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Single and few-layers MoS2 were uniformly grown on the surface of chemically reduced

graphene oxide (r-GO), via a facile liquid phase approach. The method is based on

a simple functionalization of r-GO with oleyl amine which seems to affect significantly

the MoS2 way of growth. Scanning-transmission-electron microscopy (STEM) analysis

revealed the presence of single-layer MoS2 on the surface of a few-layers r-GO.

This result was also confirmed by atomic-force microscopy (AFM) images. X-ray

photoemission spectroscopy (XPS) and Raman spectroscopy were used for in-depth

structural characterization. Furthermore, we have successfully applied the method to

synthesize MoS2 nanocomposites with multi wall carbon nanotubes (CN) and carbon

nanofibers (CNF). The results demonstrate clearly the selective MoS2 growth on both

carbon-based supports.

Keywords: reduced graphene oxide, MoS2, hybrid, layered materials, colloidal solutions, chemical synthesis

INTRODUCTION

Due to their unique electronic properties, atomically-thin two-dimensional (2D) materials such as
graphene (Geim and Novoselov, 2007), hexagonal boron nitride (h-BN) (Dean et al., 2010) and
transition-metal dichalcogenide (Radisavljevic et al., 2011; Lembke and Kis, 2012; Wang et al.,
2012) have been attracting increasing attention. Molybdenum disulfide (MoS2) is a layered 2D
material that is traditionally used as a solid-state lubricant and is themajor industrial catalyst for the
hydrodesulfurization process (HDS) (Li et al., 2011; Kong et al., 2013). Recently, MoS2 and hybrid
MoS2 materials have been extensively studied as catalysts in the hydrogen evolution reaction (HER)
(Liao et al., 2013; Wang et al., 2014; Zheng et al., 2014). In recent years, ultrathin graphene and
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MoS2 crystals have been obtained by either physical or chemical
exfoliation methods (Coleman et al., 2011), while large-scale
uniform layers have been grown by chemical-vapor-deposition
(CVD) techniques (Chen et al., 2016; Samad et al., 2016; Zobel
et al., 2016). Both graphene and MoS2 in monolayer form exhibit
unique optical and electrical properties compared with the
respective multilayer analogs. MoS2, which is referred to in the
literature as the inorganic analog of graphene, is a semiconductor
with a large direct band gap (Conley et al., 2013). The presence
of a band gap in monolayer MoS2 opens new possibilities in
electronic, and photonic applications. Furthermore, the edges of
MoS2 monolayers are catalytically active so that increasing the
number of such sites is critical for the design of advanced catalysts
(Jaramillo et al., 2007).

During the last few years, there has been substantial interest
in the literature concerning the synthesis of hybrid materials
based on graphene and MoS2. Kun Chang and Weixiang Chen
reported the synthesis of single-layer MoS2/graphene dispersed
in amorphous carbon and tested its electrochemical performance
for lithium batteries (Chang and Chen, 2011). The reaction
takes place in water under autoclave conditions at 240◦C for
24 h. Molybdenum and sulfur precursors Na2MoO4•2H2O and
sulfocarbamide (NH2CSNH2) were used and the final material
was annealed at 800◦C for 2 h in a H2/N2 atmosphere. Ma et al.
reported the synthesis of few-layer MoS2-graphene composites
via a cationic surfactant-assisted hydrothermal method followed
by a post-annealing step and showed that the electrochemical
performance for lithium storage is greatly improved compared
to bare MoS2 (Ma et al., 2014). Following a similar experimental
procedure in a two-step hydrothermal synthesis, Quanjun
Xiang et al. reported the decoration of MoS2/graphene
heterostuctures with TiO2 nanoparticles and tested them
as non-precious metals photocatalysts for H2 production
(Xiang et al., 2012). In a one-step hydrothermal method,
MoS2/reduced GO was prepared by (NH4)2MoS4 reduction
in N,N’-dimethylformamide (DMF) at 200◦C by hydrazine.
A transmission-electron-microscopy (TEM) study showed that
most of the MoS2 lies flat on the reduced GO sheets, with
some possessing-induced folded edges exhibiting parallel lines
(Li et al., 2011).

Summarizing the literature concerning the synthesis of
MoS2/graphene composite nanomaterials via liquid phase
reactions, most of the methodologies involve a hydrothermal
process for at least 12 h in the 200–240◦C temperature
range in one- or two-step procedures. Here we report the
synthesis of MoS2/r-GO following a liquid-phase approach.
The method is based on the thermolytic decomposition of
(NH4)2MoS4 by oleyl amine at 350◦C in the presence of
chemically-exfoliated reduced graphene oxide (r-GO). The
presence of exfoliated r-GO nanosheets in the reaction mixture
is crucial, providing a confinement environment for the
nucleation and growth of the MoS2. It is shown that r-GO
is predominantly decorated by single-layer MoS2 that lies flat
on the r-GO sheets. The MoS2/RGO composites are surface
functionalized efficiently by oleyl amine molecules, making the
material dispersible in non-polar solvents such as toluene and
hexane.

EXPERIMENTAL SECTION

Materials
Ammonium tetrathiomolybdate ((NH4)2MoS4, 99.97%), oleyl
amine (90%C-18 content), carbon nanotubes, carbon nanofibers,
absolute ethanol and n-hexane were purchased from Sigma-
Aldrich and used without any further purification. Graphene
oxide was synthesized using a modified Staudenmaier’s method
(Staudenmaier, 1898; Gengler et al., 2010; Stergiou et al., 2010).
Briefly powdered graphite (purum, powder ≤0.2mm, Fluka)
were treated by a 2/1 mixture of concentrated H2SO4 (Riedelde
Haën) and HNO3 acid, while cooling in an ice–water bath.
Subsequently powdered KClO3 (Fluka) were added to the
mixture in small portions under vigorous stirring while cooling
in an ice-water bath. The reaction was quenched after 18 h by
pouring the mixture into ultrapure water. The oxidation product
was washed until the pH reached 6.0, and finally dried at room
temperature.

Synthesis of MoS2/Reduced Graphene
Oxide
The reduction and functionalization of GO was carried out via
a chemical approach. The pristine GO was exfoliated in oleyl
amine via probe sonication at room temperature. Subsequently
the mixture was heated up to 300◦C under H2-Ar reducing
atmosphere for 1 h. The oleyl amine functionalized r-GO was
separated by centrifuging at 12,000 rpm, washed twice in ethanol
in order to remove the excess of oleyl amine, and finally dried at
room temperature.

MoS2/r-GO nanocomposites were prepared according to the
following procedure. Oleyl-amine-functionalized r-GO (40mg)
was dispersed in 10ml oleyl amine under probe sonication in an
inert atmosphere for 15min. The mixture was then transferred
to a heating plate and 20mg of (NH4)2MoS4 was dissolved
into the mixture under vigorous magnetic stirring. In the
beginning, the temperature was raised to 120◦C and kept there
for 15min under a high-purity N2 blanket. The reaction finally
took place at 350◦C for 1 h. After cooling the mixture to room
temperature, the composite material was precipitated by adding
absolute ethanol and was separated by centrifugation (8,000
RPM, 25min). The washing/separation procedure was repeated
until the complete removal of excess oleyl amine molecules
and unreacted components. Finally the composite material was
dispersed and stored in toluene.

Characterization
The morphology of the composite MoS2/RGO material was
studied by a Nion Ultra STEM 100 aberration-corrected
scanning transmission electron microscope (STEM), which is
equipped with a Gatan Enfinium spectrometer for Electron
Energy Loss Spectroscopy (EELS). The STEM was operated at
60 kV. Additionally, the material was characterized by atomic-
force microscopy (AFM), Raman, and X-ray photoelectron
spectroscopy (XPS).

XPS measurements were performed under ultrahigh vacuum
conditions at a base pressure of 5 × 10−10 mbar in a SPECS
GmbH instrument equipped with a monochromatic MgKα
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source (hν = 1253.6 eV) and a Phoibos-100 hemispherical
analyzer. Pulverized samples were dispersed in toluene (1 wt%),
and after short sonication and stirring, a minute quantity of the
suspensions were drop-cast on evaporated gold films supported
on mica substrates and left to dry in air before transferring them
to ultrahigh vacuum. The energy resolution was set to 0.3 eV
and the photoelectron take-off angle was 45◦ with respect to the
surface normal. Recorded spectra were the average of three scans
with energy step set to 0.05 eV and dwell time 1 s. All binding
energies were referenced to the Si 2p level at 99.15 eV. Spectral
analysis included a Shirley background subtraction and peak
deconvolution employingmixed Gaussian–Lorentzian functions,
in a least squares curve-fitting program (WinSpec) developed at
the Laboratoire Interdisciplinaire de Spectroscopie Electronique,
University of Namur, Belgium.

Raman spectra were recorded with a micro-Raman
(µ-Raman) Renishaw RM1000 system using a laser diode
excitation line at 532 nm in the frequency range of 200–2,000
cm−1. Raman scatter was collected by means of an Olympus
optical microscope, equipped with 50× and 100× lenses. Using
the 50× lens, the probing spot was about 2µm in diameter, while
the laser was operated at 5 mW unless photodecomposition
occurred when the power was decreased. The spectrometer was
calibrated by recording the spectrum from a Si sample with
characteristic Raman peak at 520.7 cm−1. Raman spectra were
obtained from samples in the form of drop casted films onto
glass substrates. The reported spectra are an average of 3–5 scans.

AFM images were obtained in tapping mode with a 3D
Multimode Nanoscope, using Tap-300G silicon cantilevers with
a tip radius <10 nm and a force constant of ≈20–75N m−1.
Samples were deposited onto silicon wafers (P/Bor, single side
polished) from dilute dispersions of MoS2/r-GO in toluene by
drop casting.

RESULTS AND DISCUSSION

The synthetic procedure for the decoration of r-GO with
MoS2 is illustrated in Scheme 1. Oleyl-amine-functionalized
exfoliated r-GO sheets were dispersed in oleyl amine, providing
nucleation centers for the growth of MoS2. Then, the thermolytic
decomposition of (NH4)2MoS4 at 350◦C resulted in the
formation of a single layer of MoS2 on the surface of the r-GO.
The XRD patterns of MoS2/r-GO nanocomposite are presented
in Figure S1, in the Supplementary Material section. Because

of the nanosize regime of the material, the diffraction peaks
are quite broad, but it is possible to distinguish four diffraction
peaks. The intense broad peak around 2θ = 24◦ corresponds
to the (002) diffraction plane of r-GO, while the other peaks
can be assigned to the (101), (103), and (110) lattice planes of
MoS2.

The morphology of the MoS2/r-GO nanocomposite was
examined by atomic- resolution Scanning Transmission Electron
Microscopy (STEM) measurements. In Figure 1, we present Z-
contrast images of the MoS2 nanosheets on the few-layer r-GO.
It is obvious that the MoS2 layers grow discontinuously on the
surface of the r-GO sheets, covering most of their surface by a
single- to few-layer MoS2 films. Furthermore, the images confirm
the few-layer nature of the r-GO as well as the presence of isolated
single atoms, most likely Mo atoms, and Mo vacancies. The
STEM observations indicate very clearly that the oleyl-amine-
functionalized r-GO sheets could be an excellent substrate for
the nucleation and growth of MoS2. This effect can be attributed
to the presence of oxygen-containing functional groups on the
surface of the r-GO or on the weak van derWaals forces (Shi et al.,
2012) between the two layered materials, which accommodate
the relatively large lattice mismatch between MoS2 and graphene
(∼28%) (Ma et al., 2011).

In order to clarify the role of the r-GO surface
functionalization on the growth of the MoS2 sheets, the
synthesis was also done following a similar methodology using
GO as staring material, without any previous reduction and
surface functionalization. The TEM images, presented in the
Supplementary Material section (Figure S2), clearly show that
mainly isolated MoS2 nanosheets grow on the GO surface, but
they do not lie flat on the GO sheets. Furthermore, the formation
of nanoparticles instead of nanosheets can be observed. This
morphology is quite similar with a previously reported work in
which the MoS2/r-GO composites synthesized by mixing GO
with (NH4)2MoS4 in an alcohol/water medium followed by the
(NH4)2MoS4 decomposition by HCl acid addition (Koroteev
et al., 2011). The above findings prove indirectly that the surface
chemistry of the carbon material plays a very important role in
the growth of MoS2. The oxygen-containing functional groups,
as already reported, affect the nucleation and growth of the MoS2
nanosheets, but on the other hand probably suppress the van
der Waals forces that are responsible for the flat MoS2 growth.
Finally, STEM-EELS mapping of sulfur and carbon (Figure 2b,
which corresponds to the white square area of Figure 2a) shows

SCHEME 1 | Schematic diagram of the synthetic procedure.
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FIGURE 1 | Z-contrast STEM images of the MoS2 flakes grown on few-layer r-GO.

the distribution of MoS2 on the surface of the r-GO in the
nanocomposite material.

The heterostructural nature of the MoS2/r-GO
nanocomposite was additionally identified by AFM. In Figure 3,
we present the height and phase images (measured in tapping
mode AFM) of MoS2 nanosheets grown on few-layer r-GO. The
AFM images of the MoS2/r-GO nanocomposite deposited on
a Si-wafer show the successful growth of MoS2 layers on the
graphene surface (Figure 3). The analysis of the height section
profile (Figure 4) showed that the average thickness of the MoS2
flakes on the r-GO sheets is around 4–8 nm, which corresponds
to a few MoS2 layers (∼5–10). Furthermore, the height profile
analysis obtained at the edges of the r-GO sheets, showed a
1.5 nm thickness, a value typically reported for very few r-GO
layers as also demonstrated from phase images.

XPS measurements were used in order to confirm the
successful formation ofMoS2 on the r-GO surface. C1s (a), Mo3d
(b), and S2p (c) XPS spectra of MoS2/r-GO sample are shown in
Figure 5. After deconvolution with mixed Gaussian–Lorentzian
functions, the C1s spectrum consists of five components. The
main peak at a binding energy of 284.6 eV, representing 53.1%
of the total C1s area, is attributed to the C-C and C-H bonds.
The component at 285.4 eV, contributing a 32.7% to the total

C1s signal, is assigned to the hydroxyl C-O bonds as well as the
C-N bonds from the oleyl amine. The third peak at 286.2 eV
(9.0%) originates from the C-O-C epoxide/ether groups, whereas
carbonyl functional groups (C=O) are associated with the peak at
287.3 eV (3.5%). Finally, the higher binding energy contribution
recorded at 288.8 eV (1.7%) corresponds to the carboxyl groups
(O-C=O) (Dimos et al., 2017; Kouloumpis et al., 2017; Tzitzios
et al., 2017).

The domination of the C-C peak along with the high
carbon content (80.8%) point out the presence of a r-GO
substrate indicating the successful reduction of the starting
GO. Due to the low concentration of the functionalizing oleyl
amine and accordingly the even lower relative nitrogen atomic
concentration, nitrogen and consequently oleyl amine were
not detected by XPS. Nevertheless, its presence is verified by
FTIR spectroscopy (see Figure S3), which is more effective for
distinguishing organic molecules. The presence of oleyl amine
in the r-GO and MoS2/r-GO materials was indicated from the
characteristic absorptions of the aliphatic and the amine groups
in the IR spectra. The vibrations at 2,920 and 2,851 cm−1

are due to the symmetric and asymmetric stretching modes of
CH2, the weak band at 2962 arises from the asymmetric C-H
stretching mode of the terminal CH3 groups, while the double
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FIGURE 2 | Z-contrast STEM image (a) and EELS sulfur and carbon mapping (b) of MoS2-decorated few layer r-GO. (b) corresponds to the white box area of (a).

FIGURE 3 | AFM height (left) and phase (right and bottom) images of MoS2/r-GO nanocomposite.
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FIGURE 4 | AFM cross-section analysis of MoS2/r-GO nanocomposite (a single MoS2 layer can be distinguished from a package of few-layer MoS2 sheets; picture

below).

broad bands around 3,240–3,340 cm−1 arise from the stretching
vibrations of the NH2 group. The absence of these characteristic
vibrations in the GO spectrum indirectly confirms the successful
functionalization by the oleyl amine molecules. Furthermore, the
absence of shifting of the N-H stretching band (around 3,300
cm−1 in pure oleyl amine), to lower wavenumbers indicates that
the interaction of the NH2 groups on the surface of both r-GO
and MoS2/r-GO is weak. On the other hand, molybdenum and
sulfur were detected with an atomic concentration of 0.8 and
2.1% respectively proving the development of MoS2 layers on the
composite materials as simultaneously the S/Mo ratio is close to
2. In fact, from the distinction of the Mo and S species further
conclusions can be deduced.

More specifically, as observed in Figure 5b of the Mo3d
energy region, the spectrum consists of two Mo components.
From their binding energies (229.4 and 232.4 eV), these peaks
are ascribed as MoIV 3d5/2 and MoIV 3d3/2, respectively, and are
correlated with MoS2 structures (Spevack and McIntyre, 1993;
Merki et al., 2011; Kibsgaard et al., 2012; Zheng et al., 2014).
No peaks or shoulders are detected at higher binding energies,
indicating the lack of higher oxidation states (+5 or +6) which
are possible for Mo and suggesting the growth of further MoxSy
species except MoS2 (Spevack and McIntyre, 1993; Merki et al.,
2011; Kibsgaard et al., 2012; Zheng et al., 2014). Additionally,
the peak at 227.0 eV is defined as S2s whilst more information

about sulfur is obtained by the S2p XPS spectrum at Figure 5c.
As in the case of Mo, only two peaks are observed; a main
peak at 162.3 eV and a shoulder at 163.7 eV, associated with the
doublet from S2− 2p3/2 and S2− 2p1/2 respectively (Spevack and
McIntyre, 1993; Merki et al., 2011; Kibsgaard et al., 2012; Zheng
et al., 2014). Again, no extra peaks are detected affirming that no
S2−2 or other species are present (Spevack and McIntyre, 1993;
Merki et al., 2011; Kibsgaard et al., 2012; Zheng et al., 2014).
In conclusion, the XPS study confirms the successful growth of
MoS2 structures on the composite material with a high content
of 10.5 wt% (as deduced from the quantitative XPS analysis),
excluding the creation of further MoxSy species.

In addition, Raman spectroscopy is a powerful technique
for both r-GO and MoS2 materials, since it provides crucial
information about the hybridization of atoms and the vibrational
modes. As seen in the spectrum of the composite MoS2/r-GO
material (Figure 6), both r-GO-originating G- and D-bands are
present as expected. The G-band at 1,594 cm−1 is associated with
sp2 hybridized carbon atoms, while the D-band at 1,345 cm−1

originates from the breathing modes of six-atom rings, requiring
a defect for its activation, hence is correlated with lattice defects
in the case of r-GO. Thus, the ratio of the D- to G-band intensities
(ID/IG) states the defects ratio of the r-GO layers, (Tzitzios et al.,
2017) and is equal to 0.86. A value slightly lower, as expected,
than the one observed for starting GO (see Figure S4). Moreover,
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peaks at the lower region of Raman shift are attributed to the
formed MoS2 layers. This region of the spectrum is multiplied
4 times compared to the rest spectrum in Figure 6, in order to

FIGURE 5 | C1s (a), Mo3d (b), and S2p (c), X-ray photoemission spectra of

MoS2/r-GO nanocomposite.

FIGURE 6 | Raman spectrum of the MoS2/r-GO nanocomposite.

have a clear view of the area. The peak at 407 cm−1 is assigned to
the A1g vibrational mode of MoS2, while the one at 375 cm−1

originates from the corresponding E12g mode (Lee et al., 2010;

Kibsgaard et al., 2012; Sundaram et al., 2013; Zhang et al., 2013,
2015; David et al., 2014).

The distance between these two peaks has been correlated
in the literature with the number of MoS2 layers (Lee et al.,
2010; Sundaram et al., 2013; Zhang et al., 2015). Unfortunately
in our case, we cannot support the formation of single layers as

FIGURE 7 | Z-contrast STEM images (a,c), bright field image (b) and EELS

sulfur and carbon elemental mapping (d), (with red and gray colors

representing sulfur and carbon, respectively), of MoS2/CN composites.

Z-contrast image of monolayer MoS2 on CN showing individual Mo vacancies

(e).
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witnessed in TEM. This is because multilayers are also formed
nearby and since the probing spot in Raman measurements
was about 2µm in diameter it was not possible to focus in a
region with exclusively single layers of MoS2. Nonetheless, the
presence of both MoS2 and r-GO peaks testify to the successful
development of the composite material.

In order to study the generality of the methodology carbon
nanotubes and carbon fibers were also used as support for the
growth of MoS2 layers. Both carbon nanotubes (CN), and carbon
nanofibers (CNF), were first functionalized with oleyl amine
followed by the growth of the MoS2 using the same procedure. In
Figure 7, we present STEM images of the MoS2/CN composites.
The images show similar behavior with the r-GO composites, i.e.,
the MoS2 layers grow flat on the surface of the carbon nanotubes.
It is worth mentioning here that, in the CN composites, most of
the MoS2 layers are single-layer, suggesting that the sp2 nature
of carbon is crucial for the uniform and single-layer growth of
the MoS2 on the surface of carbon-based materials. Atomic-
resolution Z-contrast STEM images (Figure 7e) reveal the
presence of Mo vacancies in the MoS2 monolayers. The images
of the corresponding composites with CNF are presented in the
Supplementary Material section (Figure S5), and show clearly
the uniform growth of mainly monolayer MoS2 on the CNF
surfaces.

In conclusion, in this work we report a facile liquid phase
chemical approach for the synthesis of hybrid MoS2/r-GO
without autoclave conditions. The method is based on the
thermolytic decomposition of (NH4)2MoS4 inorganic salt in hot
oleyl amine in the presence of chemically exfoliated r-GO. The r-
GO sheets work as nucleation centers for the growth of MoS2 and
the composite material is composedmainly of single- to few-layer
MoS2 on few-layer r-GO. The use of oleyl amine functionalized
r-GO as starting material for the growth of the MoS2 seems
to be crucial for the flat growth of MoS2. In contrast, when
GO is used as starting material, the MoS2 layers do not grow
flat. To our knowledge, it is the first time that MoS2/r-GO is
synthesized in non-polar media without autoclave conditions
and the final hybrid nanocomposites are well dispersible in

non-polar solvents such as n-hexane. The methodology is
generally applicable and works in a similar way in the case of
MoS2 growth on the surface of other carbon-based materials
such as multiwall carbon nanotubes (CN) and carbon nanofibers
(CNF). This kind of colloidal dispersion can be applicable
in the formation of films through inkjet printing techniques
(Arapov et al., 2014).
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