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Folding a strip of paper generates extremely localized plastic strains. The relaxation of

the residual stresses results in a ridge that joins two flat faces at an angle known as

the dihedral angle. When constrained isostatically, the strip will be at its undeformed

roof-like state. Instead, if confined hyperstatically, the flat faces will undergo bending.

We demonstrate that the generated curvatures can change their sign with appropriate

rotations applied at the ends. We use Euler’s theory of the Elastica and a shooting method

to match the applied rotations at the boundaries. We also consider a constitutive model

for the discontinuous rotation that takes into account the initial dihedral angle and the

rotational stiffness of the fold. We show that the curvatures on the left and the right of

the fold change according to a law also confirmed by the Euler-Bernoulli beam theory for

small displacements and rotations. For opposite applied rotations, the fold disappears in

the limit of zero rotational stiffness; instead, for applied rotations of the same sign, there

exists a theoretical non-zero critical rotational stiffness that neutralizes the fold. Below

such critical value, the fold can mutate, for example, from a mountain to a valley fold.

Keywords: fold, crease, ridge, Elastica, discontinuous rotations

1. INTRODUCTION

Folds in thin strips are extremely localized curvatures that occur over a small length-scale. In
the limit of such length to zero, the shape of the strip transforms into one with a sharp corner
(Lechenault et al., 2014). Such mechanical instabilities in thin strips are often the consequence of
an over-constraining environment andmaterial mismatch (Tanaka et al., 1987; Bowden et al., 1998),
such as films on foundations.

Examples of patterns generated in confined conditions (Wang and Zhao, 2015) include wrinkles
(Huang et al., 2004, 2005; Guvendiren et al., 2010), creases (Hong et al., 2009; Lechenault et al.,
2014), blisters, folds (Conti and Maggi, 2007; Pocivavsek et al., 2008; Bayart et al., 2014), crumples
(Vliegenthart and Gompper, 2006; Deboeuf et al., 2013), and ridges (Lobkovsky et al., 1995;
Lobkovsky, 1996; Lobkovsky and Witten, 1997; Audoly and Pomeau, 2010). The transitions from
one to the other manifest as a consequence of the change in the boundary conditions (Holmes and
Crosby, 2010; Jin et al., 2015).

Several researchers explored the mechanical snap-back and snap-through instabilities of thin
structures constrained by controlled boundary conditions, both on displacements and rotations.

In Beharic et al. (2014), the authors examined the bi-stable snap-through behavior of a beam
with both positive and negative curvatures. To achieve such configuration, they confined the beam
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with applied symmetrical rotations at both ends and end-to-end
horizontal span smaller than the arc-length. By deriving a strain
energy landscape, they were able to determine a critical angle at
which the deformation becomes mono-stable. Such critical angle
depends monotonically only on the (compression) ratio between
the arc-length and the horizontal span and not on the material
or thickness, (Gomez et al., 2017) by studying a very similar
system, demonstrated that the speed of the snapping is lower
than the prediction based on the speed of sound; in fact, even
without dissipation, they discovered the existence of a slow-down
near criticality.

Cazzolli and Dal Corso (2018) studied the snapping
mechanisms for elastic strips without folds, generalizing the work
of Beharic et al. (2014). They derived an energy release map
of all the possible rotations (symmetrical and non-symmetrical)
for which the strip exhibits a snap mechanism. Other recent
works on snapping in over-confined thin strips include (Yu
and Hanna, 2019), where they used the Kirchhoff equations for
anisotropic rods to explain the stability under compression, shear,
and symmetric clamping: they revealed a series of boundary
conditions that can generate stable configurations. Sano and
Wada (2018) instead explored a range of controlled asymmetrical
boundary conditions (hinged-clamped) that generate snapping.

From the literature survey, there appears to be a considerable
amount of research in confined thin sheets, especially in
determining their stability. Very little yet exists on confined
folded sheet. By fold, in this paper, we mean a sharp corner in
the deformation (Lobkovsky, 1996; Lechenault et al., 2014).

Despite the abundance of solutions of the Euler’s Elastica
(Bigoni, 2012; Manning, 2014), there seems to be a lack of closed-
form (or even numerical) solutions of the Elastica containing
folds as we intend in this paper. Related works are (Dado et al.,
2004) and (Phungpaingam and Chucheepsakul, 2018), where
they studied the post-buckling response of a cantilevered column
(fixed-free ends) with a rotational spring in the middle, subjected
to a concentrated horizontal force at the free end. However,
there is no specific connection to folds, nor the spring contains
a residual dihedral angle.

A sharp corner translates into a discontinuity of the rotation of
the strip. Using a numerical meshfree method initially developed
for cracks, our recently published work (Barbieri et al., 2019)
presented a discretization method to model thick plates with
multiple folds with infinite rotational stiffness.

In this paper, we are particularly interested in how
constraining a thin strip with a fold with finite rotational stiffness
leads to non-zero curvatures. Also, we study how such curvatures
can be tuned bymodifying the applied rotations at the boundaries
(Figure 1). The question of whether such shapes are stable or
unstable remains a topic that requires further investigation.

2. NUMERICAL MODEL USING
CLOSED-FORM SOLUTIONS OF THE
ELASTICA

To examine which boundary conditions create curvatures
in folded strips, we carried out semi-analytical simulations.

Assuming invariance in the width, we modeled the strip as a
plate under cylindrical bending. Therefore, instead of the Föppl-
von Kármán equations, we modeled the strip as a planar, linearly
elastic, unshearable, and inextensible rod, according to the Euler’s
theory of the Elastica.

The equilibrium equations for the Elastica are (Landau and
Lifshitz, 1959; Frisch-Fay, 1962)

µ′ +
H0

B
sin θ −

V0

B
cos θ = 0 (1a)

θ ′ = µ (1b)

x′ = cos θ (1c)

y′ = sin θ (1d)

with boundary conditions

µ(0) =
M0

B
(2a)

θ(0) = θ0 (2b)

x(0) = x0 (2c)

y(0) = y0 (2d)

where (·)′ = d/dS, with 0 ≤ S ≤ L being the curvilinear
coordinate, µ is the curvature, θ is the rotation, x and y the
Cartesian coordinates of the deformation, L the length of the rod,
B = E I/(1 − ν2) the bending stiffness, E the Young modulus,
I the second moment of area of the cross-section, ν the Poisson
ratio, H0 the applied horizontal force at S = 0, V0 the applied
vertical force at S = 0,M0 the bending moment at S = 0, and θ0
the rotation at S = 0, with positions x0, y0 at S = 0 (Figure 2A).

We pass to the dimensionless form using the following
normalizations:

S̄ =
S

L
µ̄ = µ L x̄ =

x

L
ȳ =

y

L
(3)

resulting in

H̄0 =
H0 L

2

B
V̄0 =

V0 L
2

B
M̄0 =

M0 L

B
(4)

and the following system of non-linear ordinary differential
equations [the (·̄) is removed for ease of notation]

µ′ +H0 sin θ − V0 cos θ = 0 (5a)

θ ′ = µ (5b)

x′ = cos θ (5c)

y′ = sin θ (5d)

with boundary conditions

µ(0) = M0 (6a)

θ(0) = θ0 (6b)

x(0) = x0 (6c)

y(0) = y0 (6d)
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FIGURE 1 | Curvature induced by hyperstatic confinement, and change in curvature (tuning) through applied rotations. (A) Folds and curvatures induced by applied

rotations θ0 and θ1. (B) Signs of the curvatures.

where (·)′ = d/dS̄, with 0 ≤ S̄ ≤ 1. Following standard
techniques (Bigoni, 2012) of solution for Equation (5), we get

θ(S) = θF0 + 2φ(S) (7)

with θF0 such that

H0 = F0 cos θF0 (8a)

V0 = F0 sin θF0 (8b)

F0 =

√

H0
2 + V0

2 > 0 (8c)

and

φ(S) = sign (M0) am
(

α(S)
∣

∣k2
)

(9)

where am is the Jacobi amplitude function and

α(S) = sign (M0)Mc S+ f0 (10)

with

f0 = F
(

φ0

∣

∣k2
)

(11)

with F is the elliptic integral of the first kind and

φ0 =
θ0 − θF0

2
(12)

Mc
2 =

M0
2 + 2 F0 (1− cos 2φ0)

4
(13)

Frontiers in Materials | www.frontiersin.org 3 March 2019 | Volume 6 | Article 41

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Barbieri Curvature Tuning in Folded Strips

FIGURE 2 | The Elastica with a fold at S = Sf . (A) The Elastica with a fold and its boundary conditions. (B) Dihedral angle β0, rest opening angle ϕ0 and discontinuity

[[θ ]] in the rotation.

k2 =
F0

Mc
2

(14)

The Cartesian coordinates of the deformation are

x(S) = x0 + cos θF0 Cφ(S)− sin θF0 Sφ(S) (15)

y(S) = y0 + sin θF0 Cφ(S)+ cos θF0 Sφ(S) (16)

with

Sφ(S) =

∫ S

0
sin
(

2φ(S)
)

dS =
2

Mc k2

(

dn
(

α(S)
∣

∣k2
)

− dn
(

f0
∣

∣k2
))

(17)
where dn is the Jacobi dn function

Cφ(S) =

∫ S

0
cos

(

2φ(S)
)

dS = S−
2

Mc

(

signφ′ I(φ)

− signφ′
0 I(φ0)+ 2 Imax nφ′↑↓(S)

)

(18)

where

I(φ) =
1

k2

(

F(φ
∣

∣k2)− E(φ
∣

∣k2)
)

(19)

where E is the elliptic integral of the second kind, Imax = I(φmax)
and nφ′↑↓ is the number of times from 0 to S when φ′ changes
sign. Furthermore,

φmax = arcsin

(

1

k

)

(20)

φ′(S) = sign (M0)Mc dn
(

α(S)
∣

∣k2
)

(21)

and

µ(S) = 2φ′(S) (22)

The strain energy of the rod is

U =
1

2

∫ 1

0
µ2 dS = 2

∫ 1

0
φ′(S)

2
dS = 2M2

c − 2 F0

∫ 1

0
sin2 φ dS

= 2M2
c − F0

(

1− Cφ(1)
)

(23)

Let us now assume that a fold exists at 0 < Sf < 1. The fold is a
discontinuity [[·]] on the rotation, with the following constitutive
model (Lechenault et al., 2014)

[[θ]] = θ(S+
f
)− θ(S−

f
) =

M(Sf )

κ
+ ϕ0 (24)
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with S+
f
the curvilinear coordinate immediately to the right of

Sf and S−
f

the one immediately on the left (Figure 2B). The

quantity κ > 0 is the rotational stiffness of the fold, and M(Sf )
is the bending moment, assumed continuous in the absence of
concentrated moments applied at Sf . The angle ϕ0 is the rest
opening angle. When ϕ0 = 0, there is no fold; when ϕ0 <

0 the fold is called a mountain and when ϕ0 > 0 the fold
is called a valley (Figure 1). The linear relationship between
bending moment and dihedral angle was showed experimentally
in Lechenault et al. (2014) and Jules et al. (2019) to hold for a wide
range of dihedral angles. In their experiments, Lechenault and
co-workers used the setup in Figure 3. The sample is clamped
at one end, with a dynamometer attached to the other end.
Both ends lie in the same plane. The right end can translate
as the force pulls the specimen. The sample is illuminated by a
laser, and the successive deformations are captured by a digital
camera. In this way, it is possible to measure the dihedral angle
β0. The moment at the fold is calculated as the product of the
force measured by the dynamometer and the maximum height of
the profile y(Sf ).

The geometrical meaning of ϕ0 is shown in Figure 2B. The
rest opening angle is related to the dihedral angle β0 by the

FIGURE 3 | Experimental setup used in Lechenault et al. (2014) for the

characterization of the rotational stiffness of the fold (adapted).

FIGURE 4 | Deformations for Sf = 1/5 and κ = 2, and for Sf = 1/2 and

κ = ∞, both with rest opening angle ϕ = −60◦ with y1 = 0 (isostatic

confinement). Blue continuous line: Elastica, red dashed line: Euler-

Bernoulli (Equations 34).

simple relation

β0 = π −

(

ϕ0 +
M(Sf )

κ

)

(25)

The rest opening angle is a mechanical property related to
the yield stress of the material of the strip (Lechenault et al.,
2014): to create a sharp fold, one needs to apply an extreme
deformation that generates localized and irreversible strains.
Such strains, in turn, lead to high stress concentrations beyond
the yield stress of the material. An estimate of the dihedral angle
is (Lechenault et al., 2014)

ϕ0 ∼ ǫp ∼
σY

E
(26)

where ǫp is the plastic strain, σY the yield stress and E the
Young modulus of the material composing the strip. In addition,
ϕ0 appears to be independent from the thickness of the strip
(Lechenault et al., 2014).

To tune the curvatures, we will further assume that at least one
of the following quantities is assigned:

θ(0) = θ0 θ(1) = θ1 x(1) = x1 y(1) = y1 (27)

which renders one or all of H0, V0, M0 unknowns to be
determined. The procedure to compute such unknowns is a
shooting method (Press et al., 2007). Firstly, the solutions (7),
(15), (16), and (22) are applied from 0 ≤ S ≤ Sf : let us call this
solutionµ−, θ−, x−, and y−. Then, the values θ(1), x(1), and y(1)
are computed by applying the solution (7), (15), and (16) with the
following boundary conditions:

θ(Sf ) = θ−(Sf )+

(

ϕ0 +
µ−(Sf )

κ

)

(28a)

µ(Sf ) = µ−(Sf ) (28b)

x(Sf ) = x−(Sf ) (28c)

y(Sf ) = y−(Sf ) (28d)

the procedure is iterated with a non-linear solver until θ(1), x(1),
and y(1) computed in this way match the conditions (27), within
a certain tolerance.

3. RESULTS

In this section we report the results of the Elasticamodel for strips
containing folds. We examine both isostatic and hyperstatic
boundary conditions. In all the numerical calculations, we set the
origin of the Cartesian system to the origin of the rod, therefore
x0 = y0 = 0.

3.1. Isostatic Boundary Conditions: no
Curvature
Let us examine the case where only y(1) is assigned

y(1) = y1 (29)
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Therefore

H0 = 0 M0 = 0 V0 = 0 θ0 = unknown (30)

Figure 4 shows that no curvature is generated under conditions
(30), regardless of the position of the fold and rotational stiffness.
This configuration corresponds to the undeformed state of the
folded strip when is at rest. This undeformed state depends only
on the position of the fold Sf and the rest opening angle ϕ0.

3.2. Hyperstatic Boundary Conditions
In addition to condition (29), we consider cases where the
boundary conditions are provided by a couple of rotations

applied respectively at the start and the end of the strip:

y(1) = y1 = 0 θ(0) = θ0 θ(1) = θ1 (31)

We also impose that the end lies in the same plane as the start of
the strip, therefore y1 = 0. Under boundary conditions (31),

H0 = 0 M0 = unknown V0 = unknown (32)

Firstly, we consider the case of a fold with infinite rotational
stiffness. By changing the applied rotations, we investigate the
changes in sign of the curvatures at both sides of the fold
(Figure 1B). Secondly, we repeat the same calculations for a finite
rotational stiffness.

FIGURE 5 | Non-uniqueness of the deformation for a sheet with an infinitely stiff fold positioned at Sf = 0.5, with rest angle ϕ0 = −60◦ and applied rotations

θ0 = 20◦, θ1 = −20◦.

FIGURE 6 | Signs of the curvatures at the left M0 = µ(0) and at the right µ(1) of the fold. The rest angle is ϕ0 = −60◦ and the position is Sf = 1/2. (A) Infinite

rotational stiffness (κ = ∞). (B) Finite rotational stiffness (κ = 1/2).
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Thirdly, we isolate the effect of the rotational stiffness by
varying κ for different strips under the strips under the same
couple of applied rotations and the same position of the fold. We
consider anti-symmetrical applied rotations.

3.2.1. Variable Applied Rotations and Rotational

Stiffness
Figure 5 shows the deformations for a sheet under the same
applied rotation, infinite rotational stiffness, same fold position
and same rest angle.

There exist multiple solutions, depending on the initial
moment M0 and shear force V0. This non-uniqueness is a
consequence of the non-linearity of the Elastica: in fact, the
solutions (15) and (16) are periodic in space, with the period
depending onM0, H0 and V0 (Equation 13).

In the proceeding of the paper, we will always refer to the
solution with the lowest strain energy. In fact, Equation (23)
states that for the same θ0 and θ1, the strain energy grows with
M0 and F0

U ∼ Mc
2 ∼ M0

2 + F0 (33)

Having resolved this disambiguation, we now examine the
changes in sign of the curvatures (Figure 1B). Figure 6A

shows the curvatures at both sides of the fold for varying
applied rotations at both ends. We considered θ0 and θ1
ranging from −|ϕ0| to |ϕ0|, with an increment of 1◦. The
fold has position S0 = 1/2 and infinite rotational stiffness.
With respect to the signs of the curvatures, there exist
three regions: one where both curvatures are positive, one
where both are negative and one where the curvatures have
different signs.

Figure 6B shows a map of the signs of the curvatures
for the same strip with reduced rotational stiffness κ =

1/2. We can still identify three domains, as in Figure 6A,
except that the domains with the same curvatures have
decreased, while the sub-regions with opposite curvature have
increased. Regardless of the rotational stiffness, the three regions
meet at the same point, which corresponds to the isostatic
boundary conditions.

Figures 7A,B show instead the dimensionless shear force at
S = 0. Both graphs are identical, with the zero shear force line
being straight with equation θ1 = −θ0.

FIGURE 7 | Sign of the shear force V0 for a fold with rest angle ϕ = −60◦ and position Sf = 1/2. (A) Infinite rotational stiffness (κ = ∞). (B) Finite rotational stiffness

(κ = 1/2).

FIGURE 8 | Deformations for variable rotational stiffness for symmetrical applied rotations θ0 = −θ1 = −20◦, with rest angle ϕ0 = −45◦.
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3.2.2. Variable Rotational Stiffness for

Symmetrical and Anti-symmetrical Applied Rotations
Figure 8 shows the deformations for a strip with a fold at Sf =

1/2, rest angle ϕ0 = −45◦ and variable rotational stiffness
κ . The boundary conditions are given by a fixed y-coordinate
at the end y1 = 0 and symmetrical applied rotations θ0 =

−θ1 = −20◦. The curvature µ(S) is uniform throughout the
rod, and decreases with the decrease in κ . As expected, the
dihedral angle β0 increases as κ decreases. When κ reaches a
critical value κc, the discontinuity on the rotation disappears;
below κc, the fold transitions from a mountain into a valley.
In the limit of zero rotational stiffness, the fold becomes a

FIGURE 9 | Deformations for variable rotational stiffness for anti-symmetrical applied rotations θ0 = θ1 = −20◦, with rest angle ϕ0 = −45◦.

FIGURE 10 | Curvature signs due to hyperstatic confinement through applied rotations. The fold has infinite rotational stiffness. Comparison between the Elastica

model (dots) and Euler-Bernoulli beam (continuous straight lines). Pink dots: positive curvatures; green dots: negative curvatures; blue dots: opposite curvatures.
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perfect hinge: the deformation is equivalent to one of a flat
rod, under isostatic boundary conditions, containing a fold with
a rest opening angle equal to twice the applied rotation at
the end.

Instead, when the applied rotations are equal (anti-
symmetrical rotations), the limit configuration for zero rotational
stiffness is the solution of the Elastica with no folds (Figure 9).

4. DISCUSSION

In this section, we derive a simplified analytical model to explain
the numerical results obtained in section 3.

4.1. Influence of the Isostatic Confinement
In this case, the solution of the system (5) is

µ(S) = ϕ0 δ(S− Sf ) (34a)

θ(S) = θ0 + ϕ0 H(S− Sf ) (34b)

x(S) = cos θ0 S−

(

cos θ0 − cos(θ0 + ϕ0)

)

〈S− Sf 〉 (34c)

y(S) = sin θ0 S−

(

sin θ0 − sin(θ0 + ϕ0)

)

〈S− Sf 〉 (34d)

with δ being the Dirac delta function, H the Heaviside
function and

〈S〉 =
S+ |S|

2
(35)

is the ramp function. The solutions in Equation (34) correspond
to a piece-wise roof-like deformation, where each side of the fold
is flat.

The angle θ0 is given by

θ0 = atan2

(

−
(1− Sf ) sinϕ0

Sf + cosϕ0 (1− Sf )

)

(36)

meaning that the deformation depends only upon the position of
the fold Sf and the rest angle ϕ0, as anticipated in Figure 4.

4.2. Influence of the Applied Rotations
For simplicity, we will also assume x1 unassigned, making H0 =

0. In addition, we will assume, in first instance, that the fold
is infinitely stiff, meaning κ → ∞. In this case, the Elastica
coincides with the classic Euler-Bernoulli beam equation:

µ′ = V∞
0 (37)

and the solutions for the beam are

µ(S) = M∞
0 + V∞

0 S+ ϕ0 δ(S− Sf ) (38a)

θ(S) = θ0 +M∞
0 S+ V∞

0

S2

2
+ ϕ0 H(S− Sf ) (38b)

x(S) = S (38c)

y(S) = θ0 S+M∞
0

S2

2
+ V∞

0

S3

3
+ ϕ0 〈S− Sf 〉 (38d)

Assigning the following boundary conditions

θ(0) = θ0 θ(1) = θ1 y(1) = y1 = 0 (39)

the two unknowns V0 andM0 are given by

V∞
0 = 6

(

θ0 + θ1 + ϕ0(1− 2 Sf )
)

(40a)

M∞
0 = −4

(

θ0 +
θ1

2
+ ϕ0

(

1−
3

2
Sf

))

(40b)

For Sf = 1/2, the curvature will be uniform (V0 = 0) if

θ0 = −θ1 (41)

regardless of the rest angle of the fold. Such straight line in
Equation (41) is observable in both Figures 7A,B.

Therefore, the curvature will be identically zero if both V0 =

M0 = 0, which happens for

θ0 = ϕ0 (1− Sf ) θ1 = −ϕ0 Sf (42)

The curvature in Equation (38a) is a linear function in S.
Therefore, by inspecting the signs of the values at S = 0 and
S = 1, it is possible to discern whether the beam has the same
curvature (either positive or negative) or opposite curvatures:

µ(0) > 0 µ(1) > 0 same positive curvature (43a)

µ(0) < 0 µ(1) < 0 same negative curvature (43b)

µ(0)µ(1) < 0 opposite curvatures (43c)

The values of µ(0) and µ(1) are

µ(0) = M0
∞ (44a)

µ(1) = M0
∞ + V0

∞ (44b)

Figure 10 shows the presence of the three regions for the signs of
the curvatures, as observed in Figure 6; also, there is agreement
between the Euler-Bernoulli theory and the Elasticamodel.

4.3. Influence of the Rotational Stiffness
Interestingly, the values in Equation (42) hold also for folds with
finite rotational stiffness. In fact, when κ is finite, the solutions are

µ(S) = Mκ
0 + Vκ

0 S+

(

ϕ0 +
Mκ

0 + Vκ
0 Sf

κ

)

δ(S− Sf )

(45a)

θ(S) = θ0 +Mκ
0 S+ Vκ

0

S2

2
+

(

ϕ0 +
Mκ

0 + Vκ
0 Sf

κ

)

H(S− Sf )

(45b)

x(S) = S
(45c)

y(S) = θ0 S+Mκ
0

S2

2
+ Vκ

0

S3

3
+

(

ϕ0 +
Mκ

0 + Vκ
0 Sf

κ

)

〈S− Sf 〉

(45d)
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where

V0
κ =

V0
∞

1+ 4
κ

(

1− 3 Sf + 3 Sf
2
) + 12

θ1 + Sf (θ0 − θ1)

1+ 4
κ

(

1− 3 Sf + 3 Sf
2
)

(46a)

M0
κ =

M0
∞

1+ 4
κ

(

1− 3 Sf + 3 Sf
2
) + 12 Sf

θ1 + Sf (θ0 − θ1)

1+ 4
κ

(

1− 3 Sf + 3 Sf
2
)

(46b)

with V0
∞ given by Equation (40a) andM0

∞ by Equation (40b).
By substituting Equations (42) into (46), the values of V0

κ and
M0

κ also become zero.
In addition, for Sf = 1/2, θ0 = −θ1, also V0

κ = 0, which
means that for opposite applied rotations, the curvature will be
uniform also for folds with finite rotational stiffness.

The Euler-Bernoulli theory for soft folds in Equation
(46) confirms the shrinkage of the domains with same-sign
curvatures, as showed in Figure 11.

The denominator in Equation (46) is always positive

κ + 12 Sf
2 − 12 Sf + 4 > 0 0 < Sf < 1 κ > 0 (47)

preventing the appearance of any singularities.
The discontinuity in rotation at the fold is given by

[[θ]]κ = θ(S+
f
)− θ(S−

f
) =

M(Sf )

κ
+ ϕ0

=
ϕ0 κ + θ0

(

6 Sf − 4
)

+ θ1
(

6 Sf − 2
)

κ + 12 Sf
2 − 12 Sf + 4

(48)

and is showed in Figure 12 for θ0 = −θ1 = 20◦ and ϕ0 = −45◦.
The discontinuity becomes zero for

κc = 4
θ0

ϕ0

(

1−
3

2
Sf

)

+ 2
θ1

ϕ0

(

1− 3 Sf
)

(49)

For Sf = 1/2:

κc =
θ0

ϕ0
−

θ1

ϕ0
(50)

therefore, when the applied rotations are equal, then the critical
rotational stiffness is zero, as in Figures 9, 12, when the applied

FIGURE 11 | Curvature signs due to hyperstatic confinement through applied rotations. The fold has finite low rotational stiffness κ = 1/2. Comparison between the

Elastica model (dots) and Euler-Bernoulli beam (continuous straight lines). Pink dots: positive curvatures; green dots: negative curvatures; blue dots: opposite

curvatures.
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FIGURE 12 | Discontinuity on the rotation at the fold for variable rotational stiffness. Comparison between values from Figure 8 and Equation (48).

rotations are opposite, then

κc = 2
θ0

ϕ0
(51)

When θ0 is of the same sign of ϕ0, then kc > 0 as in Figures 8, 13
and there exist a physical critical value of the rotational stiffness.
Otherwise, for θ0 = −θ1 and ϕ0 of the opposite sign, then there
is no critical value, and the solution is an undeformed roof-like
deformation, as determined by Equation (42).

It must be remarked, however, that even though a critical
rotational stiffness for fold disappearance exists, the linear
relationship in (24) might not hold for small rotational stiffness.

5. CONCLUSIONS

A thin sheet containing a fold assumes a roof-like undeformed
state when confined isostatically. Instead, if confined
hyperstatically, it will possess one or more curvatures. Such
curvatures change according to the rotations applied at the ends
of the sheet. Using the Euler’s Elastica theory, we calculated the
values of the applied rotations corresponding to a switch in the
curvatures’ signs.

We considered a fold as a discontinuity in the rotations,
equal to the supplementary angle to its dihedral angle.
The mechanical behavior of the fold depends upon
two material properties: the rest opening angle and the
rotational stiffness. The rest opening angle is a
material property closely related to the yield stress;
the rotational stiffness contributes to increasing
the dihedral angle of the fold when subjected to a
bending moment.

FIGURE 13 | Discontinuity on the rotation at the fold for variable rotational

stiffness. Comparison between values from Figure 9 and Equation (48).

For infinite rotational stiffness, the dihedral angle depends
only on the rest opening angle. For the signs of the curvatures
before and after the fold, we can identify three regions: one
where both curvatures are positive, one where they are both
negative and one when they are opposite in sign. We presented
a map of such occurrences according to the applied rotations;
for small rotations and displacements, the numerical results agree
with a simplified model based on the Euler-Bernoulli beam. Also,
this map confirmed the presence of values of applied rotations
for which the curvature is uniform throughout the sheet; in
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particular, there is one couple of applied rotations when such
uniform curvature is zero. These rotations correspond to the
isostatic confinement.

For folds with finite rotational stiffness, the two regions
with same-sign curvatures shrink. Interestingly, there exists
a critical value of the rotational stiffness when the fold
disappears, meaning that the discontinuity on the rotation
becomes zero. In particular, when the applied rotations are
opposite in signs and the fold is a mountain, the critical value
of the rotational stiffness is different from zero, and represents
a transition from mountain to valley. In the limit of zero
rotational stiffness, the sheet transforms into an undeformed
valley with rest angle equal to twice the applied rotation
at the end.
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