
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Mar. Sci.
Sec. Coastal Ocean Processes
Volume 12 - 2025 | doi: 10.3389/fmars.2025.1586377
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The impact of the South China Sea (SCS) to the super typhoon Mangkhut (2018) and the air-sea interaction are evaluated through COAWST model in this study which fully coupled with the atmosphere model (WRF), the ocean model (ROMS), and the wave model (SWAN). A comparison of our modeled results with several buoys and tide stations revealed remarkable consistency, the minimum root mean square error (RMSE) for wind speed, significant wave height, and water level are 3.013 m/s, 0.641m, 0.007m. During the development and dissipation of super typhoon Mangkhut, the Coriolis force caused the typhoon wind field to exhibit a pronounced rightward deflection. The characteristics of the significant wave height field are generally similar to those of the wind field, although there is a temporal lag of several hours. Moreover, we researched on the spatiotemporal variations of sea surface temperature (SST) impact by the Mangkhut’s passage, and found that it exhibits two main characteristics: spatial asymmetry and temporal lag. The spatial asymmetry is primarily governed by typhoon-generated wind fields, while the temporal lag is mainly controlled by upwelling and vertical mixing processes during the typhoon’s passage, with Ekman pumping playing a pivotal role in these dynamics. This study mainly concentrates on investigating the dynamic and thermodynamic responses of the ocean during extreme weather conditions by using COAWST model.
Keywords: COAWST1, Super typhoon Mangkhut2, Spatiotemporal variations3, Significant wave height4, Sea surface temperature5
Received: 02 Mar 2025; Accepted: 03 Apr 2025.
Copyright: © 2025 Wu, Zou, Chen, Deng and Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhiyuan Wu, Changsha University of Science and Technology, Changsha, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.