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INTRODUCTION
Electrons continually interact with the
matter around us. We use electron beams
for our purposes, either on the side of
production of materials or on that of
their characterization. Let us think to the
many applications such as the processing
of materials with plasma and to the local
melting of materials for joining large com-
ponents. We use electron beams also in the
electron lithography, an important tech-
nique utilized for the production of the
microelectronics devices. Let us consider
the importance of the beams of electrons
in the characterization of the materials,
performed using techniques such as the
electron microscopy and all the electron
spectroscopies. Electrons interact with the
surfaces of the space-crafts. The plasma–
wall interaction in the fusion reactors also
involves electron–matter interaction. Elec-
trons play a role also in the cancer proton
therapy, where cascades of secondary elec-
trons are produced. These electrons of very
low energy are toxic for the human body
cells, since they produce damage to the bio-
molecules due to ionizations/excitations
and the resulting break of chemical bonds.
Also the secondary electrons which have
ultra-low energies – and which, for a long
time, were thought to be relatively harm-
less – are dangerous for the biomolecules
due to the so-called “dissociative electron
attachment.” And, of course, we wish to
minimize the effects of the irradiation on
the healthy tissues near to the diseased cells.

In all the mentioned cases, the modeling
of the interaction of the electrons with the
matter is very important, as it can be used
to provide a solid theoretical interpretation
of the experimental evidences.

The interpretation of the experimen-
tal results is often based on the Monte
Carlo method (MC). The doping con-
trast in secondary-electron emission of pn-
junctions was investigated by the use of the
MC method (Dapor et al., 2008; Roden-
burg et al., 2010). The modeling of elec-
tron interaction with polymers, and in
particular with the polymethylmethacry-
late, has been demonstrated to be very
important in nano-metrology. Line-scan
of resist materials with given geomet-
rical cross-sections deposited on silicon
or silicon dioxide, and the corresponding
linewidth measurements, obtained with
the secondary electrons in the Critical-
Dimension Scanning Electron Microscope
(CD SEM), require an interpretation that
can be performed using MC calculations
(Dapor et al., 2010).

The MC method, in turn, requires an
accurate description of the differential
inverse inelastic mean free path (DIIMFP),
in order to calculate the inelastic mean free
path (IMFP) and the distribution function
for inelastic collisions of electrons causing
energy losses less than or equal to given
values.

MERMIN THEORY
The Mermin dielectric function (Mermin,
1970) is given by

εM
(
q, ω

)
= 1+

(1+ i/ωτ)[
ε0
(
q, ω+ i/τ

)
− 1

]
1+ (i/ωτ)[

ε0
(
q, ω+ i/τ

)
− 1

]
/[

ε0
(
q, 0

)
− 1

]
, (1)

where q is the momentum, ω the fre-
quency, τ the relaxation time, and ε0(q, ω)
the Lindhard dielectric constant (Lindhard,
1954)

ε0(q, ω) = 1+
4πe2

q2
B(q, ω), (2)

B(q, ω)

=

∫
dp

4π3

fp+q/2 − fp−q/2

ω− (εp+q/2 − εp−q/2)/~
.

(3)

In these equations e is the electron
charge, fp is the Fermi–Dirac distribution,
and εp the free electron energy.

ENERGY LOSS FUNCTION
Let us now consider a superposition of
free and bound oscillators. For any oscil-
lator, the energy loss function (ELF) is
given by the opposite of the imaginary
part of the inverse of the Mermin dielectric
function:

Im

[
−1

εM
(
ωi,γi; q, ω

)] = εM2

εM
2
1 + εM

2
2

.

(4)
where

εM = εM1 + iεM2 (5)

and ωi, and γi are, respectively, the fre-
quency and the damping constant asso-
ciated to each specific oscillator. A linear
combination of Mermin-type ELFs, one
per oscillator, allows to calculate the elec-
tron ELF for q= 0, for any specific material
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Dapor DIIMFP of electrons in PMMA

FIGURE 1 | Mermin DIIMFP of electrons in PMMA for selected values of the incident electron
kinetic energyT in the range 10–1000 eV.

(Planes et al., 1996; Abril et al., 1998; de
Vera et al., 2011)

Im

[
−1

ε
(
q = 0, ω

)]

=

∑
i

Ai Im

[
−1

εM
(
ωi,γi;q = 0, ω

)] . (6)

In this equation, Ai, ωi, and γi are deter-
mined looking for the best fit of the avail-
able experimental optical ELF. Actually, as
both Mermin and Drude–Lorentz oscilla-
tors converge on the same values in the
optical limit (i.e., for q= 0) (de la Cruz and
Yubero, 2007),

Im

[
−1

ε
(
q = 0, ω

)]

=

∑
i

Ai Im

[
−1

εM
(
ωi,γi;q = 0, ω

)]

=

∑
i

Ai Im

[
−1

εD
(
ωi,γi;q = 0, ω

)] ,

(7)

where the Drude–Lorenz functions are
given by (Ritchie and Howie, 1977)

Im

[
−1

εD(ωi , γi ; q = 0, ω)

]
=

γiω

(ω2
i − ω2)2 + (γiω)2

, (8)

the best fit can also be performed using
a linear combination of Drude–Lorentz
functions, instead of Mermin functions.

For the present work, the parameters
provided by de Vera et al. (2011) obtained
by calculating the best fit of the Ritsko
et al. (1978) experimental optical data, were
used.

Once the values of the best fit parame-
ters have been established, the extension
out of the optical domain (q 6= 0) can be
obtained by (Planes et al., 1996; Abril et al.,
1998; de Vera et al., 2011)

Im

[
−1

ε
(
q, ω

)]

=

∑
i

Ai Im

[
−1

εM
(
ωi, γi; q, ω

)] . (9)

DIFFERENTIAL INVERSE INELASTIC
MEAN FREE PATH AND INELASTIC
MEAN FREE PATH
The ELF allows, in turn, the computation
of the DIIMFP, given by

dλ−1
inel

d~ω
=

1

πa0T

∫ q+

q−

dq

q
Im

[
−1

ε(q, ω)

]
,

(10)
where a0 is the Bohr radius, T is the kinetic
energy of the incident electrons and

q± =

√
2m

~2

(√
T ±
√

T − ~ω
)

. (11)

The Mermin DIIMFP of electrons in
PMMA is represented in Figure 1, for
kinetic energies of the incident electrons
in the range from 10 to 1000 eV.

The inverse of the integral of every curve
presented in Figure 1 provides, for each
kinetic energy T, the IMFP. According to de
la Cruz and Yubero (2007), the values of the
IMFP calculated using the Tanuma, Pow-
ell, and Penn (TPP) empirical predictive
formula (Tanuma et al., 1994) are systemat-
ically higher than the corresponding values
calculated within the Mermin theory. For
PMMA, according to our calculation, when
T = 100 eV, the Mermin IMFP is equal to
6.3 Å while when T = 1000 eV, it is equal
to 27.6 Å. According to TPP, the IMFP of
PMMA is equal to 7.9 Å for T = 100 eV
and to 33.7 Å for T = 1000 eV (Tanuma
et al., 1994). Also approaches based on
the Drude–Lorentz theory (Emfietzoglou
et al., 2013; Dapor, 2014a,b; Dapor et al.,
2015) provide values of the IMFP system-
atically higher than those obtained using
the Mermin theory. The IMFP of PMMA
calculated according to the Drude–Lorentz
theory is equal to 10.1 Å for T = 100 eV and
to 33.5 Å for T = 1000 eV (Dapor, 2014a).

It is not simple to express an opinion
about the different approaches used today
to calculate the DIIMFP, and hence the
IMFP, due to the lack of experimental data
and their quite large uncertainty (Dapor
et al., 2015). Roberts et al. (1980) provided
the experimental values of 29± 4 Å for
1196 eV electrons and 33± 5 Å for 1328 eV
electrons in PMMA. On the one hand,
also taking into account of the experimen-
tal uncertainty, de Vera et al. (2011) have
shown that these values are closer to those
predicted by the Mermin theory than to
those predicted by the TPP formula,usually
taken as a reference and provided, among
other IMFP data, by the NIST database. On
the other hand, the number of experimen-
tal data about electron IMFP in PMMA
seems to be definitely too small to judge.
Since Mermin theory is much more accu-
rate it is preferable, even if we conclude
that, at the moment, both Mermin theory
and TTP empirical predictive formula are
compatible with the available experimental
data about IMFP in PMMA.

CONCLUSION
Calculations of the DIIMFP of electron
in materials are of paramount importance
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Dapor DIIMFP of electrons in PMMA

for modeling the transport of electrons in
solid targets. In this paper, we presented
the calculations of the DIIMFP of electrons
in PMMA based on the Mermin theory
(Mermin, 1970) and on the de Vera et al.
(2011) best fit of the Ritsko et al. (1978)
optical data.
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