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Non-equilibrium systems continuously evolve toward states with a lower free energy. For

glass-forming systems, the most stable structures satisfy the condition of isostaticity,

where the number of rigid constraints is exactly equal to the number of atomic degrees

of freedom. The rigidity of a system is based on the topology of the glass network,

which is affected by atomistic structural rearrangements. In some systemswith adaptable

network topologies, a perfect isostatic condition can be achieved over a range of

compositions, i.e., over a range of different structures, giving rise to the intermediate

phase of optimized glass formation. Here we develop a statistical mechanical model

to quantify the width of the intermediate phase, accounting for the rearrangement of the

atomic structure to relax localized stresses and to achieve an ideal, isostatic state.

Keywords: glass, intermediate phase, topological constraint theory, statistical mechanics, modeling

INTRODUCTION

Within the field of topological constraint theory, there is growing interest in the ability of a glass
network to adapt its topology to achieve isostaticity. A glass network is isostatic when the number
of rigid constraints per atom, n, equals the number of translational degrees of freedom (Phillips,
1979). For a system in three-dimensional space, each atom has three degrees of freedom; hence,
〈n〉 = 3 is the condition for achieving an isostatic network (Thorpe, 1983). If 〈n〉 > 3 the system is
overconstrained (stressed rigid), and if 〈n〉 < 3 the system is underconstrained (floppy) (Thorpe,
1983). In the overconstrained region, additional rigidity, beyond 〈n〉 = 3, creates localized stresses.
Elimination of these stresses can be achieved through an imposition of crystalline order, which
drives the network out of the glassy state (Thorpe, 1983).

When topological constraint theory of glass was originally proposed by Phillips and
Thorpe, the isostatic state was predicted to be achieved at a single composition, viz., the
rigidity percolation threshold (Phillips and Thorpe, 1985). However, in 1999, Raman scattering
and temperature-modulated differential scanning calorimetry (MDSC) experiments by Punit
Boolchand et al. revealed a finite width of isostatic compositions in which the system can
maintain stability, called the intermediate phase (IP) (Selvanathan et al., 1999; Boolchand
et al., 2001b; Micoulaut, 2007; Moukarzel, 2013). Thorough investigations, particularly in
chalcogenide systems, have revealed a difference between the onset of rigidity and the onset
of stress, creating a finite width of compositions that enable the most stable, isostatic state
(Selvanathan et al., 1999; Boolchand et al., 2001b). One of the most pronounced signatures
of the intermediate phase was detected using MDSC measurements (Feng et al., 1997), which
measures the non-reversible enthalpy of relaxation, 1H. The difference between the original
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Phillips-Thorpe single percolation threshold result
and Boolchand’s intermediate phase can be visualized
in Figures 1A,B, respectively, where the blue circles
indicate the lowest energy states of 1H and hence the
isostatic composition(s).

Although a consensus within the glass community has still not
been reached regarding the existence of the intermediate phase,
over the past 18 years understanding of the phenomenon has
greatly advanced. Evidence of the IP has been found through
numerical studies (Thorpe et al., 2000), analysis of finite size
clusters (Micoulaut and Phillips, 2003), and thorough analyses
using MDSC (Selvanathan et al., 1999, 2000; Boolchand et al.,
2001b; Vaills et al., 2005; Novita et al., 2007) and Raman
scattering (Selvanathan et al., 1999, 2000; Boolchand et al., 2001a;
Wang et al., 2001; Novita et al., 2007). These studies all reveal two
distinct thresholds marking the boundaries of the intermediate
phase: the rigidity transition (the lower bound, below which
there are floppy modes in the network) and the stress transition
(the upper bound, above which the network is stressed-rigid).
Between the two thresholds, fluctuations in the system can enable
self-organization, as visualized in Figure 2.

A challenge when studying the intermediate phase is the
apparent irreproducibility of some of the experiments, causing
the physical origins and very existence of the phase to be

FIGURE 1 | (A) Phillips-Thorpe theory based on a single isostatic point.

(B) Boolchand intermediate phase where the isostatic region encompasses a

finite width. In both (A) and (B), the isostatic region is shown as the blue

shaded region, and the blue circle identifies the compositions with the lowest

enthalpy, 1H, therefore indicating the energetically preferred and isostatic

composition(s).

FIGURE 2 | A visual representation of the two thresholds bounding the

intermediate phase (IP) for varying compositions, x. The rigidity transition and

stress transition separate the floppy, isostatic, and stressed rigid

compositions, as shown.

controversial. Careful sample preparation is necessary in order
to detect the IP due to the experiment’s high sensitivity to
impurities, inhomogeneities, and the thermal history of the glass
(Bhosle et al., 2011, 2012). Some critics of the intermediate phase
attribute the observed finite widths as possible experimental
artifacts (Golovchak et al., 2008; Lucas et al., 2009; Shpotyuk
and Golovchak, 2011). During MDSC experiments on Ge-Se
glasses, the non-reversible enthalpy was shown to decrease in
the IP domain, inferring a need for Ge-Se-Se isostatic structural
fragments to account for the rigid but unstressed network
(Micoulaut and Phillips, 2003; Massobrio et al., 2007; Sartbaeva
et al., 2007). However, an extensive high-temperature nuclear
magnetic resonance study revealed that these fragments were
missing from the structure (Lucas et al., 2009). To account for
this discrepancy, Lucas et al. disagreed with the existence of the
intermediate phase and instead hypothesized that the previously
observed phase could be an experimental artifact resulting
from the use of a single modulation frequency in the MDSC
experiments. However, subsequent modeling work showed that
the frequency correction used in the analysis of the MDSC
experiments provided non-reversing heat flows independent of
the particular choice of modulation frequency (Guo et al., 2012).

Another claim against the existence of the intermediate phase
is the observation of physical aging in the intermediate phase
glasses (Golovchak et al., 2006, 2008, 2011; Shpotyuk et al.,
2008; Elabbar and Adu-Sehly, 2011). The intermediate phase
is reported to be characterized by high stability and a lack of
physical aging. However, when differential scanning calorimetry
was used to investigate the kinetics associated with the glass
transition, results showed that all samples had evidence of
physical aging behavior (Zhao et al., 2013). These inconsistencies
in the physical understanding of glass adaptability and isostaticity
sparked the glass community’s growing interest in this field.

Further work is therefore required to elucidate the origin of
the intermediate phase. Considering that a finite width of isostatic
compositions is indeed possible, the second point of debate is the
underlying mechanisms (structure, dynamics, interaction, etc.)
enabling the two-threshold intermediate phase. Typically, studies
emphasize the central role of fluctuations (Thorpe et al., 2000;
Barré et al., 2005; Chubynsky et al., 2006; Micoulaut, 2006). More
specifically, it is proposed that the fluctuations in the system
enable the atoms to self-organize into a stress-free state while
still maintaining a non-crystalline structure of the glass. These
structural rearrangements relieve additional stresses, driving the
system back toward a lower free energy state (Selvanathan et al.,
1999; Boolchand et al., 2001b). The network mitigates the stresses
by adapting its topology, thereby affecting the number of rigid
constraints in the network.

Topological fluctuations in a glassy system are based on
the distribution in rigid constraints, n(x,T,P) (Micoulaut, 2016).
Given the non-linear behavior of coordination changes with
pressure, pressure dependence is out of the scope in this
simplified topological model, i.e., here we will only explore
the dependence on composition and temperature. Additionally,
this paper considers the network’s ability to adapt its topology
to eliminate stresses, without considering the kinetics of this
adaptation process.
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This paper explores both the statistical mechanical origin
of the intermediate phase, as well as the role of topological
fluctuations in governing its width. The proposed mechanism
for the intermediate phase is based on the ability of the
network to self-organize, i.e., to eliminate localized stress due
to the adaptability of the network. This adaptability is made
possible by the localized fluctuations in the glass network’s
structure and topology, with localized stresses as the driving
force for these rearrangements. Modeling the distribution of
topological fluctuations was made possible in prior work by
linking statistical mechanics and topological constraint theory
(Kirchner et al., 2018). Extending this previous work, the
current investigation analyzes the degree of self-organization
enabled through these structural and topological fluctuations
to create a generalized approach for modeling the width of
the intermediate phase of an arbitrary glass-forming system.
The model is used to quantify the width of the intermediate
phase, which can be defined either in units of constraints,
n, or composition, x. In both representations, the width
is analyzed as a function of composition and temperature.
These results are then discussed in relation to localized
topological fluctuations. Utilizing the general approach outlined
in this paper, the structure of a glass-forming system could
potentially be designed to achieve a desired intermediate
phase width.

CALCULATION OF THE TOPOLOGICAL
FLUCTUATIONS

The width of the intermediate phase is dependent on the
adaptability of the glass network, which is enabled by
the distribution of rigidity fluctuations. Prior work by the
authors established a general approach for calculating the
distribution of the number of rigid constraints per atom
by linking statistical mechanics and topological constraint
theory (Kirchner et al., 2018). Through statistical mechanics,
the probability of site occupation is given by Mauro (2013);
Mauro and Smedskjaer (2014)

pi,m =
1

Qm−1

(

gi − ai,m−1

)

exp

(

−
1Hi

kT

)

(1)

where Qm−1 is the path-dependent partition function calculated
after occupation of modifier m−1 (which normalizes the
distribution at each step), gi is the population size of network
former sites of type i, and ai,m−1 is the number of type
i sites previously occupied after modifier m−1. 1Hi is the
enthalpy change associated with occupying site type i, k is
Boltzmann’s constant, and T is the absolute temperature.
To account for thermal history effects in a glass, the
temperature can be set equal to the fictive temperature of
the system.

This statistical mechanical approach calculates the probability
density of Ni(x), the mole fraction of network-forming species
i in composition x, which serves as an input for the
distribution of the number of atomistic constraints, given

by Mauro et al. (2009); Mauro (2011)

n (T, x) =
∑

i
Ni(x)

∑

α
wi,αqα(T). (2)

In Equation (2) the outer summation is over the network-
forming species i and the inner summation is over the various
constraints α. wi,α is the number of constraints of type α

associated with the species type i and qα(T) is the temperature-
dependent rigidity of constraint α, given by

qα (T) =

[

1− exp

(

−
1F∗α
kT

) ]vtobs

. (3)

The rigidity for each constraint, α, is an independent function of
the absolute temperature, T, where v is the vibrational attempt
frequency, tobs is the observation time, and1Fα

∗ is the activation
free energy for breaking the α constraint, given by

F
∗

α = −kTα ln

(

1− 2
− 1

vtobs

)

(4)

where Tα is the onset temperature for constraint α. The
onset temperature, Tα, is defined as the temperature at
which the probability of breaking the constraint is exactly
1/2 (Mauro, 2011). Linking Equations (1,2) results in the

FIGURE 3 | A visual representation of the thresholds that determine the width

of the IP, both in terms of the atomic constraints, n(x), and the composition,

x(n). Within his paper, the constraints are given as a distribution, hence

incorporating the statistical fluctuations of constraints. The rigidity transition is

determined by the composition in which the constraint distribution satisfies

〈n〉 = 3. The stress transition is determined by the composition corresponding

to the constraint distribution of nstress.
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distribution of local constraints, which quantifies the topological
fluctuations dictating the width of the intermediate phase
(Kirchner et al., 2018).

THE INTERMEDIATE PHASE

The width of the intermediate phase is defined by two
boundaries: the rigidity transition and the stress transition. The
rigidity transition occurs when the average number of atomic
constraints, 〈n〉, equals the number of degrees of freedom; this
represents the transition from a flexible to an isostatic network.
Since here we consider a three-dimensional network, the rigidity
transition occurs when 〈n〉 = 3. Note that the number of rigid
constraints per atom, n, is typically presented as a single mean
value; however, this investigation explores the distributions of
fluctuations, and hence, the full distribution of n. Therefore, in
the context of this paper, 〈n〉 refers to the mean, while n refers to
the distribution of the number of atomistic constraints.

TABLE 1 | The arbitrary model’s starting conditions, prior to varying the

concentration of network former, B, the network modifier, M, or the temperature, T.

wA,un 6

wA,oc 6

wB,un 6

wB,oc 6

TA,un (K) 590

TA,oc (K) 565

TB,un(K) 590

TB,oc(K) 615

T (K) 600

[B] 0.5

[M] 0.5

vtobs 1,000

FIGURE 4 | 〈n〉 vs. f when varying the concentration of network formers, B,

modifiers, M, and temperature, T.

Since the dimensionality of the system remains constant, the
rigidity transition in a 3D network is defined by

〈n〉 = 3 (5)

The second threshold, the stress transition, occurs when the
overconstrained system can no longer rearrange itself into a
stress-free state. This boundary is defined by the low-rigidity
tail of the distribution, which we quantity with the floppy mode
probability, f, given by

f =

∫ 3

0
P (n) dn (6)

where P(n) is the probability density function of the rigidity
distribution n. The quantity f therefore gives the probability of
the system having an atomic rigidity less than or equal to three.

It is important to note that not all systems will enable
rearrangement, and to model the obtainable intermediate phase
within a glass-forming system we need to incorporate a
reasonable threshold for rearrangement. Using the definition
of f in Equation (6), we can define a material property, fthres,
which is the threshold probability for the system to be able to
rearrange its structure and topology. In other words, we can
define fthres as a minimum threshold for which the system can
remain isostatic by relaxing the localized stresses in a stressed-
rigid network through structural rearrangements. As long as
f>fthres the structure can rearrange itself to eliminate the stresses,
viz., by biasing the structure toward the stress-free isostatic
configurations. The driving force for this network adaptability
is the localized stress generated in the overconstrained, stressed-
rigid configurations. Once f<fthres the isostatic configurations are
no longer considered to be accessible, i.e., the stresses in the
network are too high to fully relax. Therefore, f = fthres marks
the stress transition, i.e., the second boundary of the intermediate
phase, which can be given in terms of the corresponding
constraint distribution, nstress, and is defined as

nstress =
〈

n
(

x, fthres
) 〉

. (7)

The difference between the two boundaries, given by Equations
(5,7), dictates themaximum allowedwidth,w, of the intermediate
phase. The width can be given either in units of the difference in
number of constraints,

wn = nstress(x, fthres)− 3 (8)

or more typically by the corresponding compositional width,

wx = x ( nstress, fthres)− x (3), (9)

where wn > 0 and wx > 0. Figure 3 illustrates the thresholds and
corresponding parameters that determine this maximum width
of constraints or compositions enabling self-organization with
a disordered network. Given that fthres can vary for different
systems, here we consider the intermediate phase width as a
function of this material property, fthres.
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RESULTS AND DISCUSSION

The scope of the current investigation considers a simplified
glass network with composition A1−x Bx My, where A and B
are the two network formers and M is the network modifier.
Given that there are two types of network formers and one
type of modifier, there are four possible structural motifs within
the system, based on whether a network-forming site is either
unoccupied (denoted as Aun and Bun) or occupied (Aoc and Boc)
by a modifier. Following Equation (1), the probability of site
occupation is based on the competition between entropic and
enthalpic effects. The compositions of A, B, and M determine
the entropic preferences, while the enthalpic preferences are
determined by the relative energies associated which each state.
In our model, we arbitrarily specify the B site to be enthalpically
favored for modifier association, i.e., HA,oc> HB,oc.

The set of parameter values is provided in Table 1, including
the number of constraints, wi,α , the onset temperatures, Tα

(hence, dictating the rigidity, qα(T), of each constraint), the
temperature, the concentration of network formers and network
modifiers, and the value of vtobs, i.e., the complete set of variables
necessary to solve Equations (1–4). The model’s parameters were
arbitrarily chosen to make 〈n〉 ≈ 3 near [A]= [B]≈ 0.5. [B], [M],
T were then altered to find the thresholds for the IP.

As addressed in Equations (8,9), the width of the intermediate
phase can be expressed either in units of constraints, n, or
composition, x. In both representations, the constraints and
compositions defining the intermediate phase width are based on
the network’s composition and temperature.

IP Widths in Units of n
The concentration of network former B, the concentration of
network modifierM, and the absolute temperature of the system,
T, dictate the distribution of n, and therefore, the intermediate
phase width in units of n. Figure 4 illustrates these variables
altering the distribution of n, thereby influencing f and 〈n〉. Given
wn> 0 and Equation (8), the IP width in units of n can only be
applied to data from 〈n〉 ≥ 3. Figures 5A,B use Equation (8) to

then plot the IP widths in units of n in terms of fthres or ln(fthres),
respectively. Both figures show that changing [B], [M], or T result
in similar widths for a given fthres.

FIGURE 6 | An example IP for fthres = 0.1 in terms of composition. This figure

shows that the model can quantify the theoretical IP, as given in Figure 2.

FIGURE 7 | The width of the IP in terms of composition, x, based on fthres.

Given an fthres, which is a material property, this graph allows us to determine

the corresponding wx if the system enables adaptable network topologies.

FIGURE 5 | (A) The IP width, wn, given by Equation (8), based on fthres. (B) The IP width, wn, given by Equation (8), based on ln(fthres).
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FIGURE 8 | The standard deviation of the distribution of constraints, n, and

the resulting intermediate phase width, wx , for fthres = 0.1.

IP Widths in Units of x
As shown with wn, altering composition dictates the width
between the two IP thresholds. To measure wx, the intermediate
phase width in terms of the glass composition A1−x Bx My,
we determine the composition x at each of the IP thresholds.
As defined in Equation (9), the difference between these the
composition at 〈n〉 = 3 and the composition at nstress determines

the width wx. Given a sample’s material property fthres, this
approach enables us to quantify the threshold proposed in
Figure 2, as shown in Figure 6 for an arbitrary fthres= 0.1. Amore
general representation of wx for each fthres is plotted in Figure 7.
From these results, with a known rearrangement threshold for a
given glass-forming system, we can approximate the width of the
intermediate phase.

The proposed mechanism for self-organization, and hence
the intermediate phase, is topological fluctuations, which depend
on the standard deviation of the distribution of constraints.
Figure 8 plots the magnitude of fluctuations (quantified using
the standard deviation of n, calculated over the ensemble
of configurations resulting from the combined statistical
mechanical/topological model) compared to the intermediate
phase width for an arbitrary value of fthres= 0.1. Details of
the procedure for calculating the standard deviation of n
are provided in our previous work (Kirchner et al., 2018).
The results in Figure 8 show a direct correlation between the
maximum fluctuations and the maximum intermediate phase
width, hence supporting the proposed mechanism of topological

fluctuations enabling the adaptability of glass-forming systems.

Increased fluctuations thereby enable a greater width for the
intermediate phase.

While this research focuses on the topological origin of
the intermediate phase, we have not addressed the important
question of the kinetics of the topological changes that
enable intermediate phase formation. Moreover, while we
have considered the temperature dependence of the constraint
rigidity, pressure effects have not yet been investigated. Both of
these subjects will be suitable topics for future studies.

CONCLUSION

In this paper we have established a general approach for
calculating the boundaries of the intermediate phase for an
arbitrary glass-forming system. Our calculation is based on
topological fluctuations in the network, which allow for the
ability of the glass to relax localized stresses from a stressed-rigid
condition. The width of the intermediate phase increases with
the level of topological fluctuations, since these fluctuations allow
for self-organization of the network, i.e., the ability of the glass
to dynamically adapt its topology to alleviate localized stresses.
The distribution of fluctuations, as dependent on composition
and temperature, was modeled by linking statistical mechanics
and topological constraint theory, which can then be used to
quantify the width of the intermediate phase in an arbitrary
glass-forming system. This theory could also be extended to
incorporate the pressure dependence of the intermediate phase
boundaries. Future work may also include an in-depth study
of the kinetics of the topological reconfigurations enabling the
adaptability of the network.
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