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In liquid-phase exfoliation for the production of 2D nanomaterials fluid forces are

used to gently overcome adhesive interlayer forces, leading to single- or few-layer

2D nanomaterials. Predicting accurately the critical fluid shear rate for exfoliation is a

crucial challenge. By combining notions of fluid mechanics and fracture mechanics,

we analyze a mathematical model of exfoliation, focusing on the π − peel regime in

which bending forces are much smaller than the applied hydrodynamic forces. We find

that in this regime the shear rate is approximately proportional to the adhesion energy,

independent of the bending rigidity of the exfoliated sheet, and inversely proportional to

the size a of a (assumed pre-existing) material flaw. The model appears to give values

comparable to those obtained in wet ball milling, but to overestimate the shear rate values

reported for turbulent exfoliation (by rotor mixing or microfluidization). We suggest that for

turbulent exfoliation a “cleavage model” may be more appropriate, as it gives a stronger

dependence on a and smaller critical shear rates.

Keywords: graphene, liquid-phase exfoliation, mechanics, fracture, theoretical modeling

INTRODUCTION

Graphene and other 2D nanomaterials in the form of atomically thin nanosheets promise
unexpected performance in many applications. The nanosheets can be embedded in
nanocomposites to make them conductive (Santagiuliana et al., 2018), improve barrier properties
or increasing strength and toughness (Rafiee et al., 2010). Or they can be suspended in liquid
solvents to produce conductive inks for printed electronics and high-performance coatings (Torrisi
and Carey, 2018). While these applications are currently tested in small scale applications, to reach
true market impact it is paramount to produce large quantities of 2D nanosheets cheaply, and with
control over thickness, lateral area and amount of defects (Ferrari et al., 2015).

A very promising technique for the large-scale production of 2D nanosheets is liquid-phase
exfoliation (Hernandez et al., 2008; Coleman, 2009; Yi and Shen, 2015). This technique is relatively
simple. It consists in subjecting microparticles of layered 2D nanomaterial (each microparticle
being composed of hundreds or thousands of layers) to large mechanical forces that detach the
layers. Several different variants of the technique exist, the main ones being turbulent exfoliation
(e.g., in rotor-stator mixers, Paton et al., 2014 or microfluidisation devices, Paton et al., 2017), wet
ball milling (Knieke et al., 2010; Zhao et al., 2010), and sonication (Alaferdov et al., 2014). These
techniques have in common the fact that the microparticles are initially suspended in a liquid
(in wet ball milling the particles are wet by a liquid, but a thin layer of liquid is still present). In
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Botto π-peel Model of 2D-Material Exfoliation

addition to transmit mechanical stresses, the liquid enables to
reduce the adhesion between the layers, prevent reaggregation,
and make the mechanical action less aggressive (Shen et al.,
2015). Bottom-up synthesis methods, such as Chemical Vapor
Deposition in its different variants (Aïssa et al., 2015),
are promising for producing high-quality 2D nanomaterials
particularly suitable for devices. However, to produce 2D
nanomaterials very cheaply for large-scale applications such as
nanocomposites, inks or coatings, liquid-phase exfoliation is
difficult to beat.

Optimizing liquid-exfoliation processes requires addressing a
delicate balance: the mechanical stresses applied to the particles
by the fluid must be sufficiently high to delaminate the particles,
but not much higher. Excessive stresses can fragment the
nanosheets, producing small area sheets of low intrinsic value,
or damage the sheets (Johnson et al., 2015). Reaching the right
stress level is thus paramount. However, particle-level stresses
cannot be controlled directly. What can be controlled are large
scale flow variables, such as the mixing power or, equivalently,
the average shear rate the suspension is subject to. These are
the macroscopic variables that can be controlled by the user in
the production process. It would be highly valuable if analytical
formulas relating these macroscopic variables to microscopic
exfoliation thresholds and time scales were available. Developing
these formulas requires an understanding of the flow physics and
deformation mechanics at the particle level (Figure 1).

Quite surprisingly, despite the growing importance of liquid-
phase processing in the production of graphene and other 2D
nanomaterials, the development of theoretical models for liquid-
phase exfoliation is at its infancy. Two theoretical models have
appeared recently which seem to be relevant. An exfoliation
model based on a sliding deformation was proposed by Chen
et al. (2012), and later extended by Paton et al. (2014). In this
model, the shear forces exerted by the fluid are assumed to
balance the rate at which the total surface energy (including solid-
solid, solid-liquid, and liquid-liquid interaction energy) changes
with respect to the sliding distance. The model was used to
describe the dependence of the critical shear rate for exfoliation
on the size of the suspended plate-like particles, the viscosity
of the fluid, and the energy of adhesion. Chen-Paton’s model
is insensitive to the mechanical property of the particle: the
bending rigidity or young Modulus of the particles do not appear
in the model. The assumptions of this model were not stated
with sufficient clarity to rigorously assess its validity from a
nanomechanical perspective. Prior to the work of Chen, in 2009,
a model of exfoliation was developed by Borse and Kamal (2009)
to model the exfoliation of multilayer clay particles in polymers.
Unlike Chen/Paton’s model, Borse’s model is sensitive to the
mechanical properties of the particle. The formulation of Borse’s
model is based on Kendall’s theory for peeling of elastomers
(Kendall, 1975). Borse correctly identified that because the area
of contact between the sheets is large, a simple balance between
adhesive forces and shear forces gives values of the shear stress
too high to be realistic. As a consequence, one must hypothesize
that the debonding of the layers is due to stress concentration
at the microscopic crack tip of a pre-existing flaw in the inter-
layer interface.

Borse’s model includes in the fracture mechanics formulation
the work done by the fluid forces, the stretching energy associated
to the extension of each layer, and the adhesion energy associated
to the van der Waals forces between the layers. For the case of
constant edge load (identical to the one analyzed by Kendall),
Borse and collaborators analyzed the values of the critical shear
stress as a function of the peeling angle and the Young modulus
of the exfoliated sheet.

We adopt a view similar to that of Borse, and consider
exfoliation due to extension of an initial flaw in the inter-layer
interface. The extension is caused by a peeling process, whereby
the forces driving peeling are hydrodynamic in nature. We
envision that the fluid opens a pre-existing crack of length a.
The opening angle will depend on the ratio of hydrodynamic
and bending forces. If this ratio is small, the opening angle will
be small. If this ratio is much larger than one, the flap will
turn by 180, and the direction of pulling will be parallel to the
direction of propagation of the crack, as illustrated in Figure 2b.
This configuration is analogous to the one considered in the
“π − peel" mechanical test to measure adhesion (Lin et al., 2002).
For brevity, in the current paper, we refer to this configuration as
“π-peel” configuration.

In this paper we analyze in detail a mathematical
model of exfoliation for this “π-peel” configuration, by
rigorously justifying the fluid and solid mechanics aspects
of the problem. Particularly, we discuss the parameter
values for which this configuration may be observed. In
contrast to the model by Borse et al., we assume that each
layer is perfectly inextensible. Our work takes inspiration
from the work on the “inextensible fabric” approximation
discussed in Roman (2013), but we recast our results in the
context of 2D nanomaterials processing, so that a direct
comparison with experimental data from the literature can
be made.

The problem we are tackling is one of the first
explorations in terms of mechanics of a very complex
fluid-structure interaction problem, which needs to be
analyzed from different perspectives to be fully understood.
Rather than analyzing in depth a sophisticated model,
our aim with the paper is to test the prediction of simple
models which will enable us to identify the theoretical
directions that could bring us close, in terms of orders of
magnitude, to the published experimental data for the critical
shear rates.

DIMENSIONAL ANALYSIS OF THE
EXFOLIATION PROBLEM

Before considering a particular exfoliation configuration, let us
first analyze the general problem of exfoliation from the point
of view of dimensional analysis. The critical shear rate for
exfoliation, γ̇ , depends on the properties of the fluid (density
ρ, viscosity µ, and wetting properties), the mechanical and
geometrical properties of the layered micro-particle (particle
length L, particle width W, Young modulus of each layer E,
bending rigidity of each layer D0, total number of layers N, flaw
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FIGURE 1 | Optimizing liquid-phase exfoliation processes (left, reproduced with permission from Paton et al., 2014) requires models to link large-scale flow variables

to the micromechanics of exfoliation.

FIGURE 2 | (a) Peeling deformation of Boron Nitride following wet ball milling; Scanning Electron Microscopy image reproduced with permission from Li et al. (2011).

(b) Schematic of the “π-peel” configuration. We assume that the inter-layer interface is debonded over a length a− 2R ≈ a, where R is the radius of curvature of the

fold. The local shear flow, whose linear profile is illustrated in the sketch, produces a tangential stress on the flap of order µγ̇ .

size a), and the mechanical and geometrical properties of each
inter-layer interface (adhesion energyŴ, area of contact, presence
of flaws, etc.).

In exfoliation problems, the particle Reynolds number is
typically small, Re = ργ̇ L2/µ ≪ 1, so ρ is not an important
parameter. Among the mechanical properties, the adhesive
properties of each inter-layer, parameterized by Ŵ and the
bending rigidity of each layer D0 are likely to be dominant
controlling parameters. The Young modulus of graphene is huge
(E ∼ 1TPa, Lee et al., 2008) while its bending rigidity is low
(D0∼7eV, Lindahl et al., 2012), so we may regard graphene as an
inextensible membrane of finite bending rigidity.

The above parameters suggest a functional relationship of
the form

γ̇ = f (Ŵ,D0,N, n,µ, a, L, W) (1)

Some simplifications are possible, under the following hypotheses
and observations:

• In the zero Reynolds number limit appropriate for colloidal
particles, the pressure and viscous stresses scale as µγ̇ , so
the viscosity enters into the problem only multiplied by the
shear rate;

• It can be assumed that the forces induced by the fluid scale
proportionally to W. This is not strictly true unless W ≫ L,

while typically W ∼ L. However, if edge effects are neglected
this is a reasonable approximation if the goal is to obtain order
of magnitude estimates;

• The direct dependence on n can be neglected if one assumes
n
N ≪ 1. The indirect dependence of the problem on n is still
present, because the bending rigidity of the flap depends on n.
The bending rigidity of multilayer graphene scales roughly as
n3 for n ≥ 3, so for multilayers we can write D (n) ∼= D0n

3,
where D0

∼= 20eV is the extrapolated value of the single
graphene sheet (Sen et al., 2010);

• The dependence on L can be ignored, at least as a first
approximation, because the applied hydrodynamic forces on
the flap and the “resistive” forces due to elasticity and adhesion
depend primarily on a.

Under the hypotheses above, using a and D to make the other
parameters dimensionless, Equation (1) can be written as

γ̇ µa3

D
= f1

(

Ŵa2

D

)

(2)

where f1 is a non-dimensional function of its argument. Equation

(2) shows that the non-dimensional critical shear rate, γ̇ µa3

D , is a

unique function of the non-dimensional adhesion energy, Ŵ a2

D .
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To discuss the comparison of analytical and experimental
results, it is useful to assume for f1 a power-law relationship, for
which Equation (2) becomes

γ̇ µa3

D
∼
(

Ŵa2

D

)ξ

(3)

The values the exponent ξ can attain are constrained by physical
consideration. It is expected that an increase in flaw size will make
the material weaker, so γ̇ must decrease with increasing a. This
requires ξ < 3/2. In addition, an increase in adhesion energy
must translate into a larger fluid shear stress. This is only possible
if ξ > 0.

An interesting possibility is the case ξ = 1. For this choice
of the exponent, the bending rigidity becomes an irrelevant
parameter. A complete independence on the bending rigidity can
only be plausible if the bending rigidity is so low, that its precise
value does not matter (or nearly so).

EXFOLIATION IN THE “π-PEEL”
CONFIGURATION

Figure 2a, from Li et al. (2011), shows the surface of
a nanomaterials after wet ball milling. Flexible layers of
nanomaterials have been partially peeled off due to strong
shear forces, leaving a fold of very small radius of curvature.
A model for this situation can be developed by considering a
continuum sheet partially detached from a rigid “mother particle”
(Figure 2b). We assume that all the sheets have the same length
L. The total thickness of the microparticle is h≪L. The geometry
of the peeled flap is composed of a curved fold, of radius of
curvature R, and a flat portion (from point A to point B in
the schematic). The flat portion is subject to a tangential shear
stress µγ̇ .

In the case of ball milling, the shear stress is created by a
relative velocity U between the milling balls acting on a small
gap d between the balls, leading to a shear rate γ̇∼=U/d. In the
case of a multilayer particle suspended in a turbulent flow, the
ambient shear rate instantaneously “seen” by the particle is the
result of the work done by the largest turbulence structures on the
smallest, dissipative Kolmogorov eddies (Tennekes and Lumley,
1972). For microparticles smaller than the Kolmogorov scale,
equilibrium between the energy rate input P (e.g., the mixing
power) and the viscous dissipation occurring at the scale of the
particles gives γ̇∼=

√

P/(Vµ), where V is the liquid volume (see,
e.g., Varrla et al., 2014 for an application to graphene).

The length of the detached layer is a. Because R≪ a, the flap
length is also approximately equal to a. The tangential force per
unit width acting on the flap is µγ̇ a.

We need to better specify certain fluid mechanics
assumptions. First of all, the model assumes that the particle is
aligned with the flow. In fact, plate-like particles rotate when
suspended in a shear flow. However, the rotation is very slow
when the plate-like particle is nearly aligned with the flow
and the aspect ratio is large, with a rate of rotation of the
order of h/Lγ̇ (Jeffery, 1922). For most of its rotation period,
a plate-like particle of large aspect ratio such as a multilayer

microparticle can be considered to be aligned with the flow. A
second aspect not included in the model above is the effect of
normal hydrodynamic stresses. For a plate-like particle aligned

with the flow, normal stresses of the order of
(

h
L

)

µγ̇ act on the

surfaces of the particle parallel to the flow direction (e.g., on the

flap surface between A and B) (Singh et al., 2014). Because h
L ≪1,

along the surface of the flap these stresses are subdominant with
respect to the tangential stresses and are thus neglected in the
current model. The normal stresses acting on the curved fold,
in the direction of the flow, are instead of O(µγ̇ ). The effect
of normal stresses on the model predictions will be considered
in section Normal Load on the Curved Fold. We assume that
L is smaller than any scale of the flow, so that the flow field
around the particle is smooth. For particles in turbulence, this
requirement translates to L ≪ ηK , where ηK is the Kolmogorov
scale (Landau and Lifshitz, 1986).

The critical value of γ̇ for exfoliation can be calculated by
considering the instantaneous equilibrium between the external
work, the change in adhesion energy and the change in bending
energy for an inextensible sheet. The analysis is similar to that in
Roman (2013), but now the external force is not constant. The
velocity of point A (or B) is twice the velocity of the advancing
peeling front. As a consequence, as the peeling front moves by an
amount da the work done by the external force is (Wµγ̇ a) 2da,
where W is the width. The change in adhesion energy is WŴda,
where Ŵ is the adhesion energy per unit area (also called work of
separation). Calling dE(γ̇ ) the infinitesimal change in adhesion
energy corresponding to da, the critical value of γ̇ for crack
initiation satisfies:

dE (γ̇ ) +WŴda = 2Wµγ̇ ada (4)

The bending energy is denoted E(γ̇ ) to highlight that this
quantity is a function of the shear rate. Considering a curvilinear
coordinate s with origin at the crack tip, the bending energy is

E = 1
2DW

∫ a
0 (θ̇)

2
ds, where θ(s) is the rotation angle at s and

θ̇ = dθ
ds

is the local curvature. The bending energy integral is
dominated by the curvature 1/R at the crack tip, which has an
extent of the order of 2R. Thus, the order of magnitude of the
bending energy is W D

R . The function θ(s) can be calculated by
considering the equation for the Elastica (Audoly and Pomeau,
2010) for a fixed value of a, which in our case reads

θ̈ +
µγ̇ a

D
sin (θ) = 0 (5)

Here D is the bending rigidity of the elastic element. Equation
(5) is obtained from the equation of equilibrium to rotation for
an infinitesimal element of flap, dM

ds
= (F (s) × t) ·ez (Landau

and Lifshitz, 1986). In this expression, M=Dθ̇ is the moment of
the internal stresses, F is the internal force per unit width, t is
the local tangent vector, and ez is the unit vector oriented along
the width direction. We have assumed that the only external
(hydrodynamic) forces act from point A to point B. Hence, in
the curved portion of the flap, the equation of equilibrium to
translation dF

ds
= 0 requires that F is a constant vector (Landau

and Lifshitz, 1986). Such constant vector can be easily calculated
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by noting that point A the force per unit width F is equal to the
tension∼=µγ̇ aex (the unit vector ex being parallel to the flow and
pointing in the flow direction). As a consequence, F (s) ∼= µγ̇ aex
and (F (s) × t) ·ez∼=µγ̇ a sin θ. Inserting this last expression into
the equation of equilibrium to rotation gives (5).

The parameter µγ̇ a
D appearing in Equation (5) has the

dimensions of the square of a reciprocal length. Because there are
no other characteristic lengths in the problem, we anticipate that

the curvature of the fold R scales as
(

D
µγ̇ a

)1/2
.

A solvable first-order non-linear equation can be obtained by
multiplying Equation (5) by θ̇ , and integrating with respect to s.

The result is 1
2

(

θ̇
)2 − µγ̇ a

D cos (θ) = c1, where c1 is a constant.
For values of s corresponding to the region from point A to point
B, the rotation angle is constant and equal to θ = π . Hence,

c1 = µγ̇ a
D . Using this value and the trigonometric identity

(1+ cosθ) = 2 cos2 θ/2, we obtain θ̇ = 2

√

µγ̇ a
D cos( θ

2 ). This is

a separable equation whose solution is θ
(

s′
)

= 2arcsin(tanh s′),

where s′ = s/
√

D
µγ̇ a . The corresponding bending energy is

E = 2W
√

µγ̇ aD (6)

For s ≪
√

D
µγ̇ a we have θ (s) ∼= 2s/

√

D
µγ̇ a . Hence, the radius

of curvature near the crack tip is of the order of
(

D
µγ̇ a

)1/2
,

as anticipated.
Inserting expression (6) into the energy balance (4) gives

a−1/2
√

µγ̇D+ Ŵ = 2µγ̇ a (7)

This expression yields the critical shear rate as a function of the
parameters a, D and µ.

It is convenient to recast Equation (7) in terms of the non-

dimensional shear rate γ̇ µa3

D and non-dimensional adhesion

energy Ŵa2

2D (introduced in section Dimensional Analysis of the
Exfoliation Problem):

Ŵa2

2D
=

γ̇ µa3

D
−

1

2

√

γ̇ µa3

D
(8)

In contrast to the constant edge force case (Roman, 2013), in our
case the bending energy depends on a and the term dE is not
zero, giving rise to the square root term on the right-hand side
of Equation (8).

From Equation (8), and comparing with Equation (3), the

limit µγ̇ a3

D → ∞ gives a power-law exponent ξ = 1, exactly.
The effect of the bending energy term is to increase the critical
exfoliation value obtained in this asymptotic limit by an amount
that depends on the square-root of the shear rate.

Conditions for “π-peel”
For the analytical solution (8) to be valid, the flap length must
be long in comparison to the radius of curvature of the fold

(Roman, 2013). The condition R ≪ a gives µγ̇ a3

D ≫ 1. Equation
(9) also requires the flap geometry at equilibrium to assume a

shape similar to that in Figure 2. For the flap to bend to such
an extent the ratio of viscous forces (∼µγ̇Wa) to bending forces

(∼DW/a2) must be large. This, again, gives µγ̇ a3

D ≫1. Hence, the

condition µγ̇ a3

D ≫ 1 simultaneously ensures a good separation of
scale between the fold and the flap, and that the assumption of
nearly tangential viscous force on the flap is valid.

Figure 3 illustrates how the radius of curvature of the fold,

estimated as R ∼= 1
2

(

D
µγ̇ a

)1/2
, varies with the length of the

flap, for three typical shear rates. Rather than plotting R we plot
2R, which gives a measure of the maximum height of the folded
region. The bending rigidity is set to D = 10−18J, close to that
of single-layer graphene (Lindahl et al., 2012). In Figure 3A, a
dynamic viscosity µ = 0.001 Pa · s is assumed, typical of aqueous
solvents and NMP (Paton et al., 2014). In Figure 3B, the viscosity
is increased to µ = 1 Pa · s. For µ = 0.001 Pa · s, a good
separation of scales between R and a occurs if the shear rate is
at least γ̇ = 106s−1. As the viscosity increases to µ = 1 Pa · s, the
“π-peel” configuration regime occurs for smaller values of shear
rate (Figure 3B).

The radius of curvature of the flap increases strongly with the
number of layers n. Assuming a cubic relation D = D0n

3 yields
the results shown in Figure 4. For this figure, a = 200 nm and
γ̇ = 106s−1; results are shown for three different viscosities. Even
considering relatively few layers, for R to be sufficiently small in
comparison to a, either the viscosity must be relatively large or,
if the viscosity is comparable to that of water, the shear rate must
be larger than 106s− 1.

We can call strongly-stressed nanosheets, 2D material
nanosheets for which the scale separation between
R and a is complete, and mildly-stressed nanosheets,
nanosheets for which R is larger than a, but not by
a very large factor. Correspondingly we have two
approximations for the critical shear rate. For strongly
stressed nanosheets the bending rigidity contribution is
negligible and

γ̇ ≈
Ŵ

2µa
(9)

This equation is, strictly speaking, a good approximation

when µγ̇a3

D → ∞ (which is equivalent to Ŵa2/D →
∞). For mildly stressed sheets, solving Equation (8) for
γ̇ yields

γ̇µa3

D
=

Ŵa2

2D



1+
1

4(Ŵa2/D)
+

√

1+ 8Ŵa2

D

4Ŵa2

D



 (10)

This approximation is more accurate than (9) when Ŵa2

D

(or equivantly µγ̇a3

D ) is large but finite. For order of
magnitude estimates, both (9) and (10) are acceptable.
Note that Ŵ is the work required to separate two
surfaces, so Ŵ/2 is equal to the surface tension of
the solid.

Equation (9) is consistent with Kendall’s theory for peeling of
an extensible thin sheet [Borse’s model for exfoliation of clays
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FIGURE 3 | Two times the radius of curvature of the fold vs. length of the flap for (A) µ = 0.001 Pa · s and (B) µ = 1 Pa · s. The bending ridigity is assumed to be

D = 10−18J, corresponding to ∼6eV. The quantity 2R corresponds approximately to the maximum height of the fold.

(Borse and Kamal, 2009) is based on Kendall’s theory, so it
reaches the same conclusions]. In the case of a constant edge
load F applied at an angle φ, Kendall calculated that the peeling
force for an elastic film of thickness d and Young’s modulus

E satisfies
(

F
W

)2 1
2dE

+
(

F
W

)

(1− cosφ) = Ŵ. For E → ∞
(inextensible sheet) and φ = π , this equation recovers Equation
(9) when F = µaW. Incidentally, the order of magnitude scaling
suggested by Equation 9 is identical to that obtained by Paton
et al. (2014) for sliding of parallel, rigid platelets, although their
configuration is different. In Paton’s formulation, the energy
term is given by the change in surface energy corresponding
to a change in overlap length x between the platelets. Paton’s
argument for obtaining the critical sliding force is that the
overlap area is Wx, and the corresponding surface energy is
ΓWx (apart from constant energy terms that do not affect
the force). Thus, the sliding force d/dx(Ŵx) per unit width
is constant, and equal to Ŵ. This results seems to contradict
Kendall’s theory, which shows that for φ = 0 (as in a lap shear
joint configuration) F is proportional to

√
Ŵ, not Ŵ. A possible

explanation for the discrepancy is the neglect in Paton’s model
of the straining of molecular bonds as two rigid sheets slide
by a distance comparable to the crystal lattice (Xu et al., 2011)
and the disregard of non-uniformities in the interfacial stress
(Pugno, 2010).

Normal Load on the Curved Fold
Models (9) and (10) neglect the normal force on the curved fold
acting in the direction of the flow. This distributed force pushes
the fold in the same direction as the tangential force pulling the
flap, so we expect a reduction in the critical shear rate. We can
better quantify this statement. The normal force on the flap f can
be estimated to be of the order of µγ̇RW. Without attempting
to solve Equation (5) exactly by including a distributed force, we
can approximate the problem by assuming that f is concentrated
in the mid-point of the fold, s ∼= R/2. At this location the internal
force F(s) will have a discontinuity: for s > R/2, F ≈ µγ̇ aex as
before; for s < R/2, F will increase to≈ µγ̇ (a+ R)ex.

The equation for the flap shape for s ≤ R/2 is thus identical to
Equation (5), except that in this case (a+ R) replaces a. In terms

FIGURE 4 | Two times the radius of curvature of the fold vs. number of layers

for a = 200 nm, γ̇ = 106s−1 and D = 10−18J.

of the non-dimensional curvilinear coordinate S = s
√

µγ̇ a/D,
the system to be solved is thus:

d2θ

dS2
+
(

1+
R

a

)

sin (θ) = 0 for S ≤
1

2
(11a)

d2θ

dS2
+ sin (θ) = 0 for S >

1

2
(11b)

Figure 5 illustrates a numerical solution of the system above,
comparing the rotation angle θ (S) obtained for f = 0 with
the corresponding value obtained for f = µγ̇RW. A relatively
large ratio R

a = 0.7 is chosen to make the effect of f clearer on
the graph. The deviation in θ (S) due to f is small, and decays
as S increases. Because of this small deviation, it is useful to
decompose θ as θ = θ0+θ ′ where θ0 is the unperturbed solution.
Figure 6A illustrates how θ ′ varies with S for R

a = 0.5. The
perturbation has a maximum near S = 1, and decays to negligible
values for S ∼= 6. Figure 6B shows how the maximum value of θ ′

changes with R/a. This figure shows that θ ′ ∝ R/a when R/a is
sufficiently small. The numerical data suggests

θ
′
(S) =

kR

a
g (S) (12)
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FIGURE 5 | Effect of a point load of magnitude f = µRγ̇W acting on a fold of

radius R for R/a = 0.7.

where k ≈ 0.07 and g is a non-dimensional function whose
maximum is 1. Up to first order in θ ′ the bending energy can
be written as

E ∼=
1

2
D
W

R

∫ ∞

0

(

dθ0

dS

)2

dS+D
W

R

∫ ∞

0

(

dθ0

dS

)(

dθ ′

dS

)

dS(13)

The first integral is the bending energy contribution appearing in
Equation 8. The second integral is, to leading order, the change
in E due to f . By observing that that the integral from 0 to ∞
converges for values of S of order 1, the order of magnitude of
this second term can be estimated as

D
W

R

∫ ∞

0

(

dθ0

dS

)(

dθ ′

dS

)

dS ∼ D
W

R
k

(

R

a

)

(14)

This expression shows that the bending energy contribution
originating from the normal load on the fold is, to leading order,
independent of R and γ̇ .

Using Equation (14), Equation (7) can be written as

a−1/2
√

µγ̇D+
(

Ŵ − cLk
D

a2

)

= 2µγ̇ a (15)

where the constant cL is a numerical prefactor. By comparing
Equations (15) and (7), we can see that the leading-order effect
of f is to reduce the critical shear rate. The net effect is analogous
to reducing Ŵ, by an amount that depends on D and a.

The second-order term neglected in Equation (13), together
with the corresponding external work done by f , would give
rise to a bending energy contribution scaling as DWk2R/a. This

correction would translate to a term O

(

k2
√

γ̇ µa3

D

)

in Equation 10,

much smaller than the retained bending energy terms.
We have initially assumed that the normal force on the fold

is µγ̇RW. The correct prefactor, and thus cL, will depend on the
detailed fluid dynamics of the problem. The drag force per unit
width on a cylinder of radius R attached to a wall in shear flow
is 4πµγ̇R (Davis and O’Neill, 1977). If the drag on the fold is

assumed to be half that on a cylinder, then f = 2πµγ̇RW. Based
on this estimate, the numerical prefactors should be 2π larger
than assumed so far.

The effect of the normal force on the fold is typically small,
because R ≪ a. However, it could become important if the
tangential force on the flap is reduced. Carbon 2D nanomaterials
in contact with water exhibit relatively large slip velocities [with
slip lengths in the range 10–80 nm (Thomas and McGaughey,
2008; Falk et al., 2010)], meaning that the no-slip condition at the
solid-liquid interface is not satisfied identically. If a large velocity
slip is present, the tangential stress on the flap will be reduced
from the value γ̇ µ assumed in our model. On the other hand, the
value of f –being related to a normal force—should not depend
strongly on the slip length (a finite normal force on the fold is
expected even for infinite slip lengths). In this situation, the effect
of the normal force on the fold could become significant.

Modeling the force using a constant distributed force in the
horizontal direction, rather than a point force, does not change
the order of magnitude of the estimate presented in the current

section. Indeed, in this case dF
ds

= −µγ̇ ex, which integrated gives

F =µγ̇ (s
∗ + a − s)ex, where s

∗ ∼= 2R is the location where the
flap starts becoming horizontal. Inserting into the equation for

the moment and normalizing gives d2θ
dS2

+
(

1+ s
∗

a − s
a

)

sin (θ) =
0 for s < s

∗
. The essential difference with Equation (11a) is

the term containing sin θ multiplied by s; this difference makes
the equation not easily solvable by direct integration (Rohde,
1953). However, because the term in parenthesis is smaller than
(

1+ s
∗

a

)

, and s
∗ ∼= 2R, the equation is bound from above by

Equation (11a), if we choose f = 2µγ̇RW instead of f =
µγ̇RW. Differences between the point force and distributed
force prediction are thus within the uncertainties, which we have
discussed above, in the value of the drag force f .

Effect of the Solvent on Adhesion Strength
The parameter Γ is the energy of adhesion per unit area of
contact. In vacuum or in an inert gas, the work to separate the
surfaces is twice the surface tension of the solid, Ŵ = 2γso (Lawn,
1993).

It is well-known that the presence of a liquid can reduce
adhesion. Johnson et al. (1971) carried out lubricated adhesion
experiments with rubber spheres, both in air and in liquids.
They found that immersion of the surfaces in water reduced
the adhesion between the spheres. When the contact was
immersed in a 0.01 molar solution of sodium dodecyl sulfate
(SDS) the results closely agreed with the Hertz theory down
to the lowest loads measured, indicating that adhesion was
practically suppressed. Haidara et al. (1995) studied the adhesion
of semi spherical PDMS lenses on flat PDMS surfaces. They
also found that the presence of surfactants reduced the size of
the contact region. The deformations resulting on contacting
small (1–2mm) semispherical lenses of elastomeric poly-
(dimethylsiloxane) (PDMS) with the flat sheets of this material
were measured in air and in mixtures of water and methanol
by Chaudhury and Whitesides (1991). They found that the
adhesion between PDMS surfaces was strongest in water, and
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FIGURE 6 | (A) Perturbation in the local angle due to the point load for R/a = 0.5. (B) Maximum value of
∣

∣θ ′(S)
∣

∣ vs. R/a’. The dashed line is
∣

∣θ ′(S)
∣

∣ = 0.07R/a.

decreased as the hydrophobicity of the medium decreased. van
Engers et al. (2017) using a method conceptually similar to that
of Johnson, Kendall and Roberts measured experimentally the
graphene-graphene interfacial energy γso, obtaining 115 mN/m
in inert gas, 83 in water, 29 in sodium cholate, a surfactant.
The value obtained for graphene in an inert gas is close to
the value 110 mN/m previously reported for graphene-graphite
interaction by Wang et al. (2016). Shih et al. (2010) carried out
molecular dynamics of the interaction between rigid graphene
sheets in a variety of solvents, and obtained a minimum in the
interaction energy of 250 kJmol−1nm−2 for water and around
100 kJmol−1nm−2 for N-methylpyrrolidone (NMP). Because the
reduction in cohesive stresses can be related to a reduction in
the depth of the potential energy well for the molecular bonds
near the crack tip (Stoloff and Johnston, 1963; Lawn, 1993), this
last data suggests that the values of the surface tension for water
and NMP are of comparable order of magnitude (despite the
fact that NMP is considered a much better solvent for graphene
than water!).

From the data above there is evidence to suggest that: (i) the
intrinsic value of Ŵ corresponding to vacuum or an inert gas is in
the range 0.20–0.25 N/m; (ii) “good” solvents can reduce Ŵ, but
probably not by several orders of magnitude. To compare with
experimental data we will assume that Ŵ in typical liquid solvents
ranges from 0.01 N/m to 0.1 N/m, with the lower value being
characteristic of a good solvent.

Critical Shear Rate: Comparison With
Experimental Data
We have seen that if the microscopic peeling configuration is
as in Figure 2 the order of magnitude of the critical shear rate
is given by γ̇ ≈ Ŵ

2µa , i.e., Equation 3 with ξ = 1. Figure 7A

compares γ̇ = Ŵ
2µa curves against experimental data for µ =

10−3Pa · s and two surface energy values: Ŵ = 0.1N/m and Ŵ =
0.01N/m. Each experimental case is denoted by a horizontal row
of symbols corresponding to several values of a. This was done
because the value of a in experiments is unknown. Experimental
cases correspond to turbulent exfoliation in a rotor-stator mixer
(Paton et al., 2014), turbulent exfoliation in microfluidization
(Karagiannidis et al., 2017; Paton et al., 2017) and wet ball milling
(Knieke et al., 2010). In the case of wet ball milling, a typical

stress energy SE∼0.134 µJ was reported for ball diameter dgm =
100 µm and rotation rate 1,500 rpm. The critical stress energy
can be converted to a stress τ of the order of 105Pa assuming
that SE is dissipated within a contact region of volume ∼ d3gm.

With τ = µγ̇ and viscosity µ = 10−3Pa · s, a stress of 105Pa
corresponds to an equivalent critical shear rate value of 108s−1.
This is the estimated value reported in Figure 7A.

The graph shows that for realistic values of Ŵ and for a range
of plausible values of flaw size (we can estimate that for particles
of length L = 1µm the flaw size ranges roughly from 50 nm
to 500 nm) the expression γ̇ ≈ Ŵ

2µa largely overestimates the

experimental data for turbulent exfoliation (i.e., exfoliation in
rotor-stator mixers or microfluidisation). Even for Γ = 0.01
N/m, which is smaller than any measured value for the adhesion
energy of graphene (see discussion in section Effect of the Solvent
on Adhesion Strength), the critical shear rate is much larger than
what reported for rotating mixer and microfluidization. Instead,
the values predicted by γ̇ ≈ Ŵ

2µa are reasonably close to those

estimated for ball milling, a technique that allows large stresses to
be produced.

An Alternative Model: Flow-Induced
Cleavage (for Small Opening Angles)
From Figure 7A it can be seen that if an exponent ξ = 1/2 is
assumed, a much closer agreement with the experimental data for
rotating mixer and microfluidisation approaches is achieved. An
exponent of 1/2 can be obtained if we assume that the bending of
the flap is caused by a normal stress on the flap of order of µγ̇ ,
as in the “cleavage” configuration illustrated in Figure 7B. In this
case the flap would be subject to a force ∼ µγ̇ aW acting on a
lever arm ∼ a. Equating the corresponding external moment ∼
µγ̇ a2W to the bending moment DW

√
Ŵ/D required for fracture

initiation (Obreimoff, 1930) leads to µγ̇ a3

D ∼
(

Ŵa2/D
)1/2

. The
same result can be obtained by considering the analytical solution
for the displacement of a cantilever beam of length a subject to a
constant normal load µγ̇ (Timošenko, 1940):

w =
µγ̇

24D
(x− a)2

(

x2 + 2ax+ 3a2
)

(16)
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FIGURE 7 | (A) Critical shear rate for exfoliation as a function of flaw size (in nanometers) for different scaling exponents, assuming D = 10−18J. Experimental

references: Knieke et al. (2010), Paton et al. (2014, 2017), and Karagiannidis et al. (2017). (B) In the “cleavage” configuration the fluid stresses act normal to the flap,

and the opening angle φ is small.

The bending energy per unit width U = D
2

∫

(

d2w
dx2

)2
dx is

quadratic in µγ̇ . The strain energy release rate G = dU
da

, with

units of energy per unit area, is proportional to (µγ̇ )2a
4

D . Equating
the strain energy release rate toŴ (Griffith’s criterion, Lawn, 1993)
gives again the scaling

µγ̇ a3

D
∼
(

Ŵa2/D
)1/2

(17a)

An intuitive explanation for why the critical shear rate in
the “cleavage” configuration is smaller than in the “π -peel”
configuration is that even if the forces applied to the flap are the
same in both cases, the lever arm in the “π -peel” configuration is
of O

(

R
a

)

smaller than in the “cleavage” configuration. For a given
value of a, reaching the critical bending moment in the “cleavage”
configuration therefore requires as smaller value of γ̇ .

Equation (17a) is valid provided that the displacement of the
flap is small. For larger displacements, one needs to account for
two factors, which are extensively discussed in a recent paper
by the author (Salussolia, 2019): (i) even in the case of uniform
pressure applied to the flap, the direction of load depends on the
normal to the flap, which itself depends on the shape of the flap
(i.e., the load is follower); (ii) as the flap displacement increases,

the pressure on the flap increases, essentially because more area
of the flap is exposed to flow. Factor (ii) makes the dependence
on Ŵa2/D weaker, reducing effectively the power-law exponent
significantly below 1/2. The inclusion of large-deformation effects
does not change this conclusion, although it changes somewhat
the value of the critical shear rate (without a change in order of
magnitude of this quantity).

Time Scales of Microstructural
Rearrangement: Toward Exfoliation
Kinetics
Once the critical shear rate is reached, the fracture will propagate
and exfoliation will occur. But exfoliation is not an instantaneous
event. If this was the case, at a critical shear rate one would
obtain complete exfoliation of all the microplates. This is not
observed in practice. For instance, Paton and co-workers found
that the concentration of exfoliated material follows a rather slow
kinetics, apparently governed by a power-law of time (Paton et al.,
2014).While explaining the emergence of this power-law requires
tools that go beyond simple micromechanics, it is instructive
to consider examples of dissipation processes occurring in the
vicinity of the crack tip that couldmake the exfoliationmechanics
depend on time.
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An important dissipative process is due to the viscosity of the
solvent. As the crack of the interlayer interface propagates, fluid
must be drawn in from the surroundings toward the crack tip.
Because the gap distance between the layers is small in the crack
region, the viscous dissipation can be substantial (Rieutord et al.,
2005; Lister et al., 2013). The rate of dissipation per unit volume
of fluid is

ε ∼ µ

(

U(x)

h(x)

)2

(17b)

where h(x) is the gap height at a position x, and U(x) is the
characteristic fluid velocity at x (Eggers and Fontelos, 2015). The
total power per unit width dissipated in the fluid can be estimated
to be of the order of (Rieutord et al., 2005).

Pd

W
=
∫ xmax

xmin

∫ h

0
εdxdy ∼ µ

V2

H2
(HℓD) (18)

where V is the crack tip speed. Here H and ℓD are the
characteristic height and length of the wedge-like region in the
vicinity of the crack tip where the bulk of the viscous dissipation
occurs. The high-dissipation region is limited by the coordinates
xmin and xmax. If there is no external force applied to the flap, the
power to drive the crack motion against the viscous dissipation is

provided by the adhesion force,
Pd
W = ŴV , leading to (Rieutord

et al., 2005)

V ∼
Ŵ

µ

H

ℓD
(19)

In the “π -peel” case examined in the current paper, an external
force per unit width µγ̇ a is applied to the flap and the
corresponding driving power is

Pd
W = (2µγ̇ a − Ŵ)V . Hence, the

crack velocity, for the case in which viscous dissipation is the only
effect resisting the motion of the crack, can be estimated to be of
the order of

Vviscous ∼
(2µγ̇ a− Ŵ)

µ

H

ℓD
(20)

The inverse of the geometrical ratio H
ℓD

is equal to the integral of
h(x) from xmin to xmax (Rieutord et al., 2005). Because the region
near the crack tip is thin and slender, we have H

ℓD
≪ 1. Thus,

Vviscous ≪ (2µγ̇ a− Ŵ)
µ

.

A second important dissipative process is caused by the time-
dependent rupture of the molecular bonds in the adhesion zone.
A model for such process assumes that the rupture rate is
governed by Maxwell-Boltzmann statistics. For small deviations
from Griffith’s condition, this model gives an exponential
dependence of the crack velocity on the difference between the
strain energy release rate G and the energy of adhesion per unit
area of contact 2γso (Lawn, 1993):

V = 2v0a0 exp

(

−
U◦

kT

)

sinh

(

α
G− 2γso

kT

)

(21)

Here, a0 is the characteristic lattice dimension, v0 is a molecular
frequency (typically a few THz), α is an activation area, kT

is the thermal energy, γso is the surface tension of the solid
(section Effect of the Solvent on Adhesion Strength) and 1U◦

is a quiescent activation energy. In the “π -peel” configuration,
the external work 2µγ̇ a takes the place of G. Using the definition
Ŵ = 2γsothe following expression crack velocity expression
is obtained:

Vbr ∼ Vbr,0 sinh

(

α
2µγ̇ a− Ŵ

kT

)

(22)

where

Vbr,0 = 2v0a0 exp

(

−
1U◦

kT

)

(23)

The molecular velocity v0a0 is of the order of 100 m/s−1 km/s,
i.e., sonic velocities. The energy barrier 1U◦ is typically taken
to be of the order of 10kT (Brochard-Wyart and de Gennes,
2003). Setting 1U◦ = 25 kT, gives values of Vbr,0 in the range
1−10 nm/s. The effect of the solvent (through chemically-assisted
bond rupture) can be accounted for through the dependence of
Ŵ on the solvent, and by appropriately modifying the activation
terms (Stoloff and Johnston, 1963; Lawn, 1993).

We can use Equations (20) and (22) to make some
considerations regarding the relative importance of viscous
dissipation and dissipation due to bond rupture. Let us assume
that we are carrying out exfoliation using a shear rate of the order
of the critical one, a situation that is expected to hold in practice.

Because 2µγ̇ a
Ŵ

= O (1) and H
ℓD

< 1, an upper bound for Vviscous is

the “capillary velocity” Ŵ
µ
. This quantity is ∼100 m/s for solvents

having the viscosity of water (using a reference value Ŵ = 0.1
N/m). The velocity due to (interlayer) molecular bond rupture
can be estimated to be, typically, larger than this value. This is
because for a0 in the nanoscopic range the energy scale Ŵα is
typically larger than the energy barrier 1U◦ (taking α = 1nm2

and Γ = 0.1 N/m, we get Ŵα ≈ 250kT). As a result, the growing
hyperbolic sine term is much larger than the decaying term

exp
(

−1U◦

kT

)

. Noting that the “capillary velocity” Ŵ
µ

is roughly

comparable in magnitude to v0a0, we have Vviscous ≪ Vbr .
Thus, viscous dissipation can be very important. The relative

importance with respect to dissipation due to bond rupture
(which we estimate to be subdominant) will depend on the very
specific values of α and 1U◦. Recent measurements of self-
tearing and peeling of graphene sheets from solid substrates
suggest a method to calculate these parameters (Annett and
Graham, 2016).

In the regime of viscous dominated dissipation, the
characteristic time required to complete peeling of a flap
from a particle of lateral size L is

Tv =
L

Vviscous
∼

µ

(2µγ̇ L− Ŵ)

ℓD

H
(24)

For values of the applied shear rate much larger than the critical
one the viscous peeling time scales proportionally to the inverse
shear rate, Tv ∼ γ̇−1 ℓD

2H . This time scale depends on the viscosity

only through the dependence of the ratio ℓD
2H on hydrodynamics.
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Because ℓD
H ≫ 1 we expect Tv ≫ γ̇−1. The viscous peeling

time scale is proportional to the local shear rate, with a large
numerical prefactor.

In this section, we have focused on the “π -peel” configuration.
The arguments proposed can be extended to the “cleavage’
configuration by replacing the work of the external force per unit
width with the strain energy release rate.

CONCLUSIONS: FRONTIERS IN THE
HYDRODYNAMICS OF 2D
NANOMATERIALS

We have analyzed theoretically a simple model of hydrodynamic
peeling, by focusing mostly on the “π - peel” configuration
(Figure 2). Based on our analysis, the shear rates that one needs
to apply to the fluid for this configuration to result in exfoliation
are rather large, of the order of 108 − 109s−1. These large
shear rates are available in exfoliation methods that produce
large stresses on the particle, such as ball milling, but not in
most published exfoliation approaches in which the shear rate
is produced by conventional turbulence (as in rotor-stator shear
mixing or microfluidisation approaches). The fact that in rotor-
stator or microfluidisation approaches exfoliation is observed for
shear rates in the range 104 − 106s−1 suggests that alternative
microscale exfoliation configurations are likely to dominate the
exfoliation micromechanics in these approaches, at least in the
initial stages of exfoliation.

We suggest that, due to its stronger dependence on the flaw
size a, a “cleavage” configuration (Figure 7B) can yield critical
shear rate values much smaller than those predicted for “π -
peel,” closer to the values observed experimentally. While for “π -
peel” the critical shear rate decays as 1

a (Equation 9), for cleavage

under a constant pressure µγ̇ the critical shear rate decays as 1
a2

(Equation 17a). We anticipate that if the pressure is not constant,
but depends on the configuration of the wedge creating the
fracture, the dependence on a can be even stronger. This effect
results in even lower values of the critical shear rate. The analysis
of this case is the subject of a separate paper (Salussolia, 2019).

This initial study on the hydrodynamics of 2D materials
exfoliation only begins to uncover the complexity of the
exfoliation process as seen at the scale of each particle.
To better understand the micromechanics of liquid-phase
exfoliation, future computational investigations must consider
the fully coupled fluid-structure interaction problem and include
atomistic details. In the wedge region, near the crack tip, the
liquid is strongly confined, with gaps of nanometric dimensions.
Hence the problem severely challenges the use of continuum
approaches. For carbon nanomaterials in contact with water,
hydrodynamic slip characterizes the flow behavior at the solid-
liquid surface (Tocci et al., 2014; Striolo et al., 2016), with
slip lengths of the order of a few tens of nanometers (Thomas
and McGaughey, 2008; Falk et al., 2010). Our work provides
estimates for geometric quantities—such as the shear rate
dependent radius of curvature of the fold R–that are obtained
neglecting molecular effects. These quantities can be used as a

reference to evaluate the limitations of continuum treatments.
Molecular dynamics studies for the configurations investigated
in the current paper could provide insights into the general
process of liquid intercalation under flow, a topic that could
lead to the design of improved solvents for the exfoliation of
2D nanomaterials.

Another important topic is the prediction of the kinetics of
exfoliation.We have estimated that the time scale formicroscopic
peeling can in many cases be controlled by viscous dissipation.
For “π -peel” at shear rates largely exceeding the critical one,
the time scale for viscous peeling has been found to scale
proportionally to γ̇−1 (with a large prefactor, ℓD

H ≫ 1, see
Equation 24). This time scale has to be compared to two dynamic
time scale: the time scale of particle rotation (of the order of
γ̇−13, where 3 is the aspect ratio, Challabotla et al., 2015), and
the time scale of permanence in a turbulent structure (which
can be estimated to be of the order of γ̇−1, Babler et al.,
2012). The inter-play of these different time scales should give
rise to a rich phase diagram. Uncovering the features of this
diagram, through a comparison of multi-particle simulations and
experiments (Voth, 2015), should be of interest for researchers
investigating the statistical physics of complex systems, and is
a necessary step toward predicting the yield of industrial-scale
exfoliation processes.

Theoretical modeling of exfoliation processes in sheared
liquids is an important and currently largely unexplored
frontier in carbon nanomaterials research. Understanding how
graphene “breaks” under the action of fluid dynamic forces
has implications not only for large-scale graphene production
but also for quantifying the time-evolving size and thickness
distribution of graphene (or any other 2D material) during
its transport. In industrial liquids such as lubricants and
paints, the performance of a graphene additive whose size
depends on time—because of fragmentation or exfoliation—will
also depend on time. Size and shape are dominant variables
affecting how a nanoparticle interacts with a biological cell,
and the prediction of these variables during flow is thus
essential to evaluate toxicological effects on human health
or the environment (Wick et al., 2014). Our work on the
modeling of graphene hydrodynamics, funded by the European
Research Council, lays basic theoretical building blocks that are
necessary to develop the next generation of predictive multiscale
software for fragmentation, exfoliation and liquid processing of
2D nanomaterials.
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