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Theranostic prodrug plays a vital role in reducing the side effects and evaluating the

therapeutic efficiency of prodrug in vivo. In particular, small conjugate-based theranostic

prodrugs have attracted much attention because of their clear and simple structures. In

this work, we synthesized a novel tumor-targeting and glutathione-activated conjugate-

based theranostic prodrug (Cy-SS-MTX). The prodrug was constructed by conjugating

Cy (IR780) to methotrexate (MTX) via a disulfide bond. The Cy dye as targeting molecule

bring prodrug to cancer cells and then the prodrug was activated by the high levels

of glutathione in tumor. In cell experiments, the results showed the excellent ability of

prodrug to target tumor. Meanwhile, the prodrug apparently improved the anti-tumor

ability and hugely reduced toxicity of free MTX on normal cells. Furthermore, owing to

intramolecular charge transfer between Cy and MTX, the Cy structure in the prodrug

showed an absorption peak at 654 nm in UV-Vis spectroscopy. However, when the

disulfide bond of prodrug was broken by glutathione, a new UV-Vis absorption peak

at 802 nm of Cy structure in prodrug was arised. At the same time, the fluorescence

(FL) emission peak at 750 nm (excitation at 640 nm) would turn into 808 nm (excitation at

745 nm). What’s more, the photoacoustic (PA) signal with excitation at 680 and 808 nm

also changed. The experimental results in vivo showed that the prodrug has been

successfully utilized for real-timely tracking MTX activation by FL and PA imaging upon

near infrared laser excitation and cancer targeting therapy. Our studies further encourage

application of small conjugate-based prodrug based on tumor-targeted heptamethine

cyanine dye as reporter group for targeted therapy and real-timely tracking activation of

drug.
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INTRODUCTION

Traditional chemotherapeutic drugs used to treat cancer are
limited due to the high toxicity and nonselectivity on normal
tissue (Li et al., 2014; Zhao et al., 2015; Bi et al., 2016;
Gao et al., 2017; Kang et al., 2017; Zhou et al., 2017). To
reduce the side-effects and improve the therapeutic efficiency,
prodrugs have been designed and synthesized (Rautio et al.,
2008; Huttunen et al., 2011; Abet et al., 2017). Prodrugs relates
to biologically inert derivatives of drug molecules that undergo
chemical modification (Hu et al., 2013; Lee et al., 2017). They are
inactive prodrugs in normal tissues, but can be converted into
active drugs specifically via exogenous or endogenous activating
approaches (Penet et al., 2012; Tam et al., 2016; Li B. et al.,
2017). The endogenous activating approaches rely on tumor
microenvironment, such as high concentration of biothiols,
enzymes overexpressed in tumor cells, low pH values and hypoxia
(Zheng et al., 2016; Han et al., 2017; He et al., 2017; Li Y.
et al., 2017), while external activating methods include light,
temperature, and other external stimuli (Don et al., 2017; Liu
et al., 2017). The prodrug strategy can achieve site-selective
activation, decrease toxicity and improve therapeutic index. Since
it is very important to monitor the activation of prodrugs
and evaluate the therapeutic efficiency of prodrugs, theranostic
prodrugs which possess covalently attached drugs and imaging
units can real-timely monitor the biodistribution and activation
of prodrugs in cancer therapy in vivo have been a hot area of
prodrugs research (Liu et al., 2013; Gangopadhyay et al., 2017;
Hu et al., 2017; Morsy et al., 2017).

Recently, small conjugate-based theranostic prodrugs
(SCTPs) which are prepared by the covalent conjugation
drugs and contrast agents with linkers have received much
attention for cancer treatment and diagnosis. They can be
easily modified to get desired chemotherapeutic efficacy because
of their structural architectures are relatively clear, simple
and biocompatible (Kumar et al., 2015; Liu et al., 2015).
Comparing to nanoparticle-based prodrugs, SCTPs can be
easily cleared by excretory system (Lim et al., 2014; Tibbitt
et al., 2016). However, it is still challenging to design SCTPs
which have an excellent ability of targeting tumor, monitor the
location and activation of prodrug, improve the therapeutic
effect simultaneously. Nowadays, heptamethine cyanine dyes
have been widely used for tracking prodrug activation due
to their excellent optical properties in the near–infrared (Wu
et al., 2014, 2015a; Chao et al., 2016; Sun et al., 2016; Ye
et al., 2016; Atchison et al., 2017). What’s more, some of
them present the excellent tageting ability to tumor due to
overexpression of certain types of organic anion transport
peptide in cancer cell (Wu et al., 2015b; Shi et al., 2016; Guan
et al., 2017; Meng et al., 2017). Henren, it is a good strategy to
use heptamethine cyanine dye as reporter group in designing
SCTPs.

Herein, a glutathione-activated SCTPs (Cy-SS-MTX) was
constructed by conjugating Cy (IR780) to methotrexate (MTX)
via a disulfide bond (Figure 1A). The prodrug possessed tumor
targeting ability (Cy) and could be activated by overexpressed
glutathione in tumor. So it would improve anti-tumor efficiency
of MTX to cancer cells and reduce toxicity of MTX to normal

cells. Owing to intramolecular charge transfer in Cy and MTX,
the Cy group in the prodrug showed a UV-vis absorption peak
at 654 nm and fluorescence emission peak at 750 nm. However,
when the disulfide bond of prodrug was broken by the high level
of glutathione, the optical properties of Cy changed. A new UV-
vis absorption peak at 802 nm and fluorescence emission peak
at 808 nm arised, and at the same time the photoacoustic signal
also changed. We believed the Cy-SS-MTX could specifically
target the tumor and the process of prodrug activation could
be real-timely tracked by fluorescence/photoacoustic dual-modal
imaging.

EXPERIMENTAL

Materials and Instruments
Heptamethine cyanine dye IR780 and Methotrexate (MTX)
were purchased from sigma company (USA). Bis-(2-
aminoethyl) disulfidedihydrochloride and Triethylamine were
obtained from J&K scientific Ltd. (China). N,N’-Dicyclohexyl
carbodiimide (DCC), 1-hydroxy-5-pyrrolidinedione (NHS)
and 4-(dimethylamino)-pyridin (DMAP) were purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd. Cell Counting
Kit-8, Mitochondria Staining Kit and DAPI were purchased
from sigma company (USA). All solvents and reagents were
analytical grade and used without further purification. 1H NMR
and 13C NMR spectra were recorded with a Bruker 400 MHz.
The high-resolution mass spectra (HR-MS) were measured on a
Bruker Micro TOF II 10257 instrument. UV-visible Spectra was
recorded on Varian Cary 50 spectrometer. Fluorescence spectra
were recorded on FP-600. Confocal laser scanning microscopy
(CLSM) was performed on an Olympus FV1000 confocal (red
laser 10 mW).

The Synthesis of Cy-SS-MTX
Firstly, the Cy-SS was made. Cystaminedihydrochloride
(6.97mg) was dissolved in anhydrous DMF (5ml) with TEA (2.1
µl). Then, IR780 (10mg) dissolved in anhydrous DMF (500 µl)
was drop-wise added to the above solution under N2 atmosphere
at room temperature. The solvent was evaporated under reduced
pressure to get crude product Cy-SS after 4 h later. The product
was further purified by silica gel column chromatography
with dichloromethane and methanol. Secondly, Cy-SS-MTX
was made by amido linkage. Under N2 atmosphere, the MTX
(50mg) activated by NHS (12.7mg), DCC (22.7mg), and DMAP
(21.5mg) was added to Cy-SS (55mg) dissolved in DMF. The
reaction was going overnight at room temperature. Finally, the
Cy-SS-MTX was purified by silica gel column chromatography
with dichloromethane and methanol. Yield: 48%. The control
group Cy-CC-MTX was also made in using same way. Yield:
46%. The structures were analyzed by TOF Mass Spectrum and
NMR respectively.

The Analysis of Optical Properties in
Cy-SS-MTX
Cy-SS-MTX was dissolved in mixture solution of DMSO and
PBS (V/V= 4:6). Normalized UV-Vis absorption of Cy-SS-MTX
(5µM) in the above mixture solution with or without GSH
(0 /1/5/10/15/25/35/50/75/100/150/250µM) was obtained.
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FIGURE 1 | (A) Schematic the two ways of GSH activation in theranostic prodrug Cy-SS-MTX in cancer cells. (B) The changes in PA imaging, UV-Vis absorption and

fluorescent characteristics of Cy-SS-MTX in the presence of GSH or not. The PA imaging upon excitation at 680/808 nm and fluorescence characteristics upon

excitation at 640/745 nm.

All samples were measured by Varian Cary 50 spectrometer
after incubation for 15min at 37◦C. To obtain fluorescent
characteristics of Cy-SS-MTX, (5µM), the solution was added
GSH (0/5/25/50/75/125/175/250/375/500/750/1,250µM) and
cultivated 30min at 37◦C. Then, mixture solutions were excited
by 640 and 745 nm respectively. The Fluorescence response of
drug carrier with various thiol-containing matters and amino
acids was also measured by the above way. In photoacoustic

imaging experiments, firstly, Cy-SS-MTX excited by 680 and
808 nm were mixed with GSH (0/15/150/750/1,500µg/ml). The
value of concentration of Cy-SS-MTX was 15µg/ml. Secondly,
time dependence of photoacoustic imaging of Cy-SS-MTX
was made in the presence of GSH (1,500µg/ml). The value of
concentration of Cy-SS-MTX was also 15µg/ml. The optical
properties of control group Cy-CC-MTX were also studied
under the same experiments.
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Cell Culture
In a humidified atmosphere with 5% CO2 incubator, the cell
(cancer cell: A549/MCF-7/SKOV-3, normal cell: MCF-10A/L02)
was cultured in DMEM medium (Gibco, Grand Island, NY,
USA) containing 10% (v/v) fatal bovine serum (FBS), 100 U/ml
penicillin and 100µg/ml streptomycin at 37◦C. The above cells
were purchased from the cell repository of Chinese Academy of
Sciences.

The Cytotoxicity of Cy-SS-MTX
The A549/MCF-7/SKOV-3/MCF-10A cells were seeded in 96-
well plate (1 × 104 cells) and incubated overnight at 37◦C
in a humidified atmosphere with 5% CO2. As described
above, the culture medium was replaced with 200 µL
medium contained 0.01/0.1/1/5/10/15/25/50µMMTX of Cy-SS-
MTX/Cy-CC-MTX. After 4 h, the medium was rinsed again with
200 µL fresh culture medium. After another 24 h of incubated
in the dark, the cell viability was evaluated by CCK-8 assay. The
relative marker of apoptosis and cell cycle arrest were induced by
Cy-SS-MTX, which were detected by western blotting analysis.

In Vitro Cell Uptake of Cy-SS-MTX
MCF-7 and L02 cell were seeded into 8-well chambered
coverglass (Lab-Tek, Nunc, USA) at a density of 1 × 104 per
well respectively. After 24 h, the culture medium was replaced
by newmedium containing 5µMCy-SS-MTX/Cy-CC-MTX and
placed in incubator for 4 h. After that, the cells were washed
thrice with phosphate buffer saline (PBS). Then, the cells were
stained by DAPI for 15min and Mito Tracker excited at 488 nm
for 30min respectively. Finally the cells were observed using
confocal (Leica TCS SP5, GER). DAPI was excited at 405 nm.
Cy-SS-MTX/Cy-CC-MTX was excited at 633 nm.

For further cellular uptake analysis, normal cells: MCF-10A,
L02 and cancer cells: MCF-7, HepG2 cells were seeded into 6-
well plates and incubated 24 h. Then, the cells were washed thrice
with PBS and added into the new medium containing 5µM
Cy-SS-MTX/Cy-CC-MTX. After 4 h, the cells were collected
and analyzed by FACS CantoTM II Gallios flow cytometer (BD
Biosciences, red laser 23.74 mW). The above cells were purchased
from the cell repository of Chinese Academy of Sciences.

Animals and Tumor Model
All experimental procedures involving animals were approved
by the Ethics Committee of Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences (SIAT). The research
project in the acknowledgment (NSF of China, 31571013) which
included this study has acquired the approval of the Ethics
Committee of SIAT (The license number for Ethics, SIAT-IRB-
150304-YYS-CLT-A0131-2). The research project (NSF of china
31571013) is ongoing (2016/1/1-2019/12/31). Female BALB/c
nude mice (5 weeks old and weighed 18–20 g) were purchased
fromVital River Laboratory Animal Technology Co. Ltd (Beijing,
China). To set up the tumor model, MCF-7 cells (0.5 × 106)
in 0.2mL of saline solution were administered by subcutaneous
injection into the hind legs region.

In Vivo Dual-Model Imaging Monitoring the
Activation of Prodrug
The nude mice were divided into two groups (three per group)
randomly. Mice with tumor sizes about 300 mm3 in volume were
used and intravenously injected with 100µl Cy-SS-MTX/Cy-CC-
MTX (80µg/ml). For fluorescence imaging, the above prodrug
carriers were excited with two laser wavelengths at 640 and
745 nm. For photoacoustic imaging, the laser wavelengths were
changed to 680 and 808 nm. The semiquantitative analysis
of fluorescence and photoacoustic imaging were taken at
0.5/1/4/8/24 h after injection with IVIS imaging system (mercury
lamp 150W) and Endra Nexus 128 imaging system. Then, the
distribution of the Cy-SS-MTX was measured at 1 or 24 h post-
injection in ex vivo organs (heart, liver, spleen, lung, kidney, and
tumor).

RESULTS AND DISCUSSION

Synthesis and Characterization of
Cy-SS-MTX
The Cy-SS-MTX was synthesized in a two-step process
(Supplementary Figure 1). Firstly, the Cy-SS was obtained by
the reaction of Cy with cystamine in anhydrous DMF. The
reaction mixture was reacted at room temperature for 6 h
under Nitrogen atmosphere. The solvent was removed under
reduced pressure and then the crude product was purified by
chromatography. Secondly, the Cy-SS was conjugated to the
MTX by amido linkage to obtain the Cy-SS-MTX in DMF. MTX
was activated with DCC, NHS, and DMAP for 3 h in DMF
before used. After 24 h, the solvent was removed under reduced
pressure and the product was purified by chromatography. The
molecular weights and structures of products were confirmed by
mass spectrometry and NMR respectively. Cy-SS [M+H]+ m/z
found 655.3866; Cy-SS-MTX [M+H]+ m/z found 1091.5483;
Cy-CC [M+H]+ m/z found 619.4728; Cy-CC-MTX [M+H]+

m/z found 1055.6340 (Supplementary Figure 10). 1H NMR and
13C NHR (Bruker 400 MHz) of below materials Cy-SS and Cy-
CC were dissolved in Methanol-D4. Cy-SS-MTX and Cy-CC-
MTX were dissolved in DMSO-D6 (Supplementary Figure 11).
The above results certificated that the Cy-SS-MTX was made
successfully.

The UV-Vis spectrum of prodrug Cy-SS-MTX was recorded.
It was evident that when Cy was covalently bound to MTX,
the absorption peak of Cy exhibited a blue shift from 802 to
654 nm. A remarkable spectral shift by modulating the pull–
push conjugatedπ-electron system (ICT process) between Cy
and MTX (electron drawing group) made a 148 nm blue shift
of Cy in UV-Vis absorption (Supplementary Figure 2A). When
Cy was connected with MTX covalently, MTX (electron drawing
group) could largely absorb the electrons in N atom of cystamine.
Meanwhile, the electrons of N atom of cystamine which transfer
to Cy would be reduced. Therefore the pull–push π-conjugation
system in the tricarbocyanine chromophore (between N atom of
cystamine and Cy) is obviously shortened, resulting in a large
hypsochromic shift of Cy in UV-Vis absorption. Furthermore,
with adding GSH, the absorption of Cy group in prodrug at
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802 nm was gradually increasing, but the absorption at 654 nm
was declining (Figure 2A). More importantly, the above analysis
showed the ratio absorption of prodrug in 802/654 nm exhibited
a good linear relationship with GSH concentration (Figure 2D).
However, the UV-Vis absorption of Cy-CC-MTX had no similar
results (Supplementary Figures 2B,3A).

The fluorescent spectrum of Cy-SS-MTX was then studied.
Two different excitation wavelengths (640/745 nm) were chosen
to excite Cy group in prodrug. We could observed that the
Cy group in prodrug had a strong fluorescent emission peak
at 750 nm (λex = 640 nm) and very weak fluorescent emission
peak at 808 nm (λex = 745 nm). However, in the existence of
GSH, the prodrug exhibited contrary fluorescent property that
it had a strong fluorescent emission peak at 808 nm (λex =

745 nm) and weak fluorescent signal peak at 750 nm (λex =

640 nm) (Figure 1B). Then, with increasing GSH, the intensity

of fluorescence of Cy group in prodrug at 750 nm emission
peak (λex = 640 nm) would gradually decline (Figures 2B,E),
while the intensity at 808 nm emission peak (λex = 745 nm)
was increasing (Figures 2C,F). On the contrary, the fluorescent
signals of Cy-CC-MTX kept almost unchanging when adding
different GSH levels (Supplementary Figures 3B,C). Thus, a
remarkable change of fluorescent spectrum shown in prodrug
Cy-SS-MTX reacted with GSH could monitor activation of
prodrug. Subsequently, the responses of prodrug to other
biologically relevant matters such as amino acids and ions
were investigated. The results exhibited that biothiol could
break disulfide bond in prodrug, but the other matters had
no responding (Supplementary Figures 4A,B). Besides, the
reaction kinetics of prodrug with GSH was investigated. While
the intensity of prodrug fluorescent emission at 808 nm peak
(λex = 745 nm) would gradually increase within 30min, the

FIGURE 2 | (A) UV-Vis absorption changes of Cy-SS-MTX (5µM) in the presence of GSH in the DMSO/PBS (1/1, v/v, PH = 7.4). Fluorescence spectra responses of

Cy-SS-MTX (5µM) to GSH (λex = 640 nm/λem = 750 nm (B), λex = 745 nm/λem = 808 nm (C). (D) The rate value of absorption of Cy-SS-MTX in 802 and 654 nm

as function of GSH shown in (A). The value of fluorescent intensity at 750 nm (E) and 808 nm (F) of Cy-SS-MTX as function of GSH shown in (B,C) respectively.
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control group of Cy-CC-MTX had little change (Supplementary
Figure 4C).

In the PA imaging analysis, we chose two kinds of
excitation wavelengths (680/808 nm) to excite Cy group in
Cy-SS-MTX, according to UV-vis absorption of Cy-SS-MTX.
The PA intensity of Cy-SS-MTX excited by 680 nm was
higher than excited by 808 nm (Figure 3A). With adding GSH,
the signal of PA imaging excited by 808 nm was gradually
increasing, while the signal excited by 680 nm was declining
(Figures 3C,D). However,the control group of Cy-CC-MTX
had no similar change (Supplementary Figure 5B). In the
real-time PA monitoring prodrug activation, the signal of PA
imaging excited by 808 nm gradually increased within 60min,
but the signal excited by 680 nm declined (Supplementary
Figure 7A). However, the group of Cy-CC-MTX also had little
signal change at the same condition (Supplementary Figure
7B). Moreover, the intensity of PA imaging of Cy-SS-MTX
excited by 680/808 nm both exhibited a good linear relation with
the concentration of Cy-SS-MTX (Figure 3B), GSH and time
of reaction (Supplementary Figures 6, 8). In vitro the results
demonstrated that the activation of prodrug Cy-SS-MTX could
also be monitored by PA imaging.

Cellular Uptake of Cy-SS-MTX
The cellular uptake of prodrug Cy-SS-MTX was monitored
by CLSM and flow cytometry. Cy-SS-MTX and Cy-CC-MTX
were all co-cultured with cells (L02 normal cells, MCF-7 cancer
cells) respectively. After 30min, the cells were stained with
Mito Tracker. From the results that there were all little red
fluorescence from L02 cells while much from MCF-7 cells in

Cy-SS-MTX and Cy-CC-MTX, we could conclude that Cy-SS-
MTX and Cy-CC-MTX both showed the ability of excellent
tumor-targeting. Besides, the result also revealed that the green
signals of mitochondria (excited by 365 nm) were mainly
overlapped with the red ones exhibited by Cy-SS-MTX/Cy-CC-
MTX, which indicated that the prodrug Cy-SS-MTX was located
in mitochondria preferentially (Figure 4A). To further certificate
the tumor-targeting ability of Cy-SS-MTX/Cy-CC-MTX, flow
cytometry experiment was carried out in the cancer cells (MCF-7,
Hepg2), the normal cells (L02) and MCF-10A used to represent
the normal breast cell model. The flow cytometry showed that the
fluorescence intensities in cancer cells were 10 times higher than
the normal cells at same condition (Figure 4B). The results were
in accordance with the CLSM and further showed the excellent
tumor-targeting ability of prodrug.

Subsequently, to analyze the activation of prodrug Cy-SS-
MTX in cancer cells in vitro. MCF-7 cells were co-cultured
with Cy-SS-MTX/Cy-CC-MTX. Images were obtained at 0/3/6 h
after cultivation for 30min. The cells showed that there were
gradual declining red fluorescence signals in the experiment of
Cy-SS-MTX, but red fluorescence signals of Cy-CC-MTX group
kept almost unchanging (Figure 5). The reasons for explaining
that, for one thing, there was only 633 nm chosen for excitation
because of restriction of CLSM, for another thing, when the
prodrug Cy-SS-MTX was activated by high GSH level in cancer
cell, the fluorescent signals excited by 640 nm would disappear
(Figure 2B). However, the above trend did not be observed in
Cy-CC-MTX group because it could not be activated by GSH.
Comparing changes of fluorescence imaging between Cy-SS-
MTX and Cy-CC-MTX, we could conclude that activation of
prodrug could be observed by FL imaging.

FIGURE 3 | (A) PA imaging of Cy-SS-MTX with varying concentration of Cy-SS-MTX upon excitation at 680 and 808 nm respectively. (B) The intensity of PA imaging

with varying concentration of Cy-SS-MTX shown in (A). (C) PA imaging responses of Cy-SS-MTX to GSH upon excitation at 680 and 808 nm respectively. (D) The

intensity of PA imaging with varying concentration of Cy-SS-MTX shown in (C).

Frontiers in Materials | www.frontiersin.org 6 July 2018 | Volume 5 | Article 35

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Li et al. Theranostic Prodrug for Targeting Therapy

FIGURE 4 | (A) Fluorescence confocal microscope images of L02 normal cells and MCF-7 cancer cells cultured with Cy-SS-MTX/Cy-CC-MTX (5µM) for 0.5 h

respectively. Images were obtained using an excitation wavelength of 633 nm (Cy-SS-MTX/Cy-CC-MTX) and 488 nm (Mito). Scale bar, 10µm. (B) Flow cytometry

analysis of cellular uptake of Cy-SS-MTX/Cy-CC-MTX. Normal cells: L02. Breast Cancer Progression Cell Line Model: MCF-10A. Cancer cells: MCF-7, Hepg2.

FIGURE 5 | Time-dependent Fluorescence confocal microscope images of MCF-7 cancer cells for tracking the activation of prodrug Cy-SS-MTX. Images were

obtained at 0/3/6 h after cultivating Cy-SS-MTX or CY-CC-MTX (5µM) with cells for 30min. (λex = 633 nm for Cy-SS-MTX/Cy-CC-MTX and λex = 405 nm for DAPI).

Scale bar, 10µm.
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FIGURE 6 | The cytotoxicity of MTX, Cy-SS-MTX, and Cy-CC-MTX on cancer cells (A–C). The cytotoxicity of them on MCF-10A cells (D). The culture medium of

three groups contained 0.01/0.1/1/5/10/20/30/50µM MTX respectively. (*denotes P < 0.05, **denotes P < 0.01 significant difference).

Anti-Tumor Efficiency Study
To investigate the anti-tumor efficiency of prodrug Cy-SS-MTX,
four kinds of cells (cancer cell: MCF-7/SKOV-3/A549, Breast
Cancer Progression Cell Line Model: MCF-10A) were used
in this experiment. For the cancer cells we selected, the IC50

values of Cy-SS-MTX were about 5–10-fold smaller than the free
MTX (Figures 6A–C). For normal cell, the IC50 value of Cy-SS-
MTX was over 200 fold larger than the free MTX (Figure 6D).
Compared with the drug MTX, the prodrug showed better anti-
tumor efficiency than MTX on the cancer cells but lower toxicity
on normal cells at the same molarity of MTX. Undoubtedly,
this MTX analog in this design did not change the anti-tumor
efficiency because of aminopeptidases within cells (Warnecke
et al., 2007; Li et al., 2015; Lin et al., 2015). The Cy group of
prodrug could bringMTX to cancer cells more efficiently because
the good tumor-targeting of Cy (the targeting ability of Cy did not
change after IR780 covalent linking with MTX), that might be
the reason of prodrug showing more toxicity to cancer cells and
lower toxicity to normal cells. On the contrary, the group of Cy-
CC-MTX exhibited bad anti-tumor activity and lower toxicity
than Cy-SS-MTX on cancer cells because the uncleavable carbon-
carbon covalent bond between Cy and MTX. We also used
Western Blot to study the cell cycle arrest and cytotoxic assay
in MCF-7 cells. The data of cell cycle arrest and cytotoxic assay
also are consistent with MTT. The Cy-SS-MTX could promote
the apoptosis and inhibit cell cycle in cancer cells (Supplementary
Figure 9). Thus, the prodrug Cy-SS-MTX could effectively reduce

toxicity of MTX to normal cells and largely improve the ability of
anti-tumor efficiency of MTX.

In Vivo Dual-Model Imaging Monitoring
Activation of Prodrug
In order to monitor activation of prodrug Cy-SS-MTX in vivo,
two groups of mice were injected with Cy-SS-MTX/Cy-CC-
MTX via intravenous injection respectively. Within 24 h, the
signals of dual-model imaging FL excited by 640/745 nm lasers
and PA excited by 680/808 nm lasers were recorded. Then, the
distribution of prodrug wasmeasured at 1 and 24 h post-injection
in ex vivo organs (heart, liver, spleen, lung, kidney and tumor).

In tumor FL imaging, for one thing, we could obtain that the
red fluorescent signals of Cy-SS-MTX and Cy-CC-MTX excited
by 640 nm reached the maximum at 1 h post-injection, and then
the signals would reduce gradually (Figures 7A,B). What’s more,
semiquantitative average FL signals directly showed the above
trends (Figures 7E,F). The above results indicated that Cy-SS-
MTX and Cy-CC-MTX could rapidly target tumor. For another
thing, the fluorescent signals of Cy-SS-MTX excited by 745 nm
gradually appeared and reached maximum at 8 h. However, there
were little fluorescent signals in control group of Cy-CC-MTX
excited by 745 nm at the same time. The above data indicated that
the Cy-CC-MTX only had an ability of targeting tumor but was
not activated with GSH because the structure of disulfide linkage
in Cy-SS-MTX could be broken by high GSH level in cancer cells
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FIGURE 7 | In vivo biodistribution and NIRF imaging of Cy-SS-MTX in tumor-bearing mice at 0/0.5/1/4/8/24 h after intravenous injection. (A) The groups injected by

Cy-SS-MTX excited by 640 nm and 745 nm respectively. (B) The groups injected by Cy-CC-MTX excited by 640 and 745 nm respectively. Ex vivo NIRF image of

normal organs and tumors for the mice injected with Cy-SS-MTX (C) Cy-CC-MTX (D) at 1 or 24 h post-injection. (E,F) Semiquantitative average FL signals in the

tumor sites of (A,B) respectively. Ex vivo fluorescent images of normal organs and tumors excised at 1 and 24 h post-injection with Cy-SS-MTX (E) and Cy-CC-MTX

(F). (G,H) Semiquantitative average FL signals in the tumors sites of (C,D) respectively. Note that the samples were all excited by 640 and 745 nm respectively. Red

fluorescence excited by 745 nm represents the drug release. (*denotes P < 0.05, **denotes P < 0.01 significant difference).

in which the MTX prodrug was activated, but carbon-carbon
covalent bonds within Cy-CC-MTX had no responding to GSH.

To demonstrate the in vivo biodistribution behavior of the
Cy-SS-MTX, the mice bearing MCF7 tumor were sacrificed
at 1 and 24 h post-injection. Then, the distributions of the
prodrug were measured at 1 and 24 h post-injection in ex
vivo organs (heart, liver, spleen, lung, kidney and tumor).
Under the 640 nm laser excitation at 1 h post-injection, the date
showed Cy-SS-MTX and Cy-CC-MTX both had a good ability
of accumulation in tumor which indicated the good tumor-
targeting capacity of the prodrug (Figures 7C,D). Under the
745 nm laser excitation, the group of Cy-SS-MTX showed that
the fluorescent signals at 24 h was higher than at 1 h, however,
there was always little fluorescence in the group of Cy-CC-
MTX at measured time. Semiquantitative average FL signals of

Cy-SS-MTX and Cy-CC-MTX also directly showed the above
trends (Figures 7G,H). The biodistribution behavior in ex vivo
organs indicated that Cy-SS-MTX not only could rapidly target
tumor, but also was activated by GSH in the tumor.

Compared to fluorescent imaging, PA imaging is a newly
developed biomedical imaging modality with increased imaging
depth and improved resolution. PA imaging was developed
on the basis of the PA effects of materials with strong light
absorbance (Beard, 2011; Zhang et al., 2011; Jeon et al., 2014;
Mitcham et al., 2015). Two kinds of lasers (680 and 808 nm)
were selected according to the characteristics of Cy-SS-MTX
and Cy-CC-MTX absorption in UV-Vis. We obtained the
same results like the FL imaging. The signals of PA imaging
excited by 680 nm of Cy-SS-MTX/Cy-CC-MTX reached the
maximum at 1 h post-injection (Figures 8A,B). Semiquantitative
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FIGURE 8 | In vivo the photoacoustic imaging (PA) of tumor-bearing mice at 0/0.5/1/4/8/24 h after intravenous injection. (A) Cy-SS-MTX excited by 680 nm and

808 nm respectively. (B) Cy-CC-MTX excited by 680 nm and 808 nm respectively. (C) Semiquantitative average PA signals in the tumor site of (A). (D)

Semiquantitative average PA signals in the tumor site of (B). Red PA signals excited by 745 nm represent the drug release. (100 µl, 80µg/ml for each mice, Scale bar

of A,B: 5mm). (*denotes P < 0.05, **denotes P < 0.01 significant difference).

average FL signals of Cy-SS-MTX and Cy-CC-MTX also directly
showed the above trends (Figures 8C,D). The data indicated
that Cy-SS-MTX could rapidly target tumor. Besides, the signals
of PA imaging excited by 808 nm of Cy-SS-MTX had an
increasing trend within 8 h and then gradual decreasing, but
the signals of Cy-CC-MTX had no almost changing signal.
The changing signals of PA imaging further certificated that
the activation of prodrug Cy-SS-MTX could also be checked
with PA imaging. The aforementioned results confirmed that the
activation of prodrug in vivo could be monitored by 640/745 nm
excitation for FL imaging, and 680/808 nm excitation for PA
imaging.

CONCLUSION

We have developed a novel SCTPs Cy-SS-MTX based on
heptamethine cyanine dye as reporter group. The presence of
GSH in tumor could activate prodrug and change the optical
properties of Cy group in prodrug. Under different excitation

wavelengths, we could real-timely track the activation of prodrug
by FL/PA dual-modal imaging.Moreover, the prodrug apparently
improved anti-tumor efficiency of MTX to cancer cells and
significantly reduced its toxicity to normal cells. This strategy
may offer an approach for the development of SCTPs to improve
therapeutic effect and reduce toxicity of traditional anti-cancer
drugs.
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