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Materials scientists are increasingly adopting the use of machine learning tools to 
 discover hidden trends in data and make predictions. Applying concepts from data sci-
ence without foreknowledge of their limitations and the unique qualities of materials data, 
however, could lead to errant conclusions. The differences that exist between various 
kinds of experimental and calculated data require careful choices of data processing and 
machine learning methods. Here, we outline potential pitfalls involved in using machine 
learning without robust protocols. We address some problems of overfitting to training 
data using decision trees as an example, rational descriptor selection in the field of 
perovskites, and preserving physical interpretability in the application of dimensionality 
reducing techniques such as principal component analysis. We show how proceeding 
without the guidance of domain knowledge can lead to both quantitatively and qualita-
tively incorrect predictive models.
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inTrODUcTiOn

Materials informatics seeks to establish structure–property relationships in a high-throughput, sta-
tistically robust, and physically meaningful manner (Lookman et al., 2016; Rajan, 2005). Researchers 
are seeking connections in materials datasets to find new compounds (Hautier et al., 2010), make 
performance predictions (Klanner et  al., 2004), accelerate computational model development 
(Nelson et  al., 2013), and gain new insights from characterization techniques (Belianinov et  al., 
2015a,b). Although great strides have been made, the field of materials informatics is set to experi-
ence an even greater explosion of data with more complex models being developed and increasing 
emphasis on national and global initiatives related to the materials genome (National Science and 
Technology Council, 2011; Featherston and O’Sullivan, 2014).

To these ends, scientists are increasingly utilizing machine learning, which involves the study 
and construction of algorithms that can learn from and make predictions on data without explicit 
human construction. Those algorithms can be as simple as an ordinary least squares fit to a data set 
or as complicated as the neural networks used by Google and Facebook to connect our social circles.

In materials science, for example, researchers have used LASSO (least absolute shrinkage and 
selection operator) to construct power series (e.g., cluster) expansions of the partition function for 
alloys faster than prior genetic algorithms by orders of magnitude (Nelson et al., 2013). Tree-based 
models are being used to optimize 3D printed part density (Kamath, 2016), predict faults in steel 
plates (Halawani, 2014), and select dopants for ceria water splitting (Botu et al., 2016). Clustering 
along with principal component analysis (PCA) has been used to successfully reduce complex, mul-
tidimensional microscopy data to informative local structural descriptions (Belianinov et al., 2015a). 
There are many more possibilities for using machine learning methods in materials informatics, but 
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they possess risks in misapplication and interpretation if adapted 
from other data problems without precautions.

In this paper, we describe nuances associated with using 
machine learning and how theoretical domain-based under-
standing serves as a complement to data techniques. We start 
with the problem of overfitting to data and some ways seemingly 
minor choices can change our understanding and confidence 
in predictions. Then, we discuss rational choices for materials 
descriptors and ways to produce them. Lastly, we examine the 
importance of producing simple models and provide a sample 
workflow for the theoretician.

OVerFiTTing

In machine learning, overfitting occurs when a statistical 
model accurately fits the data at hand but fails to describe the 
underlying pattern. This can lead to inaccurate predictions for 
novel compounds or structures and will also often make physical 
interpretability difficult due to an excess of model parameters. A 
way to combat overfitting is to keep separate datasets for training 
a model and for testing it. One might think of this as “informa-
tion quarantine.” We do not want information contained in the 
test data to leak into the model and compromise its generality. In 
materials science, however, data can be expensive and laborious 
to obtain and keeping a set amount off-limits is anathema.

Data scientists, therefore, usually divide the data into equal 
partitions, using a fraction of the data to test model performance 
on and use the rest for training in a process called k-fold cross 
validation (Stone, 1974). The partitions are then iterated over so 
every partition has been used as the test set once and the errors 
are averaged. This has the effect of simulating how accurately a 
model will handle new observations.

Note, sometimes zero mean and unit variance are required 
for feeding features into scale-sensitive algorithms such as linear 
regression or PCA. The calculation of means and standard devia-
tions should be reserved for after partitioning so as to avoid infor-
mation contamination. Overfitting is generally more a problem 
for datasets with few samples relative to features. Unfortunately, 
this under constrained problem often applies in theory-guided 
models where relatively few materials have been thoroughly 
characterized either experimentally or computationally. Care 
must be taken in choice of basis set, model parameters, and model 
selection parameters [hyperparameters (Cawley and Talbot, 
2010)] to qualitatively find the correct model. Unfortunately, 
even with cross-validation, model error estimates can sometimes 
be overly optimistic. For severely under constrained problems, 
Bayesian error estimation methods may be called for (Dalton and 
Dougherty, 2016).

Underrepresented classes
Another subtle but important detail concerns the underrepresen-
tation of certain classes in data when performing classification. 
For example, materials scientists are often interested in identify-
ing uncommon properties, like high TC superconductivity or large 
ZT for improved thermoelectric power. As a hypothetical case, for 
thousands of possible perovskite compositions with the general 
stoichiometry ABX3, where A and B are cations and X is an anion, 

maybe less than 5% are superconducting above 60K (this is just a 
guess). If the sole aim of your model is to maximize overall clas-
sification accuracy, the machine learning algorithm will perform 
quite well (95% accuracy) if it assumes no material will ever be a 
high TC superconductor! In reality, correctly identifying the 5% 
as high TC superconductors is more important than possibly mis-
classifying the other 95%. Luckily, machine learning practitioners 
have dealt with these issues for some time, and there are ways 
to mitigate the problem. Techniques mainly focus on resampling 
methods for balancing the dataset and adding penalties to existing 
learning algorithms for misclassifying the minority class. A good 
review of standard practices is given in García et al. (2007). Of 
course, one remedy data scientists often ignore is to collect more 
data, which can be achieved in practice by a materials scientist.

Overfitting example
Decision trees are a machine learning technique known to be 
prone to these sorts of problems, and we use them next as an 
example to explore the nuances in more detail. Decision trees 
operate by recursively partitioning the data with a series of rules 
designed according to an attribute value test (Quinlan, 1986). The 
end result is analogous to a flow chart with levels of rule nodes 
leading to different predictions. For instance, when predicting if 
certain transition metal oxides are Mott insulators, a rule could 
be formulated that states all materials with an optical band gap 
<0.01  eV are not Mott insulators. This could be followed by 
another rule stating materials with an odd number of electrons 
per unit cell in addition to having an optical band gap >0 eV are 
Mott insulators. Nodes appearing earlier on in the tree separate 
more samples than lower ones and can be viewed as more impor-
tant in the stratification procedure.

What may be less well appreciated by new users using machine 
learning approaches is that by simply changing the criterion used 
for selecting the partitions, one can observe qualitatively different 
results among the decision trees. For example, we used data from 
a recent study on predicting high-temperature piezoelectric per-
ovskites (Balachandran et al., 2011), and indeed find that qualita-
tively different results may be obtained (Figure 1). In the first case 
where the gini impurity attribute (Rokach and Maimon, 2005) is 
used, the global instability index (GII) (Lufaso and Woodward, 
2001) shows up as an important feature as does the calculated 
Goldschmidt tolerance factor (Calc t_IR). In the second case 
where entropy, or information gain (Rokach and Maimon, 2005), 
is used instead, neither the GII nor the tolerance factor appear 
as factors, but new factors appear, such as the difference in ionic 
radii ratios the A, B, and X = O ions as [(rA/rO) − (rB/rO)] and 
A-site ionicity.

Domain knowledge tells us that the tolerance factor, differ-
ence in ionic radii ratios, and A-site ionicity are proportional 
to the radius of the A-site cation, and are therefore expected to 
originate from close packing preferences of ionic solids. The GII 
is dependent on the difference between ideal and calculated bond 
valences, which can capture local bonding effects in addition to 
the steric packing preferences. Importantly, if the GII has useful 
predictive power for the cubic perovskite oxide stability relative 
to the binary oxide phases, which it may decompose into, more 
compounds could be screened than if only the radius based 
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FigUre 1 | Decision trees for determining perovskite formability based on gini impurity (top) and Shannon entropy or information gain (bottom) 
using data from Balachandran et al. (2011). At each node, a check occurs and if true proceeds to the left and vice-versa. A value = (12, 0) would indicate given 
the prior conditions, 12 compounds do not form perovskites and 0 do.
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factors were predictive. Indeed, there are many cations with 
known bond valence parameters but lacking the necessary tabu-
lated 12-coordinate ionic radii that may be used in the tolerance 
factor calculation. In addition, the incorporation of the GII in 
the model could elucidate additional bonding characteristics that 
lead to phase stability.

These trees were trained on the same data, so one would 
assume the same underlying physics should be captured by both, 

but that is not entirely the case. Building an optimally accurate 
tree is computationally expensive, and so heuristic algorithms are 
used instead, which are not guaranteed to find a global solution. 
Indeed, the resulting tree can vary even between multiple runs of 
the same algorithm. Increasing the number of allowed node lay-
ers might lead to convergence, but may also result in overfitting 
and/or a hard to explain tree. In this case, recreating the entropy-
based model with a maximum depth of seven nodes yields a 95% 
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accuracy confidence interval from 10-fold cross-validation of 93 
(±12%) versus the original measure of 92 (±8%) with four nodes. 
The high level of accuracy in both cases indicates that a handful of 
structural features, such as ionic radii ratios and ideal A–O bond 
distance, are suitable to assess if an ABO3 composition will the 
form the perovskite structure.

As an interesting aside, switching the number of partitions from 
10 to 5 reduces the accuracy to ~90% for both node amounts. That 
is, changing the proportion of data used for training from 90 to 
80% causes a non-trivial reduction in accuracy on average. Such 
a variation in performance from changing how the data is split 
indicates a sensitivity of the model to new data, and we would 
expect this model to not perform as well at predicting new com-
pounds’ formability as cross-validation had led us to believe. In 
general, one should not assume default hyperparameters such as 
the number of folds are always optimal nor that cross-validation 
alone can give a “ground state” truth. Cross-validation is an opti-
mistic guess that only works if the data supplied appropriately 
samples the underlying population. We are not saying here that 
one tree is definitely wrong and one is definitely right, but rather 
that any given model found in the literature is the result of numer-
ous choices on behalf of the modeler. Domain knowledge should 
be applied to evaluate a model’s success in combination with the 
reported error bounds.

DescriPTOr selecTiOn

Materials informatics trades in physically meaningful parameters. 
So-called descriptors of materials properties are key to making 
predictions and building understanding of systems of interest 
(Rondinelli et  al., 2015). Some properties of a good descriptor 
have been laid out previously (Ghiringhelli et al., 2015). Namely, a 
good descriptor should be simpler to determine than the property 
itself, whether it is computationally obtained or experimentally 
measured. It should also be as low-dimensional as possible, 
and uniquely characterize a material. Descriptors in materials 
science can come from a variety of levels of complexity. Atomic 
numbers, elemental groups or periods, electronegativities, and 
atomic radii can be read off periodic tables and used to predict 
structure type. A compound’s free energy can be calculated using 
density functional theory and related to phase stability. Densities 
and structural parameters can be measured in an experiment for 
the purposes of predicting mechanical properties. And of course, 
combinations of quantities from the same or different levels can 
be descriptors as well.

There is, however, no universally acknowledged method for 
choosing descriptors. Descriptor choice will depend heavily 
upon the phenomena being studied. For instance, atomic radii 
happen to be important in predicting bulk metallic glass forma-
tion (Inoue and Takeuchi, 2004) as well as perovskite formability 
(Balachandran et al., 2011). However, attempting to use covalent 
radii for both will miss the important ionic character of the atoms 
in perovskite systems. Furthermore, one can benefit from analyz-
ing data and research that is not directly related to one’s own for 
missing connections. Brgoch et al. had to confront the problem 
of complications in describing the excited state properties of 
inorganic phosphors with ab initio methods (Brgoch et al., 2013).  

An insight came from reading the literature on molecular 
phosphors, where structural rigidness played a key role in pho-
toemission yield. With this knowledge, the authors were able to 
construct a descriptor for photoluminescent quantum yield in 
solids based on the Debye temperature, related to the stiffness 
of the vibrational modes, and band gap. A similar recognition of 
the underlying physics yielded a descriptor for carrier mobility in 
thermoelectrics based on bulk modulus and band effective mass 
(Yan et  al., 2015). One review (Curtarolo et  al., 2013) lays out 
several material descriptors that have been previously developed 
and proposes possibly overcoming the stipulation of having a 
physically meaningful descriptor by use of machine learning. 
However, it remains a challenge to motivate further exploration 
without an underlying theoretical justification.

Feature extraction
In some cases, the best model may not be capable of being built 
from the features initially selected. A simple example might 
be predicting an activation energy from observed diffusion 
measurements using regression analysis. Using the natural log of 
diffusion constants yields a better fit than fitting the raw values.

Depending upon the material system of interest one can 
enumerate as many physically plausible primary descriptors 
as possible and then generate new descriptors from them in 
some manner. This could include groupings from dimensional 
analysis (Rajan et al., 2009), simple relational features (Kanter and 
Veeramachaneni, 2015), PCA (Sieg et al., 2006), or some other 
method. In all cases, care must be taken to avoid incompatible 
operations (e.g., do not add an atomic radius to an ionization 
potential). In image data, edges are often extracted as features 
from primary pixel data to be used in learning (Umbaugh, 2010). 
Commercial software such as Eureqa can be used to quickly 
generate function sets such as Gaussian and exponential func-
tions among others (Dubčáková, 2010). Once features have been 
extracted, there might then be some downselection to test only 
the most important features. Ghiringhelli et al. (2015) success-
fully used feature extraction in combination with LASSO-based 
compressive sensing (Nelson et al., 2013) to generate descriptors 
for the energy difference between zinc blende or wurtzite and 
rock salt structure for 68 octet binary compounds.

MODel inTerPreTaBiliTY

Materials scientists are interested in establishing clear causal rela-
tions between materials structure defined broadly across length 
scales and properties. While a model employed by Netflix might 
be evaluated solely in terms of predictive accuracy and speed, sci-
entific models have further constraints such as a minimal number 
of parameters and adherence to physical laws. If a model cannot 
be communicated clearly except from computer to computer, its 
contribution will be minimal. It is the obligation of the modeler to 
translate the results of their work into knowledge other materials 
scientists can use in aiding materials discovery or deployment. 
That being said, eliminating parameters by hand to make an 
intelligible model is often impractical. In this case, there are some 
helpful techniques available.
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FigUre 2 | (left) A toy classification dataset consisting of two linearly separable classes. The ideal subspace produced with PCA is shown in black.  
(right) Projecting data onto this subspace destroys the original separability of the data.
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Principal component analysis
Principal component analysis is a powerful technique for data 
dimensionality reduction. In essence, PCA is a change of basis 
for your data with the new axes [principal components (PCs)] 
being linear combinations of original variables. Each principal 
component is chosen so that it lies along the direction of largest 
variance while being uncorrelated to other PCs. When the data 
are standardized to have zero mean, these PCs are eigenvec-
tors to the covariance matrix of the samples. Although perfect 
description of the original data requires as many PCs as original 
features in theory, typically, some number of PCs is selected for 
retention based upon a threshold amount of variance explained 
or correlation with a feature of interest. In this manner, an effec-
tive description of a dataset with thousands of variables can be 
constructed from a few hundred PCs (Ringnér, 2008).

However, care must be taken to judiciously apply PCA. 
Authors will readily acknowledge PCs are not necessarily simple 
to interpret physically especially with image data (Belianinov 
et al., 2015a). PCA is not guaranteed to separate clusters of data 
from one another (Ringnér, 2008), and overzealous projection 
onto PCs can actually make classes of data inseparable that were 
previously separable before PCA (Figure 2).

In the example of rare earth vanadate oxide perovskites (RVO3, 
R = Y, Yb, Ho, Dy, Gd, Pr, Nd, Ce, La), the orthorhombic Pnma 
structures of the family can be quantified using symmetry-
adapted distortion modes (Perez-Mato and Aroyo, 2010). First, 
each mode represents a different collective atomic displacement 
pattern from the ideal cubic phase that appears in the Pnma 
structure; for example, in-phase VO6 octahedral rotations (M3

+

), out-of-phase octahedral rotations, (R4
+), antipolar R-cation 

displacements (X5
+ and R5

+), or first-order Jahn-Teller distortions 
of the VO6 octahedra (M2

+). Next, the net atomic displacements 
involved in each mode, which are required to reach the observed 
structure, are obtained as a root-sum-squared displacement 
magnitude in angstroms through this structural decomposition. 
These mode amplitudes can then be checked for correlations 

among each other and macroscopic observables, including the 
magnetic spin (TN) and orbital ordering (TOO) temperatures to 
identify whether a link between the atomic structure and mag-
netic and electronic transitions exists.

Figure 3 shows the Pearson correlation coefficients for each 
pair of features in the room-temperature vanadate dataset. The 
dark red squares indicate large positive correlation, while dark 
blue indicates large negative correlation. Greenish hues indicate 
little or no correlation. All modes which alter the shape and con-
nectivity of the VO6 octahedra are highly positively correlated 
with each other, but they are also strongly correlated and anti-
correlated with TOO and TN, respectively.

This correlation among the modes can be reduced by 
performing a PCA (Table  1). Because changing the R cation 
alters each of the mode amplitudes by approximately the same 
proportion, much of the variance in the mode amplitudes can 
be explained by one PC: in Figure 3, we see the first PC, PC1, 
correlates strongly with every mode and the ordering tempera-
tures. This analysis can allow us to disentangle the role of cation 
size in setting the ordering temperatures from other features in 
the structure. The reason this is possible is because the in-phase 
and out-of-phase rotations are both largely set by the cation size 
due to steric effects, which is gleaned from domain insight, and 
strongly coupled with the other modes such as the first-order 
Jahn-Teller distortions that directly affect orbital interactions 
through changes in V–O bond lengths (Varignon et al., 2015). 
Fundamentally, however, PCA explains variance in the data, and 
data can vary for reasons other than physically meaningful ones. 
The second PC (PC2) explains 3.2% of the variance and has large 
loadings from the M3

+ and R5
+  modes, but this could simply be 

due to noise in measurement or some other factor. A physical 
interpretation of this combination of in-phase VO6 octahedral 
rotations and antipolar R-cation displacements causing the 
variation in TOO or TN requires further study. It also reinforces 
the view that although, PCA can potentially disentangle many 
factors, it requires careful interpretation.
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TaBle 1 | loadings of principal components.

R4
+ X5

+ M3
+ R5

+ M2
+

Principal component 1 0.45586164 0.45738233 0.4453384 0.43418359 0.44288812
Principal component 2 0.1199574 0.220511 0.57247293 −0.75880932 −0.18294336
Principal component 3 −0.26017123 −0.03337149 −0.17628883 −0.39211208 0.86392571

FigUre 3 | Plot of the Pearson correlation coefficients for the 
symmetry-adapted distortion mode (Balachandran et al., 2016) 
amplitudes and their first three principal components with orbital 
ordering temperature (TOO), and néel temperature (Tn) of the RVO3 
(R = rare earth) orthorhombic series of perovskites. PCA works well 
here because all the distortions correlate strongly with R cation size due to 
packing arguments.
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When doing k-fold cross-validation, PCA must not be carried 
out on the entire dataset beforehand so as to avoid information 
contamination. Likewise, the weights for the PCs should not 
be modified for use on the testing set. If your dataset contains 
multiple variables that are correlated with one another, the PCs 
that best describe them will have an outsize level of variance 
explained. This means if the criterion for keeping a PC is based 
on a threshold variance explained, one might eliminate physically 
meaningful data from consideration in the model. For instance, 
in the PCA example shown in Figure 3, most of the variance in 
the distortion modes is due to changing cation size which alters 
octahedral rotation angles ( M3

+  and R4
+ ) and metal-oxygen 

bond lengths ( M2
+ ). Keeping only the first PC might throw out 

features in the structure that could correlate subtly with ordering 
temperatures.

cross-Validation and regularization
Regularization of a model entails adding a tunable penalty on 
model parameter size to the cost function being minimized. 
Most frequently, regularization is used to reduce overfitting in 
linear regressions where it is commonly known by the names 
LASSO (minimizes the sum of absolute values of the fit param-
eters) and ridge regression (minimizes the sum of squares of the 

parameters). Unfortunately, no efficient computation is known 
for minimizing the number of non-zero coefficients directly, but 
these approximations often work well. The regularization penalty 
weight is increased (in powers of ten usually) iteratively and 
scored with cross-validation until a minimal test error is reached. 
As the penalty increases more and more model coefficients are 
driven to 0. The longer a coefficient remains non-zero, the more 
important it is to the model’s performance.

One caveat is that methods such as LASSO and ridge regres-
sion will drop correlated features more or less at random. If A 
predicts feature B and target C, one’s model may show B predict-
ing C because regularization viewed A as redundant information. 
For instance, a bond energy may be correlated with melting point 
and elastic modulus, but LASSO may toss out the bond energy in 
favor of melting point when trying to predict the modulus even 
though direct causality is absent. One can brute force check for 
covariance between features, but this may be infeasible with large 
feature sizes or parameters in the descriptor. Thus, authors have 
adapted cross-validation methods that not only take random sets 
of samples but random features as well (Ghiringhelli et al., 2015). 
Ensemble methods such as random forests work in much the 
same manner by combining numerous different simple estima-
tors like decision trees and averaging their parameters (Halawani, 
2014). Hyperparameters such as the regularization penalty 
weight, number of simple learners in an ensemble, fraction of 
features/samples to randomly use, etc. should be iterated over in 
a cross-validation workflow to test that the final predictor is as 
simple as possible but no simpler.

choice of Model
Related to above, the choice of machine learning model may 
have a large impact on how easy it is to comprehend for humans. 
Regressions and their regularized counterparts have coefficients 
whose size tells one the relative effect size of modifying an 
input on the output. Decision trees have a structure much like 
a flowchart that is easy to follow. Bayesian methods allow one 
to explicitly encode prior knowledge (Robert, 2001; Davidson-
Pilon, 2015). On the other hand, some models such as kernelized 
support-vector machines and kernel ridge regression involve 
non-linear transformations that lead to obfuscation of the rela-
tionship between the original features and the target variable. 
Neural networks are another instance where a clear explanation 
of the machine’s “thinking” is usually impossible due to complex 
node interactions.

When given a choice, it may sometimes be worth a small 
tradeoff in cross-validation predicted accuracy for better 
explanatory power when comparing two candidate models. For 
example, in the perovskite formability case above, using a more 
complicated gradient boosted decision tree reduced the variance 
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FigUre 4 | a schematic of the steps involved in designing a materials informatics model. The workflow starts with (a) collection of data relevant to the 
property of interest. Next, comes (B) building a simple model to explore correlations followed by (c) refinement of the model to satisfactory predictive accuracy and 
(D) final training and deployment. Starting with a less complex model supports a priori physical reasoning instead of post facto explanations.
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in the cross validation accuracy a few percentage points, but did 
not allow for a simple visual schematic (Pilania et al., 2015). Data 
 transformations that lead to further abstraction like PCA should 
not be used as inputs to models if there is no clear reason why 
features should be covariant. A model with clear justification for 
why it possesses the uncertainty it has is less likely to result in 
unpleasant surprises later.

a sample Workflow
Because there is no universally agreed upon workflow for a 
materials informatics problem, we make an attempt at describ-
ing one possibility as others have done (Ghiringhelli et al., 2015; 
Lookman et  al., 2016). Our workflow can be divided into four 
sections as depicted in Figure 4.

Like any materials science problem, one should begin with 
accessing what domain knowledge already exists (Figure  4A). 
This domain knowledge should then be used to enumerate a first 
set of features that will be collected and processed for use in a 
model. Picking the right primary features is often the biggest 
determinant of the final predictor’s performance. The role of the 
machine learning algorithms is to find underlying structure in the 
data, not to make correlation where none exists. The selection of 
primary features overlaps in many ways with that of descriptors 
as explained earlier.

Once the primary features have been assembled and made 
ready for parsing, it is common practice to make an exploratory 
model with something like ridge regression or a decision tree and 
vary the features to begin understanding which of them are the 
most important in the model formulation (Figure 4B). Observe 
the effect of adding or removing primary features on the cross-
validation measured error and contextualize this within your 
prior expertise. It is not recommended to jump straight into using 
the most complicated model, e.g., neural networks or kernel ridge 
regression, available as this will take much more time from both 
the researcher and the computer than eliminating spurious fac-
tors early on with domain knowledge. Sometimes a simple model 
following Occam’s razor is all that will be needed to reach the 
desired level of accuracy and explanatory power.

If none of the primary features show much more of a correla-
tion with the output than would be expected from chance, this is 
an indication that either the sampling is bad or the causal feature 
is missing from the data. As a rule of thumb, if the number of 
samples is 10 times the number of features and no significant 
correlation is seen, there is likely something being missed.

If the model’s performance is significantly better than chance 
but could be better, this indicates there is an underlying pattern 

to the data but something needs refinement (Figure 4C). If there 
are few samples of a certain type, one may need to collect more or 
use one of the other methods for underrepresented data (García 
et al., 2007). Eliminating features with low impact on accuracy 
from early testing may reduce the level of noise a model has to 
contend with.

If the features are highly correlated with each other, a data 
dimension reduction technique like PC analysis, as discussed 
above, can eliminate redundant information. If one has reason 
to suspect some functional transformation of the data could help 
(e.g., for properties determined from constitutive relationships), 
feature extraction techniques can be used and the results trimmed 
down by intuition or algorithmically using a technique like LASSO 
(Ghiringhelli et al., 2015) or feature ranking from an ensemble 
method like boosted gradient decision trees (Pilania et al., 2015).

Last but not least, the type of machine learning algorithm 
chosen can impact the performance as well. A good workflow 
will have several types of models that are compared using cross-
validation rather than picking just one initially. Each algorithm 
has its strengths and weaknesses. Random forests are known to 
be accurate and resistant to outliers but slow to train for large 
datasets. Naive Bayesian classifiers are very fast to train but pro-
duce unreliable probability estimates. Knowledge of the relative 
pros and cons for a given algorithm is strongly recommended 
before use [see for example Ref. Scikit-learn developers (2014) 
and Raschka (2015)].

Once refinement yields a satisfactory choice of model and 
hyperparameters, the last step before deployment is to train on 
the whole dataset to maximize the information contained in the 
final model (Figure 4D). The final round of cross-validation per-
formed before this should provide a reasonable margin of error 
in line with your prior domain knowledge.

By proceeding in an iterative fashion upwards in complexity, 
one can avoid much of the backtracking to find a simpler model 
that would be required if proceeding less deterministically. Once 
the model performance is acceptable, its important findings 
should be broken down into guidelines and new data generated 
to improve the description further.

cOnclUsiOn

We have shown some of the things to be aware of when applying 
machine learning techniques to materials science. There is much 
more that could be discussed, and with such rapid innovations 
in machine learning, some of the techniques presented here are 
bound to become obsolete. What will not change is the importance 
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of scientific reasoning in discovering reliable structure–property-
processing models. The role of theorists and experimentalists in 
identifying descriptors and quantifying uncertainty has never 
been more important. Data without science are like marble 
without a sculptor, trapped beauty waiting to be set free.
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