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ESS (Equivalent Standard solid) model is proofed to be accurate for describing the

physical properties of viscoelastic material under different temperatures and excitation

frequencies. However, the ESS model faces difficulties for calculating time history

responses. Therefore, a two-step transformation approach for ESSmodel to time domain

is proposed, which can obtain precise time history response of structural finite element

models of with dampers made of viscoelastic materials. In the first step of the approach,

ESS model is extended from frequency domain to complex frequency domain. In the

second step, a high-precision numerical inverse Laplace transform method is chosen to

transform the model from complex frequency domain to time domain. Experimental and

numerical tests are conducted to verify the effectiveness of the two-step transformation

approach under simple harmonic external excitation. The comparisons indicate that the

approach is accurate under different temperatures and excitation frequencies. Finally,

the time domain dynamic responses of the viscoelastic dampers are obtained under

earthquake excitations. Comparing to the equivalent linearization method for ESS model,

the proposed two-step transformation approach has absolute advantage to obtain

accurate results under random excitation, such as earthquake excitations.

Keywords: viscoelastic material, ESS model, transformation approach, earthquake excitation, equivalent

linearization method

INTRODUCTION

Viscoelastic material has strong energy dissipation capacity based on massive fillers within
high molecular polymers, which exhibits physical properties of both viscous and elastic. When
deformations occur under the reciprocating stress, the motion of the matrix molecular chain
inside the material will fracture and recombination. In the meantime, mutual friction will occur
between the fillers, or between the filler and the matrix. In such physical movement, a part
of the energy is stored, and the other part of the energy is converted into thermal energy
dissipated to the air (Trindade et al., 2000). The viscoelastic damper is a kind of energy dissipation
device used in structural wind-resistant and seismic engineering, which is mainly composed of
viscoelastic material and constrained steel plates. The dampers based on viscoelastic material has
the characteristics of reliable performance, convenient installation, good damping effect and low
cost of produce and maintenance (Park, 2001). However, the physical properties of viscoelastic
material are affected significantly greatly by temperature and excitation frequency (Xu et al.,
2019). As a result the viscoelastic dampers show strong non-linear characteristics in the working
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environment. And how to accurately calculate or simulate the
mechanical properties of viscoelastic materials is a complex
problem (Lewandowski and Chorazyczewski, 2010). A large
number of scholars have studied viscoelastic materials and put
forward a series of mechanical models, includingMaxwell model,
Kelvin model, standard solid model (Kim et al., 2003), ESS
(equivalent standard solid) model (Xu, 2007; Xu et al., 2011),
equivalent stiffness and equivalent damping model (Yoshida
et al., 2002), fractional derivative model (Xu et al., 2015), Finite
element model, complex stiffness model, Standard rheological
model (Mould et al., 2011; Lee and Choi, 2018), fractional index
model (Gonzalez et al., 2016; Chen et al., 2018), micro-oscillator
model (Mctavish and Hughes, 1993), and so on. The ESS model
is a new computational model based on temperature frequency
equivalent principle and standard linear solid model, which
can correctly describe the variation of viscoelastic damper with
the change of temperature and frequency. Besides, the physical
concept of the model is clear, and parameters of the ESS model
can be quickly obtained through simple harmonic loading tests.
As a result, it becomes one of the classical mechanical models of
viscoelastic materials in the field of scientific research, and has
been widely promoted and applied in engineering (Bhatti, 2013;
Xu et al., 2014; Mehrabi et al., 2017; Xu Y. et al., 2017; Xu Z. et al.,
2017).

However, the ESS model is the constitutive model based on
frequency domain, which needs special mathematical strategy
to obtain the time history response under forced vibration or
free vibration determined by initial value problem. The most
conventional mean current is to use the equivalent linearization
method. By the equivalent linearization method, the viscoelastic
material is expressed with two constant simplified parameters,
i.e., equivalent stiffness and equivalent damping (Park et al.,
2007). With the change of dynamic characteristics caused by
variation of frequency and temperature, inestimable error will
be introduced both in theory or practical application. So the
ESS model lose its advantage, which is the high precision
for describing the physical property of viscoelastic models.
Aiming at the above problems, this paper presents a two-
step transformation approach for ESS model of viscoelastic
material to time domain, which can accurately obtain the
time-domain dynamic response and avoid the establishment of
differential equations. The approach directly starts from the
frequency domain expressions of the ESS model, and then
take two steps to solve the problem. The key innovation of
the proposed method is making the ESS model suitable for
random excitations. The standard theoretical tools in frequency
domain, like the SS model and ESS model, are accurate and
simple, but is not applicable in time domain. The standard
models in time domain, like fractional derivative model and
finite element model, are applicable in time domain, but they
are complex in both mathematical formula and experimental
tests. The presented model have the advantages in both
frequency-domain and time domain, which is the main novel
advances of this paper. As a result, the ESS model can be
transferred to time domain and produce time history responses
of viscoelastic dampers under earthquake excitations or any other
stochastic excitations.

TWO-STEP TRANSFORM APPROACH OF
ESS MODEL

The ESS model is suitable in frequency domain, which means it
cannot be transformed to time domain directly. In the first step,
the ESS model is extended to Laplace domain. In this step the key
problem is the imaginary part will cause failure of the second step.
As a result the imaginary unit j should be eliminated by certain
substitution to prepare for the next step. In the second step, the
Laplace expression is transformed to time domain. In this step
the key problem is to simplify the formula to reduce the amount
of calculation work.

STEP 1
ESS model is a mechanical model describing viscoelastic
materials, which can not only describe the influence of
performance change with frequency and temperature, but
can also describe the relaxation and creep characteristics
of viscoelastic dampers. Its expression is known as follows
(Xu Y. et al., 2017):

G1 =
(

q0 + p1q1α
c
Tωc

)

/
(

1+ p21α
c
Tωc

)

η =
(

q1 − p1q0
)

αd
Tωd/

(

q0 + p1q1α
2d
T ω2d

)

(1)

In the equation, G1 represents the energy storage modulus, η is
loss factor, ω represents the circular frequency of the excitation
load, p1, q0, q, c, d, T0 are the material parameters of the ESS
model respectively, which are generally obtained according to the
performance test of the representative material. The dissipation
modulus G2 can be obtained from Equation (1):

G2 = G1η=

(

q0 + p1q1α
c
Tωc

) (

q1 − p1q0
)

αd
Tωd

(

1+ p21α
c
Tωc

)

(

q0 + p1q1α
2d
T ω2d

) (2)

The frequency response function H(ω) of the system can be
determined by the ESS model, as shown in equation (3):

H (ω) =
τ (ω)

γ (ω)
= G1 (ω) + jG2 (ω) (3)

In the equation, τ is the shear stress of the material, γ is the shear
strain of the material, and j indicates the unit imaginary number.
Equation (3) belongs to the category of frequency domain, which
is a specific form (σ = 0) of Laplace domain (s = σ+jω), so it
is necessary to transform the equivalent standard solid model of
frequency category to Laplace domain. The frequency response
function is transformed into system function H(s), as shown in
Equation (4):

H (s) = G1 (s) + jG2 (s)

=
(q0+j−cp1q1α

c
T s
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T s2d

)
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2d
T s2d

)

(4)

Both real and imaginary parts exist in the system function as
Equation. The transform methods of real part and imaginary
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part of system function are different, because the imaginary
part cannot be transformed to the time domain directly. Some
derivation and transformation have to be performed before final
transformation. Firstly the real part and imaginary part has to
be separated, so the imaginary term j−−c and j−2d should be
factorized as Equation (5):

j−c =

(

ejπ /2
)−c

= ejπc/2 = cos (πc/2) − j sin (πc/2)

j−2d =

(

ejπ /2
)−2d

= e−jπ2d = cos
(

πd
)

− j sin
(

πd
)

(5)

After substituting Equation to Equation, the real and imaginary
part of the system function will be separated as Equation (6)

H (s) = real (H (s)) + jimag (H (s)) = H1 (s) + jH2 (s) (6)

where H1(s) represents the real part, and jH2(s) represents the
imaginary parts of the system function. The physical meaning of
Equation (6) is two systems connected in parallel. Because s =
σ+jω and σ = 0, so j = s/ω. As a result the imaginary part can
be expressed in another form as Equation (7) to transform the
imaginary part into time domain.

H (s) = H1 (s) +
s

ω
H2 (s) (7)

For the real part H1(s), the system function can be transformed
to frequency response function H1(jω) in frequency domain by
letting σ = 0. The frequency response function H1(jω) can be
represented by Equation (8)

H1
(

jω
)

= G1_1 + jG1_2 (8)

whereG1_1 is the storage modulus of the systemH1(s),G1_2 is the
loss modulus ofH1(s). When sinusoidal excitation u= u0sin(ωt)
applies on the system H1(s), the output of the system can be
expressed as Equation (9)

f1 (t) = G1_1 sin (ωt) + G1_2 cos (ωt) (9)

For the imaginary part jH2(s), the system function cannot be
converted to time domain directly. So at first, we transformH2(s)
in to time domain. The frequency response function H2(jω) can
be represented by Equation (10)

H2
(

jω
)

= G2_1 + jG2_2 (10)

whereG2_1 is the storage modulus of the systemH2(s),G2_2 is the
loss modulus ofH2(s). When sinusoidal excitation u= u0sin(ωt)
applies on the systemH2(s), the output of the system g2(t) can be
expressed as Equation (11).

g (t) = G2_1 sin (ωt) + G2_2 cos (ωt) (11)

As mentioned above, sH2(s)/ω is chosen to represent
jH2(s).When g(t) is the original function of H2(s), the inverse

Laplace transform of sH2(s) is f 2(t) = g
′
(t), which means the

derivative of the original function g(t). So the output of the
system can be expressed as Equation (12).

f2 (t) =
g′ (t)

ω
= −G2_2 sin (ωt) + G2_1 cos (ωt) (12)

So the final system output f (t) of the viscoelastic material in time
domain can be expressed as Equation (13).

f (t) = f1 (t) + f2 (t) =
(

G1_1 − G2_2
)

sin (ωt)

+
(

G1_2 + G2_1
)

cos (ωt) (13)

The above formula (13) shows the expression of the system
output of the viscoelastic material under the harmonic excitation.
However, the excitation in reality is often a non-harmonic
random excitation. The derivation for the time domain
response of the viscoelastic material under random displacement
excitation is derived in the similar as the system in harmonic
excitation. In Laplace domain, the output force of the system can
be expressed as Equation (14).

τ (s) = H (s) · γ (s) = H1 (s) · γ (s) + jH2 (s) · γ (s) (14)

where the input displacement γ can be decomposed into a
superposition of multiple sinusoidal signals. The decomposition
can be realize by Fourier transformation as Equation (15).

γ (t) =

∞
∑

n=1

γn (nω0t) = a0 +

∞
∑

n=1

an cos nω0t + bn sin nω0t (15)

where n is the order of Fourier transformation, and ω0 is the
minimum circular frequency of the decomposed signals, and it
is correlated with the sampling frequency of the original random
signal γ (t). a0, an, bn are the Fourier coefficients. Then Equation
can be modified as Equation (16).

τ (s) = H1 (s) · γ (s) +H2 (s) ·

N
∑

n=1

sγn (s)

ωn
(16)

whereωn = nω0, whichmeans the circular frequency of the order
n of the input signal. Then inverse Laplace transformation is
performed on Equation. The following derivation will focus on
the invers Laplace transformation of Equation (16).

STEP 2:
After the system function in Laplace domain is obtained, the
numerical method of inverse Laplace transformation can be used
to obtain the dynamic response in time domain. The direct
inversion method is only suitable for simple function which
can be decomposed into simple polynomial combination. As for
the complexity of the system function of ESS model in Laplace
domain, a numerical method is implemented to calculate the
inverse transformation (Valsa and Brancik, 1998). The inverse
Laplace transform expressions are as follows:

f (t) = L−1 {F (s)} =
1

2π j

∫ σ+j∞

σ−j∞
F (s)estds (17)
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Because the upper and lower limits of the integral of Equation
(17) contain the positive and negative infinite amount in the
imaginary part, it is not possible to integrate Equation (17)
directly, so it is necessary to conduct mathematical substitution,
if constant a>σ t, then |e−2a+2st|<<1, so:

est =
est

1+ e−2a+2st
=

ea

ea−st + e−a+st

.
=

ea

2 cosh (a− st)

= πea
∞
∑

n=0

(−1)n (n+ 1/2)

(n+ 1/2)2π2 + (a− st)2
(18)

The time domain results can be expressed as Equation (19):

fc (t, a) =
ea

2j

∫ σ+j∞

σ−j∞
F (s)

∞
∑

n=0

(−1)n (n+ 1/2)

(n+ 1/2)2π2 + (a− st)2
ds (19)

Equation (19) can be simplified to:

fc (t, a) =
ea

2j

∞
∑

n=0

(−1)n (n+ 1/2) In (20)

In which

In =

∫ σ+j∞

σ−j∞

F (s)

(n+ 1/2)2π2 + z2
ds

=

∫ σ+j∞

σ−j∞

F (s)

Gn (s)
ds =

∫ σ+j∞

σ−j∞
Kn (s) ds (21)

In order to solve Equation (21), the original integral path can be
regarded as the integral path of the semicircle of the right half
plane radius of the coordinate system, so the system singularity
points can be obtained as follows:

s1,2 =
a± j (n+ 1/2) π

t
(22)

The integral along the contour is equal to the sum of the
remaining digits of all singularities in the contour, so:

In = −2πj
[

ress=s1Kn (s) + ress=s2Kn (s)
]

= −2πj

[

F (s1)

G′
n (s1)

+
F (s2)

G′
n (s2)

]

=
F (s2) − F (s1)

t (n+ 1/2)

=
F

[

a− j (n+ 1/2) π
]

− F
[

a+ j (n+ 1/2) π
]

t (n+ 1/2)
(23)

Finally, the time domain results are obtained:

fc (t, a) =
ea

2j

∞
∑

n=0

(−1)n (n+ 1/2)
F (s2) − F (s1)

t (n+ 1/2)

=
ea

2jt

∞
∑

n=0

(−1)n [F (s2) − F (s1)] (24)

The system function Equation (16) of the equivalent standard
solid model is substituted into the Equation (15) to obtain the
final result:

fc (t, a) =
ea

2jt

∞
∑

n=0

(−1)n [K (s2) − K (s1)] (25)

According to Equation (16), the system function H(s) in the
complex frequency domain is transformed to the time domain.
Under arbitrary input load, the response of the system at any time
t can be directly solved by the above functions.

τc (t, a) =
ea

2jt

∞
∑

n=0

(−1)n [τ (s2) − τ (s1)] (26)

Note that the inverse Laplace transformation on Equation (26)
can be simplified. In Equation (16), because γ (t)is the original
function of γ (s), so the original function of sγ (s) is γ ’(t), which
means the derivative of γ (t). As a result, the inverse transform
only performed on H1(s) and H2(s), the remaining term only
need to be derivation and convolution. So the final force output of
the viscoelastic material under random displacement excitation
can be expressed as Equation (27)

τ (t) = L−1 [H1 (s)] ∗ γ (t) + L−1 [H2 (s)] ∗

N
∑

n=1

γ ′
n (t)

ωn
(27)

Where L−1 means the inverse Laplace transform operator, ∗

means the convolution operator.

VALIDATION UNDER HARMONIC LOAD

In order to verify the correctness of the above method, the
preliminary test data of 9050A viscoelastic material in Wuxi
Shock absorber Company are analyzed. The 9050A material is
composed of high polymer, and is based on Nitrile Butadiene
Rubber matrix and vulcanized at high temperature and pressure
with variety of additives. The parameters of the material are also
listed below. During the experimental test, the temperature is
assumed to be uniform in the material, so only the temperature
of the surface is measured. According to the test results of the
material at different temperature and different frequency, the
material parameters are determined by the ESS model, which are,
p1 = 0.0240, q0 = 2.8440 × 106, q1 = 5.940 × 105, c = 1.5650, d
= 0.7825, T0 = 45.639oC. The above parameters will determine
the mechanical properties of viscoelastic materials.

The dynamic response of the viscoelastic damper of 9050A
viscoelastic material under harmonic displacement excitation is
calculated by equivalent linearization method and time domain
extension method, respectively. The excitation frequency is
1Hz, the excitation amplitude is 1 cm, and the force-time
curve is shown in Figure 1, the force-displacement curve is
shown in Figure 2.

As can be seen from Figures 1, 2, the results are different
at the initial moment between the proposed approach and
equivalent linearization method. The force response obtained by
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FIGURE 1 | Time history response of viscoelastic damper under

harmonic load.

the proposed approach starts from the origin point, which reflects
the relaxation characteristics of viscoelastic materials. The stress
relaxation phenomenon is important in viscoelastic materials.
When displacement is applied on a system with stress relaxation
behavior, the output force of should start from 0, which is proved
by Maxwell model. The Maxwell model is good at predicting the
stress relaxation phenomenon by akin to a spring being in series
with a dashpot. In contrast, the equivalent linearization model
cannot reflect the relaxation response of viscoelastic materials. In
addition, the results of the two methods tend to be equal after
about 1 s, which indicates that the steady-state solution of the
two-step transformation approach is correct.

The calculation formula of the storage modulus G1 and the
loss factor η from the force-displacement hysteresis curve is
as follows:

G1 =
2E

γ 2
0

η =
Edγ

4
0

2πE
(28)

Where Ed represents the area surrounded by the force-
displacement hysteresis curve, E represents the strain energy
stored when the material produces the maximum strain γ 0, and
γ 0 represents the maximum strain of the material. According
to formula (17), in the case of the viscoelastic dampers at
a temperature of −10oC, 0oC, 10oC, 20oC, under the input
frequency for 0.1, 0.5, 1, 2 rad, the storage modulus and
loss factor test and theoretical analysis of the results of the
comparison can be calculated and as shown in Table 1. From
the table, the comparison of the calculation results between the
proposed approach and the equivalent linearization method, the
maximum error of the energy storage modulus G1 is 0.0054%,
the maximum error of the loss Factor η is 0.2797%, and the
error analysis indicates that the time domain extension method

FIGURE 2 | Force-Displacement curve of viscoelastic resistance under

harmonic load.

has sufficient precision for solving the solution. Note that the
comparison is between the ESS model and the proposed two-
step transformation approach. There are limitations of the ESS
model that it cannot be used under earthquake excitations. So
the two-step transformation approach is proposed to conquer
this shortage. The comparison between ESS model and the
proposed method indicates that the proposed method is indeed
transferring the ESS model to time domain without bring
much errors.

VALIDATION UNDER RANDOM
EXCITATION

The two-step transformation approach adopts exactly the same
mathematical strategy to process both harmonic and earthquake
excitations. The comparisons under harmonic excitation indicate
that not only the results under harmonic excitation is correct,
but also the total mathematical strategy is accurate. So the
results under earthquake excitation is also accurate, because
it adopts the same accurate mathematical strategy. In other
words, themathematical formulas of the two-step transformation
approach cannot tell the difference between harmonic signals and
earthquake signals, which are both a series of different numbers.
As a result, if the approach dealt with harmonic number correctly,
they must dealt with earthquake signals correctly. Both El Centro
and Taft earthquake waves are chosen as excitations to verify the
applicability of the proposed method.

The equivalent linearization method is also adopted in the
following comparisons because it is based on ESS model and is
usually adopted to calculate the response of viscoelastic material.
Although the equivalent linearization method will bring errors
to the system, it is simple and practical. The comparisons can
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TABLE 1 | Calculation results of 9050A models of viscoelastic materials.

T ω Test value ESS model Two-step approach Error of two-step approach

oC rad G1 Mpa η G1 Mpa η G1 Mpa η G1 Mpa η

−10 1 5.8 1.39 4.7805 1.3008 4.7811 1.302 0.0126% 0.0923%

−10 2 10 1.4 7.7279 1.1799 7.7289 1.1807 0.0129% 0.0678%

0 0.1 2.5 0.4 2.8651 0.237 2.865 0.2383 0.0035% 0.5485%

0 0.5 3.3 0.9 3.1027 0.7627 3.1027 0.7641 0.0000% 0.1836%

0 1 3.8 1.1 3.592 1.1075 3.5922 1.109 0.0056% 0.1354%

10 1 3 0.71 3.1343 0.7993 3.1343 0.8007 0.0000% 0.1752%

10 2 3.4 0.92 3.6813 1.1409 3.6815 1.1423 0.0054% 0.1227%

20 1 2.7 0.4 2.9596 0.5362 2.9595 0.5377 0.0034% 0.2797%

FIGURE 3 | Force-time curve of viscoelastic damper under seismic load

(assuming working frequency is 0.2Hz).

quantify the exact error that the equivalent linearization method
brings to the system.

Validation Under El Centro Earthquake
Wave
The two-step transformation approach is used to calculate
the response of the Viscoelastic damper under the El-Centro
earthquake excitation with 400 gal amplitude. The time history
curve of force is shown in the red solid line in Figure 3.
The force-displacement cure is shown in the red solid line in
Figure 4. At the same time, equivalent linearization method is
used to make approximate calculation on the viscoelastic system.
The equivalent linearization method assumes that the system
works under simple harmonic loads of fixed frequency, and the
excitation frequency usually equals to the nature frequency of the
system. In this working condition, the frequency of the equivalent
linearization method assumes to be 0.2 and 5Hz, respectively.

For example, when the assuming frequency is 0.2Hz,
the equivalent linearization method considers that the
damper’s operating frequency is ω = 2πf = 1.2566 rad.

FIGURE 4 | Force-Displacement curve of viscoelastic resistance under

seismic load (assuming working frequency is 0.2Hz).

So based on the assumptions, the storage modulus G1 =

5.5113 × 106 Pa, Loss factor η = 1.2998, and the time
history curve of force and force-displacement curves of
the damper are plotted as shown in the blue dashed lines
of Figures 3, 4.

Through comparisons, the maximum output of the system
calculated by the two-step transformation approach is 56.2315
kN, and the maximum output of the damper calculated
by the equivalent linearization method is 124.6607 kN,
and the proposed method improve the system accuracy by
121.69%. The force-displacement curve can also be found
that the hysteresis loop calculated by the equivalence method
is extremely full, so the energy dissipation effect of the
damper is overestimated, which is an unsafe behavior in
engineering design.

When the working frequency of the viscoelastic system
is assumed to be 5Hz, the equivalent linearization method
considers that the working frequency of the system is ω =

2πf = 31.4159 rad, so it can be calculated based on the
assumption that the storage modulusG1 = 23.7705× 106 Pa, loss
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FIGURE 5 | Force time curve of viscoelastic damper under seismic load

(assuming working frequency 5Hz).

FIGURE 6 | Force-Displacement curve of viscoelastic resistance under

seismic load (assuming working frequency 5Hz).

factor η = 0.1905, The force-time curve and force-displacement
curve of the viscoelastic system are shown in the blue dashed
lines of Figures 5, 6.

Through comparisons, it is concluded that the maximum
output force of the damper calculated by the proposed approach
is 56.2315 kN, and the maximum output force of the damper
calculated by the equivalent linearization method is 68.7177
kN. The proposed method improve the system accuracy reaches
22.2%. The force-displacement curve can also concludes that the
hysteresis loop of the equivalent linearization method is not full
and the slope increases. It is shown that the equilibration method
underestimates the energy consumption effect of the damper, and
overestimates the stiffness of the damper, which is quite different
from the real result.

FIGURE 7 | Force-time curve of viscoelastic damper under seismic load

(assuming working frequency is 0.2Hz).

In addition, when the frequency is 0.2Hz, it means the first
frequency of the system is assumed to be 0.2Hz for equivalent
linearization method. This condition is usually suitable for the
high rise building which is soft. On the other hand, 5Hz means
the period of the structure is 0.2 s which means the structure is
low and stiff. For viscoelastic material, the loss factor decreases
with increasing frequency, so the curve in high frequency is not
as full as in low frequency.

Validation Under Taft Earthquake Wave

In order to verify the universality of the proposed two-step
transformation approach. Taft earthquake excitation with 400 gal
amplitude is chosen as the input excitation on the viscoelastic
system. The force time history curve of the damping system is
shown in the red solid line in Figure 7. The force-displacement
cure is shown in the red solid line in Figure 8. At the same time,
equivalent linearization method is used to make estimation of
the response of the viscoelastic system. The working frequency
of the approximate method is also assumed to be 0.2 and
5Hz, respectively.

As mentioned before, when the assuming working frequency
is 0.2Hz, the equivalent linearization method considers that the
damper’s working frequency is ω = 2πf = 1.2566 rad, and the
calculated energy storage modulus G1 = 5.5113 × 106 Pa, Loss
factor η = 1.2998, the time history curve of force and force-
displacement curves of the damper are calculated as shown in the
blue dotted lines of Figures 7, 8.

Through comparison, the maximum output of the viscoelastic
system calculated by the two-step transformation approach is
55.7772 kN, and the maximum output of the damper calculated
by the equivalent linearization method is 108.7909 kN, and the
proposed method improve the system accuracy reaches 95.05%.
The same as El Centro earthquake, the force-displacement curve
of Taft earthquake wave can also be found that the hysteresis loop
calculated by the equivalence method is extremely full, and the
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FIGURE 8 | Force-Displacement curve of viscoelastic resistance under

seismic load (assuming working frequency is 0.2Hz).

FIGURE 9 | Force time curve of viscoelastic damper under seismic load

(assuming working frequency 5Hz).

energy dissipation effect of the damper is overestimated, which is
an unsafe behavior in engineering design.

When the operating frequency of the damper is assumed to
be 5Hz, the equivalent linearization method considers that the
operating frequency of the damper is ω = 2πf = 31.4159 rad,
and the calculated storage modulusG1 = 23.7705 × 106 Pa, loss
factor η = 0.1905, The force-time curve and force-displacement
curve for calculating the damper are shown in the blue dashed
lines of Figures 9, 10.

Through comparison, it is concluded that the maximum
output force of the damper calculated by the proposed approach
is 55.7772 kN, and the maximum output force of the damper
calculated by the equivalent linearization method is 69.3388
kN. The proposed method improve the system accuracy
reaches 24.31%.

FIGURE 10 | Force-Displacement curve of viscoelastic resistance under

seismic load (assuming working frequency 5Hz).

Same as El Centro earthquake, the force-displacement curve
under Taft earthquake can also be found that the hysteresis
loop of the equivalent linearization method is not full, and the
slope increases. It is also shown that the equilibration method
underestimates the energy consumption effect of the damper, and
overestimates the stiffness of the damper, which is quite different
from the real result.

In addition, because the ESS model is only suitable for
harmonic signal, so an equivalent linearization method is usually
adopted to extend the ESS model to time domain. However,
the equivalent linearization method is approximate, and the
two-step transformation approach is more accurate. As a result,
the difference is large when using earthquake excitation. The
equivalent linear model can only deal with signals with one
frequency, while the earthquake contain plenty of frequencies. So
only one representative frequency of earthquake waves is choose
to perform the calculation. That’s the reason why the equivalent
linearization method is approximate and inaccurate, and why the
two-step transformation approach is proposed.

CONCLUSION AND PROSPECT

In this paper, a two-step transformation approach is used to
calculate the response of the viscoelastic damper under the El-
Centro earthquake excitation. The proposed approach avoids
the establishment of complex time-domain differential equations,
which can start directly from the frequency domain expression
of the ESS model of viscoelastic materials, and calculate the
time domain response of viscoelastic materials under harmonic
excitation and seismic excitation.

The following conclusions are drawn by experimental tests
and numerical solutions:

(1) The proposedmethod can accurately calculate the ESSmodel
in the time domain range. The comparison calculation
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results show that the error is small, the maximum error of
the energy storage modulus G1 0.0054%, and the maximum
error of the loss Factor η 0.2797%.

(2) The traditional solution method with equivalent stiffness
and equivalent damping will bring large errors, when it
is assumed that ω is large, the hysteresis loop is very full
calculated by the equivalence method, the energy dissipation
effect of the damper is overestimated, and when the ω

is assumed to be small, the energy dissipation effect of
the damper is estimated low. On the other hand, the
stiffness of the damper is over estimated. The engineers is
encouraged to use the two-step transformation approach
to evaluate and predict the mechanical properties of
viscoelastic materials.

(3) In the current stage, the two-step transformation approach
under random earthquakes is mainly verified by numerical
results. The future research will focus on the experimental
verification under random excitations. Also the accuracy of
the models should be improved and the computation cost
should be reduced in the following research.
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