 if s1 = s2 and is ± otherwise.
The second subscript is 0 if s1 = s2 = s3; else it is− if s3 = l0 and
+ if s3 = 1.

From the cosine rule,

φ0− = arccos(1− l20
2
), φ0+ = arccos(1− 1

2l20
),

φ00 = arccos(
1

2
) = π

3
, (4a)

φ±− = arccos
1

2l0
, φ±+ = arccos

l0

2
. (4b)

Moreover, by considering the non-equilateral configurations
we obtain,

φ0− + 2φ±+ = π , (5a)

φ0+ + 2φ±− = π; (5b)
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FIGURE 4 | Illustration of (A) two-element and (B) three-element system’s

stability with element lengths restricted to [l0, 1]. The global maximum is

denoted by a black square, global minima by red circles, and saddle points by

diamonds with green indicating an energy of 1 and blue an energy of 2.

and a simple calculation shows that the angles are ordered as.

0 < {φ±−,φ0−} <
π

3
= φ00 < φ±+ < φ0+ < π . (6)

3.2. Triangles. II. Saddles and Maximum
Restricting the lengths of the elements to the interval [l0, 1], we
observe that local minima of the system energy correspond to
configurations where all elements are at a local minimum of
5, i.e., of length either l0 or 1. The system’s only maximum
occurs when all elements are at a local maximum of 5,
i.e., of length lp. Saddle points, i.e., extrema that are neither
local maxima or minima (equivalently, where the Hessian is
indefinite), correspond to configurations where some elements
are extended to the local maximum lp with the remaining
elements at either minima.

Thus, in Figure 4, the energy minima are located at the
vertices, the maximum at the center and saddles at the centers
of the edges/faces. In particular, in Figure 4B, saddles with an
energy of 1 occur along the midpoint of each edge and saddles
with an energy of 2 at the center of each face.

3.3. Generalization to Larger Systems
Considering Figure 5, it is clear that the triangular framework
can be extended to larger frameworks through addition of pairs
of elements to any free edge (Graver, 2001). Provided the lengths
of the new elements satisfy the triangle inequality as part of the
newly formed triangle, their size can be altered independently.
Thus we may describe the energy of such an independent system
ofN elements through Equation (3). In this case, analogous to the
three element system, the energy minima are located precisely at
vertices of the hypercube [l0, 1]

N . Saddles are located along all 1D
edges (these have energy 1) and, more generally, on each face (a
hyperplane), with energies determined by the number of unstable
elements activated. A single interior maximum is located at the
center of the hypercube.

4. UNCOUPLED SYSTEMS. II.
TRANSITIONS BETWEEN MINIMA

When transitioning between stable states it is often desirable to
select the path thatminimizes the actuation energy. The barrier to
actuation can be considered analogous to theMaxwell energy (see
e.g., Hunt et al., 2000b; Wadee and Edmunds, 2005; Champneys
et al., 2019). For a system to transition between two minima, it
must overcome an energetic barrier, the smallest possible barrier
is characterized by one or a series of adjacent saddle points. As
individual elements have an activation energy of 5(lp) = 1, any
transition path must encounter an energetic barrier that is at least
this magnitude. Thus, for systems of independent elements, the
energetically optimal paths between minima are paths traversing
the edges of the hypercube [l0, 1]

N . Intuitively, such a path
makes physical sense, by actuating each element in isolation the
individual element’s energy barrier is never exceeded.

4.1. Two-Element System
Consider the simple system described in Figure 3A. To ensure
the existence of four stable equilibra, we set Lsep = 1. Figure 6A
illustrates the energy landscape and shows the expected four
stable equilibria and central maximum. The normalized negative

gradient, − ∇5N

||∇5N || , in Figure 6B, highlights the stability of the

system and matches the expected behavior, Figure 4A.
A systematic exploration of the domain can be conducted

by investigating the transition from a fully contracted to a fully
extended configuration, i.e., moving from a configuration where
all element lengths are l0 to one where all lengths are 1. This
is always possible for an uncoupled system subject to suitable
boundary conditions. This corresponds to two opposite corners
of the square domain in Figure 4A. Consider the parametrized
path between the two stable configurations given by,

l(t;α) = [l0, l0, . . . , l0]+(1− l0)[t
β1 , tβ2 , . . . , tβN ] with βn = αn−1,

(7)
where n ∈ {1, 2, . . . ,N}, α ∈ [1,∞) and t ∈ [0, 1]. As α → ∞
this curve approaches an edge traversal path. The vertices to be
visited along the path can be selected by permuting the order of
the powers of t. Owing to the system’s symmetry, this is sufficient
to explore the entire domain, even though each path sweeps only
a portion of the domain. We can define the energy barrier of a
path for a given α as,

5N
B (α) = max

t
5N(l(t;α)).

However for visualization it is more convenient to use the
variable t̂K = (1 − t)

1
K , where K ∈ N is a scaling parameter

that can be increased as required to account for the number of
elements in the system.

Figure 7A illustrates the paths of Equation (7) for a range of
α. Figure 7B shows the system’s energy during traversal along the
path, notably we observe the emergence of two distinct peaks
and the reduction in peak magnitude as α increases. Finally,
Figure 7C, demonstrates that as the path approaches an edge
traversal the energy barrier tends toward 1, i.e., the energetic
barrier of actuating a single element.
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FIGURE 5 | Examples of frameworks with independent elements.

FIGURE 6 | (A) Energy surface for Figure 3A and (B) contour plot with negative normalized gradient. Red circles indicate minima, green diamonds saddle points and

the black square a maximum.

FIGURE 7 | Transition paths for the two-element system in Figure 3A. (A) The path for various α, (B) the energy of system for each path considered, and (C) the

maximum energy observed for each path. Line colors in (A,B) transition from blue to red as α increases and correspond to the marker colors in (C).

4.2. Three-Element System
Similarly, for the three-element system in Figure 3A, paths for
a range of α are illustrated in Figure 8A. Figure 8B shows the
system’s energy during the traversal, notably we observe the
emergence of three distinct peaks and the reduction in peak
magnitude as α is increased. Finally, Figure 8C, demonstrates
that as the path approaches an edge traversal the energy barrier
tends toward 1.

5. HEXAGONAL FRAMEWORK. I. STABLE
STRESS-FREE STATES

We now proceed to analyse a hexagonal framework to
illustrate the emergent behavior observed for non-independent
systems. Consider six triangles from section 3.1 that form a
planar hexagon as illustrated in Figure 9A. In this section we
characterize the stable stress-free states of such hexagons.
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FIGURE 8 | Transition paths for the three-element system in Figure 3B. (A) The path for various α, (B) the energy of system for each path considered, and (C) the

maximum energy observed for each path. Line colors in (A,B) transition from blue to red as α increases and correspond to the marker colors in (C).

FIGURE 9 | (A) A planar hexagon and (B) a hexagonal system.

We track the positions of the nodes of a hexagon through
complex numbers: The central node is at 0 and the other six
nodes, numbered anticlockwise, are at zi ∈ C, i = 0, . . . , 5,
subject to the constraints:

|zi| ∈ {l0, 1}, (8a)

|zi+1 − zi| ∈ {l0, 1}, (8b)

where addition of indices is mod 6. Set

wi :=
zi+1

zi
, i = 0, . . . , 5, (9)

so |wi| is the proportion between the lengths of the adjacent radial
edges and argwi is the interior angle between adjacent radial
edges. It follows that a hexagon can be identified with wi ∈ C,
i = 0, . . . , 5, which satisfy,

j
∏

i=0

wi ∈ {l0, 1,
1

l0
}, j = 1, . . . , 5, (10a)

5
∏

i=0

wi = 1, (10b)

5
∑

i=0

argwi = 2π . (10c)

TABLE 1 | The four classes of sign configurations.

Configuration label # “−”s # “0”s # “+”s Section

3-0-3 3 0 3 5.2

2-2-2 2 2 2 5.4

1-4-1 1 4 1 5.3

0-6-0 0 6 0 5.1

With every hexagon we associate a sign diagram, which is a
(finite) sequence of signs,

s0 s1 s2 s3 s4 s5, (11a)

modulo 6-cycle permutations, where

si := sign(|wi|), (11b)

as defined in Equation (2).
Now consider the sign diagram Equation (11a), modulo 6-

cycle permutations. Note that

1. From Equation (10b), the signs “+” and “−” should occur in
equal number.

2. Considered cyclically “+” and “−” should alternate with “0”
allowed to intervene, since from Equation (10a) neither two
“+”s nor two “−”s can occur sequentially.

From Item 1, there are four classes of sign configurations. These,
labeled by the numbers of each sign, are tabulated in Table 1. We
now consider each of these configurations.

5.1. Configuration 0-6-0
The radial edges of the hexagon are of equal length since |wi| = 1
for i = 0, . . . , 5.

From section 3.1 and Equation (4) the possible interior angles
of the hexagon are φ0−, π

3 and φ0+. Suppose these angles occur
withmultiplicities q, 6−q−r and r, respectively, for q ∈ {0, . . . , 6}
and r ∈ {0, . . . , 6− q}. Then we require

qφ0−+rφ0+ = (q+r)
π

3
for q ∈ {0, . . . , 6}, r ∈ {0, . . . , 6−q}.

(12)

Frontiers in Materials | www.frontiersin.org 6 April 2020 | Volume 7 | Article 64

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


O’Donnell et al. Morphing Hexagonal Frameworks

Since, from Equation (6), φ0− < π
3 < φ0+, q = 0 if and only if

r = 0. In this case all interior angles are π
3 and thus the hexagon

is regular. On the other hand when q, r > 1, there is at least one
interior angle φ0− and at least one interior angle φ0+. However,
this is impossible since φ0− cannot occur if all the radial edges
are of length l0 and φ0+ cannot occur if all the radial edges are
of length 1.

pφ±− + (2− p)φ±+ + qφ0− = (2+ q)
π

3
for p = 0, 1, 2, q = 0, 1, 2, 3, 4; (for A and -A)

pφ±− + (2− p)φ±+ + qφ0− + rφ0+ = (2+ q+ r)
π

3
for p = 0, 1, 2, q = 0, 1, 2, 3, r = 0, 1; (for B and -B)

pφ±− + (2− p)φ±+ + qφ0− + rφ0+ = (2+ q+ r)
π

3
for p = 0, 1, 2, q = 0, 1, 2, r = 0, 1, 2. (for C)

Thus, this configuration can be realized only in a regular hexagon.
There are two possibilities: Either all edges of the hexagon are of
side l0 or all edges of the hexagon are of side 1.

5.2. Configuration 3-0-3
From Item 2 above, the only possible sequence of signs is

+ − + − + −

considered cyclically. From section 3.1, each interior angle could
be either φ±− or φ±+. We can choose p ∈ {0, . . . , 6} of these to
be φ±− provided

pφ±− + (6− p)φ±+ = 2π .

Since, from Equation (6), φ±− < π
3 < φ±+, p /∈ {0, 6}. A

numerical investigation shows that the only solution is p = 2

and l0 = −1+
√
5

2 ≈ 0.6180, which is the inverse golden ratio.
A number of hexagons are possible, one of which is illustrated
in Figure 10A. However, since we are interested in generic
configurations, i.e., those that are feasible for any l0 ∈ (0.5, 1),
henceforth we shall omit details of hexagons that are exist only
for some values of l0.

5.3. Configuration 1-4-1
Modulo multiplication by−1 there are three sub-configurations

− + 0 0 0 0, (1-4-1 A)

− 0 + 0 0 0, (1-4-1 B)

− 0 0 + 0 0, (1-4-1 C)

considered cyclically. To see this note that we can choose to
traverse the circuit such that (i) “−” precedes “+,” and (ii) the
number of “0”s between “−” and “+” is no more than the number
of “0”s between “+” and “−.” The last sub-configuration is its own
negative; the negatives of the first two are

+ − 0 0 0 0, (1-4-1 -A)

+ 0 − 0 0 0, (1-4-1 -B)

considered cyclically, respectively.
As for interior angles, corresponding to each “−” or “+”

we may choose either φ±− or φ±+. Assume, with no loss of

generality, that we traverse the interior angles so that the “−”
precedes the “+.” Then each “0” between “−” and “+” can be
either φ00 or φ0+; and each “0” between “+” and “−” can be either
φ00 or φ0−.

We may choose p of φ±−, 2− p of φ±+, q of φ0−, r of φ0+ and
4− q− r of π

3 if

Solving the above equations, we deduce that hexagons for
Configuration 1-4-1 A are:

1. p = 0, q = 1, r = 0, l0 ∈ (0.5, 1). There are 4 hexagons for
1-4-1 A and none for 1-4-1 -A.

Hexagons for Configuration 1-4-1 B and 1-4-1 -B are:

1. p = 0, q = 1, r = 0, l0 ∈ (0.5, 1). There are 3 hexagons for
1-4-1 B and 1 hexagon for 1-4-1 -B.

2. p = 0, q = 3, r = 1, l0 ≈ 0.6180.

3. p = 1, q = 2, r = 1, l0 =
√

2−
√
3 ≈ 0.5176.

4. p = 2, q = 0, r = 1, l0 ∈ (0.5, 1). There is one hexagon for
1-4-1 B and 3 hexagons for 1-4-1 -B. The first of these, labelled
1-4-1 -B∗, is illustrated in Figure 10B.

Hexagons for Configuration 1-4-1 C are:

1. p = 0, q = 1, r = 0, l0 ∈ (0.5, 1). There are 2 hexagons.

2. p = 1, q = 2, r = 1, l0 =
√

2−
√
3 ≈ 0.5176.

3. p = 2, q = 0, r = 1, l0 ∈ (0.5, 1). There are 2 hexagons.
4. p = 2, q = 2, r = 2, l0 ≈ 0.6180.

The generic configurations are listed in Table 2.

5.4. Configuration 2-2-2
Modulo multiplication by−1 there are four sub-configurations

− 0 0 + − +, (2-2-2 A)

− 0 + − 0 +, (2-2-2 B)

− 0 + − + 0, (2-2-2 C)

− 0 + 0 − +, (2-2-2 D)

considered cyclically. To see this note that we can
choose to traverse the circuit such that (i) “−” preceeds
“+,” and (ii) the first “−” is immediately succeeded by
a “0.”

The interior angles are exactly as in Configuration 1-4-
1 in section 5.3. Thus, for Sub-Configurations A and B we
may choose p of φ±−, 4 − p of φ±+, r of φ0+ and 2 − r
of π

3 if

pφ±− + (4− p)φ±+ + rφ0+ = (4+ r)
π

3
for p = 0, 1, 2, 3, 4,

r = 0, 1, 2;
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FIGURE 10 | Example hexagon configurations (A) 3-0-3, here l0 ≈ 0.6180,

the inverse golden ratio, so φ±+ = 2π
5 and φ±− = π

5 . Note that any three

consecutive angles add up to π so geometrically there are three straight lines

passing through the central node. (B) 1-4-1 -B⋆ (see Table 2 for full details).

similarly for Sub-Configurations C and D we may choose p of
φ±−, 4 − p of φ±+, q of φ0−, r of φ0+ and 2 − q − r of π

3 if

pφ±− + (4− p)φ±+ + qφ0− + rφ0+ = (4+ q+ r)
π

3
for p = 0, 1, 2, 3, 4, q = 0, 1, r = 0, 1.

Solving the above equations, we deduce that hexagons for
Configurations 2-2-2 A and 2-2-2 B are:

1. p = 4, r = 2, l0 ∈ (0.5, 1). There is one hexagon each for A
and B but none for -A and -B.

2. p = 1, r = 0, l0 =
√

2−
√
3 ≈ 0.5176.

Hexagons for Configuration 2-2-2 C and 2-2-2 D are:

1. p = 2, q = 1, r = 1, l0 ∈ (0.5, 1). There are 6 hexagons for
each of C, -C, D and -D.

2. p = 1, r = 0, l0 =
√

2−
√
3 ≈ 0.5176.

The generic configurations are listed in Table 2.
Having characterized the stable stress-free states of a

hexagonal framework we proceed to consider transitions between
these states.

6. HEXAGONAL FRAMEWORK. II.
ENERGETIC ANALYSIS

For a system with independent elements the optimal transition
path between minima has an energetic barrier equivalent
to actuating each element of the system independently
in turn. The design space possess a self-similarity that is
retained with increasing numbers of elements. This feature
permits physical intuition into the system’s behavior.
However, systems such as the hexagonal framework,
illustrated in Figure 9B, have additional constraints,
imposed either by the connectivity of the system or by
boundary conditions. We illustrate how the effects of
additional constraints can be captured through an additional
“geometric” energy.

In a hexagonal framework, we are free to choose the length of
11 of the 12 elements in the system. The 12th element’s length

TABLE 2 | The 44 hexagons for generic l0. Here
⋆ denotes a hexagon with lengths

l0 and 1 interchanged.

Config. 1 2 3 4 5 6 7 8 9 10 11 12 Choices #

0-6-0 A 1 1 1 1 1 1 1 1 1 1 1 1 - 1

0-6-0 A⋆ l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 l0 - 1

1-4-1 A 1 1 l0 1 1 · 1 · 1 · 1 · 1 ∗ l0, 3 ∗ 1 4

1-4-1 B 1 1 l0 l0 l0 1 1 · 1 · 1 · 1 ∗ l0, 2 ∗ 1 3

1-4-1 -B l0 1 1 l0 1 1 l0 l0 l0 l0 l0 l0 - 1

1-4-1 -B⋆ 1 l0 l0 1 l0 l0 1 1 1 1 1 1 - 1

1-4-1 B⋆ l0 l0 1 1 1 l0 l0 · l0 · l0 · 2 ∗ l0, 1 ∗ 1 3

1-4-1 C 1 1 l0 l0 l0 l0 l0 1 1 · 1 · 1 ∗ l0, 1 ∗ 1 2

1-4-1 C⋆ 1 l0 l0 · l0 · l0 l0 1 1 1 1 1 ∗ l0, 1 ∗ 1 2

2-2-2 A 1 l0 l0 1 l0 1 l0 l0 1 l0 l0 l0 - 1

2-2-2 B 1 l0 l0 1 l0 l0 1 l0 l0 1 l0 l0 - 1

2-2-2 C 1 · l0 1 l0 · 1 · l0 · 1 l0 2 ∗ l0, 2 ∗ 1 6

2-2-2 -C = C⋆ l0 · 1 l0 1 · l0 · 1 · l0 1 2 ∗ l0, 2 ∗ 1 6

2-2-2 D 1 · l0 1 l0 · 1 l0 1 · l0 · 2 ∗ l0, 2 ∗ 1 6

2-2-2 -D = D⋆ l0 · 1 l0 1 · l0 1 l0 · 1 · 2 ∗ l0, 2 ∗ 1 6

then satisfies,

l212 = l21 + l211 − 2l1l11 cos





5
∑

j=1

arccos

(

l22j−1 + l22j+1 − l22j

2l2j−1l2j+1

)



 .

(13)
We proceed therefore to consider the system by way of a
perturbation from a 11-element independent system. Using
Equation (13) we define a “geometric” energy, 5G : [l0, 1]

11 →
R, as the energetic addition owing to the geometric constraints
imposed by the system’s topology:

5G(l) = 5(l12(l)).

This allows the total energy to be written as

511
C (l) = 511(l)+ 5G(l).

The analysis in section 5 identified the global minima with
zero energy. We note that the system may, in general, possess
additional local minima, but these must have an increased
energetic state.

Using the approach identified in section 4, a parametric sweep
of the 11-dimensional hypercube [l0, 1]

11 can be conducted.
Figure 11 shows the system’s energy along the path and the
emergence of 11 distinct peaks and convergence of the barrier
energy to 1 as the path approaches an edge traversal.

We can explore the energy function 5G in a similar manner,
see Figure 12. Unlike the independent case, the system’s response
is dependent on the relative position of the secondary minimum
l0. There is a significant region of the domain where the energetic
barrier does not exceed 1. Geometrically, this indicates that
in order for the other independent elements to transition, the
dependent length must be extended and contracted in tandem,
i.e., there is no path that allows the length of l12 to remain
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FIGURE 11 | Exploration of transition behavior of the independent 11-element system. (A) describes the energy of system for each path considered as a function of

α, and (B) the maximum energy observed for each path. Line colors in (A) transition from blue to red for increasing α and correspond to the marker colors in (B).

FIGURE 12 | Exploration of transition behavior of the geometric energy of the hexagonal system (A) and total energy (B) as a function of α and l0.

constant. Additionally, this energetic barrier indicates that the
actuation path does not require the dependent length l12 to
be excessively contracted or extended, but that it may undergo
multiple transitions across its own local maximum. Additionally,
we observe that as l0 approaches 0.5 the energy barrier associated
with the geometric constraint significantly begins to increase for
edge traversal paths. This indicates that in order to accommodate
such large geometric reconfiguration the dependent element
must be compressed, or extended, significantly. The behavior of
the combined system follows from these observations indicating
that a path with an energy barrier of 1 cannot be achieved, but
that for many geometries an edge traversal remains an effective
approach to minimize the energetic cost.

7. CONCLUSIONS

Structural non-linearity offers an expanded design space that can
be exploited for the development of adaptive (meta-)materials.
The traditional approach to developing transformative (meta-
)materials has often relied upon optimization through empirical
material science investigations, or the introduction of complex
topological structures. Here, instead, we embed non-linearity,
in the form of bistability, at the elemental level, recasting the
problem as the analysis as simple frameworks of nonlinear

springs. In our analysis we investigate the energetic description of
these frameworks. In doing so we identify geometric conditions
governing the existence of global energetic minima of the system.

Many frameworks can be constructed such that independent
variation of the elemental lengths is possible, subject only to
satisfaction of the triangle inequality. For these systems, all
minima, saddles, and the (unique) maximum, can be obtained
directly by considering a hypercube defined by the relative
position of the elemental local minima. We use a systematic
path search to determine the minimum energetic barrier to
transition between self-equilibrated states, analogous to the
Maxwell energy. These results support the expected conclusion
that actuation of the elements in a sequential manner minimizes
the energetic barrier, corresponding to an edge traversal of
the hypercube.

For more constrained systems, such as the hexagonal
framework we present herein, not all elemental lengths
can be selected independently. In these systems, the
ratio of the relative positions of elemental local minima
determine the geometric feasibility of system-wide global
minima. We present the complete set of constraints
governing geometric feasibility and identify special
elemental ratios that permits adaptive states that are not
generically permissible.
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In order to explore the transitional behavior of the
hexagonal system we consider its energetic description as
the combination of independent energy, and an additional
“geometric" perturbation. The geometric perturbation arises
from the dependency of one elemental length on the remaining
11 elements of the system. Our transitional analysis demonstrates
that the dependent element introduces an energetic penalty that
cannot be eliminated. That is, we can no longer devise a path
that actuates each element in turn. The extent of the energetic
penalty is dependent on the elemental ratios, however there are
significant regions of the design space that possess nominally
identical penalties.

Planar frameworks are of interest even in three-dimensional
contexts, e.g., the cross-sectional form of a morphing aerofoil.
Moreover, the energetic behavior of uncoupled frameworks
is identical in two and three dimensions. For coupled
hexagonal systems, as explored in sections 5 and 6, out-of-
plane deformations of the nodes may be energetically preferable
but, as with the present planar analysis, the system will seek
geometrically-preferable configurations that can be identified
through global energy minima. The benefits of exploiting
non-planar responses of rectangular lattices to develop smart
surfaces was explored by Zhang et al. (2017). Three-dimensional
frameworks composed of non-linear elements will be considered
in future work.

The approach we have presented provides an initial foray
into the exploration of the behavior of hierarchical multistable
frameworks using a systematic analytical approach. Our
approach offers physical intuition into system behavior via two
mechanisms. Firstly, the behavior of an independent system

can be readily understood owing to its characterization via
the hypercube that captures all stable stress-free states. For
constrained systems, we can isolate the effects of the constraints,
via a perturbation function. By replacing complex topological
forms with elements of non-linear stiffness we have provided
an alternative approach to tuning global response mechanisms
of adaptive (meta-)materials. There is a balance to be struck
between elemental non-linearity and topology complexity to
yield the most efficient design. This paper begins an exploration
of this concept.
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