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Oceans boast a substantial microbial diversity, which is widely prevalent in

seawater, marine sediments, and marine organisms. In contrast to terrestrial

resources explored in traditional natural product research, the habitats of marine

microorganisms are distinctly unique. Actinomycetes serve as a vital source of

secondary metabolites, including antibiotics and other potent natural products

like streptomycin and tetracycline. They have played a pivotal role in clinical

treatments for significant diseases such as pathogenic bacterial infections.

Nevertheless, the extensive use of antibiotics has led to a sharp increase in the

variety and number of drug-resistant bacteria, notably multidrug-resistant (MDR)

and extensively drug-resistant (XDR) bacteria, in clinical settings, posing a grave

threat to human survival. Consequently, there is an immediate need to discover

structurally novel antibacterial natural products and develop new antibiotics. This

mini review summarizes a total of 45 novel antibacterial natural products derived

from marine actinomycetes, published in 2024. These products, including

polyketides, alkaloids, macrolactams, and peptides, are highlighted in terms of

their structures and biological activities. The objective of this article is to provide

valuable insights for the research and development of novel antibiotics.
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1 Introduction

In recent years, the emergence of multidrug-resistant (MDR) and extensively drug-

resistant (XDR) bacteria has become a significant threat to global public health due to the

overuse of antibiotics (Chin et al., 2018; Hu et al., 2019; Lin et al., 2019; Cui et al., 2020;

Wang X. et al., 2020; Ding Q. et al., 2021; Wei et al., 2021; Zhu et al., 2021; Rasheed et al.,

2024). The Lancet journal published a comprehensive analysis of the global impact of

antimicrobial resistance (Murray et al., 2022). Analysis of data from 204 countries and

regions revealed that antimicrobial resistance has become a major cause of death

worldwide. In 2019, infections caused by antimicrobial resistance directly resulted in
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1.27 million deaths and indirectly led to 4.95 million deaths,

surpassing those from AIDS or malaria (Murray et al., 2022).

On the other hand, since the late 1990s, with the continuous

exploitation of natural resources, discovering new bioactive natural

products has become increasingly challenging (Demain, 2009;

Spıž́ek et al., 2010). Traditional strategies for the isolation and

identification of natural products have led to the repeated isolation

of numerous known compounds, making it increasingly difficult to

discover new bioactive natural products. Over the past two decades,

the number of antibiotics discovered by pharmaceutical companies

has been declining (Zhang et al., 2022; Brüssow, 2024). There is an

urgent need for humans to search for new natural products with

novel structures, unique bioactivities, and mechanisms of action as

lead compounds for new drug development (Cui et al., 2019; Ding

et al., 2019; Li et al., 2019; Afrin et al., 2020; Zhang J. et al., 2020;

Chen et al., 2024; Muhammad et al., 2024).

Compared to terrestrial biological resources, marine organisms

inhabit vastly different environments (Liu et al., 2019; Zhong et al.,

2020; Otero et al., 2023). The drastic differences in survival

conditions (such as high pressure, high salinity, oligotrophic

environments, lack of light, lack of oxygen, etc.) determine that

marine organisms exhibit significant characteristics in metabolism,

survival strategies, information transmission, and adaptation

mechanisms (Surendhiran et al., 2021; Hamadou et al., 2023;

Iqbal et al., 2024). Actinomycetes in marine organisms, as an

important component, have always been one of the hotspots in

natural product research (Jagannathan et al., 2021; Ryu et al., 2023).

Eravacycline (Xerava®), a novel fluorocycline antibacterial agent, is

a semisynthetic derivative of tetracycline from Streptomyces, which

functions by inhibiting bacterial protein synthesis (Huang P. Y.

et al., 2024). In 2018, it was approved by the U.S.A. FDA and

exhibits potent in vitro activity against Gram-positive and -negative

strains expressing certain common tetracycline-specific acquired

resistance mechanisms. In vitro, eravacycline demonstrates potent

activity against a broad spectrum of clinically relevant Gram-

positive and -negative aerobic and anaerobic bacteria.

The actinomycetes genome typically contains a rich repertoire

of biosynthetic gene clusters for secondary metabolites (Scherlach

and Hertweck, 2021; Wen et al., 2024). The number of compounds

we have discovered so far is far less than the number of compounds

that microorganisms can produce, and a large number of potential

secondary metabolites remain undiscovered (Zhang X. et al., 2020;

Tianqiao et al., 2021; Zhang et al., 2021). Searching for potential

novel secondary metabolites and exploring lead molecules with

significant pharmacological activities, marine actinomycete

secondary metabolites, as important sources of new drug

precursors, are gradually demonstrating significant research value

and application potential (Donald et al., 2022; Gomez-Banderas,

2022; Ngamcharungchit et al., 2023; Zhang et al., 2024).

Based on data from PubMed, Elsevier, the American Chemical

Society, and Google Scholar, this review comprehensively

summarizes the sources, structures, and bioactivity progress of 45

novel antibacterial active natural products isolated from marine

actinomycetes in 2024. According to their structural characteristics,

these natural products are classified into four major categories,

including polyketides (57.8%, 26/45), alkaloids (26.7%, 12/45),
Frontiers in Marine Science 02
macrolactams (8.9%, 4/45), and peptides (6.7%, 3/45)

(Figure 1A). These secondary metabolites are primarily isolated

from actinomycetes across 6 different sources, including China

(60%, 9/15), Korea (13.3%, 2/15), Thailand (6.7%, 1/15), United

States (6.7%, 1/15), Japan (6.7%, 1/15) and Indian Ocean (6.7%, 1/

15) (Figure 1B). Among these biological samples, 12 belong to the

genus Streptomyces, accounting for 80%, highlighting the

significance of Streptomyces in the discovery of novel antibacterial

natural products (Figure 1C). Of particular note are the remarkable

findings by Professor Jongheon Shin and Kibong Oh, researchers at

Seoul National University, who discovered corynetoxin U17a (32).

This compound demonstrated potent antibacterial activity against

Staphylococcus aureus, with a minimum inhibitory concentration

(MIC) of 0.06 mg/mL (Lee et al., 2024). Table 1 outlines the names,

sources of isolation, species, and MIC values of the antibacterial

compounds identified.
2 Polyketides

Among the s econdary me tabo l i t e s p roduced by

microorganisms, polyketide compounds typically constitute the

majority in statistical analysis due to their large quantity and

diverse types of activities (Yang et al., 2020; Li et al., 2021; Yixuan

et al., 2021). They primarily originate from the condensation of

short-chain fatty acids by microorganisms. Additionally, the

biosynthesis of polyketides can also involve modifications of the

carbon chain produced at each step through processes such as

oxidation and hydroxylation, leading to the generation of numerous

distinct structures and a wide range of activities.

Four unique compounds (1-4), characterized by the presence of

an L-rhodinose and spiroketal moiety, and featuring unusual

continuous hydroxy groups within their macrolide structure, were

isolated from a marine-derived Micromonospora sp. FIMYZ51

(Figure 1D) (Zhao W. et al., 2024). These compounds

demonstrated strong antifungal properties against A. niger, with

MIC values ranging from 0.5 to 2 mg/mL. Additionally, they

exhibited varying levels of inhibitory activity against the

pathogenic bacterium M. luteus, with MIC values from 0.0625

mg/mL to 1 mg/mL (Table 1). Separately, two heronamides (5 and

6) were isolated from a deep-sea Streptomyces sp. OUCT16-38

(Zhao Y. et al., 2024). When tested for antibacterial activity, both 5

and 6 showed significant growth inhibition against multidrug-

resistant pathogens E. faecium and E. faecalis, with MIC values of

3.1 mg/mL (Table 1).

Metabolomic fingerprinting analysis, utilizing mass

spectrometry (MS) and nuclear magnetic resonance (NMR), of

the marine-derived actinomycete Streptomyces sp. FXY-T5 resulted

in the identification offive novel oligomycins: 24-lumooligomycin B

(7), 4-lumooligomycin B (8), 6-lumooligomycin B (9), 40-

homooligomycin B (10), and 15-hydroxy-oligomycin B (11)

(Figure 1D) (Feng et al., 2024). Notably, 40-homooligomycin B

(10) exhibited antifungal activity that was either stronger or

comparable to that of positive controls, suggesting its potential as

a biocontrol agent against plant pathogens such as C. musae and C.

coccodes (Table 1). In a separate study, Xiaofei Huang and
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colleagues reported the discovery of eight new aromatic polyketides,

naphpyrones A-H (12-19), from the heterologous expression strain

Streptomyces coelicolor (Huang X. et al., 2024). Evaluation of their

bioactivity showed that compounds 12 and 13 possessed

antibacterial activity against S. aureus, with MIC values of 1 mg/
mL and 4 mg/mL, respectively.

Glycoabyssomicin A (20), a novel abyssomicin variant

incorporating a sugar moiety, was isolated from the deep-sea
Frontiers in Marine Science 03
Streptomyces koyangensis SCSIO5802 through LC-MS-guided

analysis (Zhu et al., 2024). When tested against a panel of Gram-

positive and Gram-negative bacteria (includingM. luteus, S. aureus,

MRSA, and E. coli), it exhibited no antibacterial activity at a

concentration of 10 mg per filter paper disc. During a screening of

actinomycetes from mangrove rhizosphere sediment samples, a

strain of Streptomyces sp. SCSIO 40068 demonstrated robust

antibacterial activity. Further purification of its extract led to the
FIGURE 1

(A) Antibacterial compounds derived from marine actinomycetes according to structure types. (B) The different sources of marine actinomycetes.
(C) The different genus of marine actinomycetes. (D) Chemical structures of compounds 1-45.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1558320
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pan et al. 10.3389/fmars.2025.1558320
TABLE 1 Antibacterial compounds from marine actinomycetes.

Compounds Source Species Activities (MIC, mg/mL) Ref

Polyketides

IB96212 (1) China Micromonospora sp. FIMYZ51 M.luteus 1; A.niger 1; C.albicans 4 (Zhao W. et al., 2024)

43-Oxy-IB96212 (2) M.luteus 1; A.niger 0.5; C.albicans 2

11-Dehydroxy-IB96212 (3) M.luteus 0.0625; A.niger 1; C.albicans 4

46-Methy-IB96212 (4) M.luteus 0.5; A.niger 1-2; C.albicans 4

Heronamide C (5) Indian Ocean Streptomyces sp. OUCT16-38 S. aureus 12.5; E. faecium 3.1; E.
faecalis 3.1

(Zhao Y. et al., 2024)

8-Deoxyheronamide C (6) S. aureus >50; E. faecium 3.1; E.
faecalis 3.1

24-Lumooligomycin B (7) China Streptomyces sp. FXY-T5 C. musae 0.42 mma; C. coccodes 0.57 mma (Feng et al., 2024)

4-Lumooligomycin B (8) C. coccodes 0.60 mma

6-Lumooligomycin B (9) Inactive

40-Homooligomycin B (10) C. musae 0.94 mma; C. coccodes 0.73 mma

15-Hydroxy-oligomycin B (11) Inactive

Naphpyrone A (12) China Streptomyces coelicolor MRCNSb 64; MRSAc 64; S. aureus 1 (Huang X.
et al., 2024)

Naphpyrone B (13) MRCNSb 32; S. aureus 4

Naphpyrone C (14) MRCNSb 16; MRSAc 32

Naphpyrone D (15) Inactive

Naphpyrone E (16) Inactive

Naphpyrone F (17) Inactive

Naphpyrone G (18) Inactive

Naphpyrone H (19) Inactive

Glycoabyssomicin A (20) China Streptomyces koyangensis
SCSIO 5802

Inactive (Zhu et al., 2024)

Kebanmycin A (21) China Streptomyces sp. SCSIO 40068 S. aureus 0.125; MRSAc 0.125 (Zhao M. et al., 2024)

Kebanmycin B (22) S. aureus 2; B. subtilis 1

Kebanmycin C (23) S. aureus 0.5; B. subtilis 4

Kebanmycin D (24) S. aureus 32

Maduraflavacin A (25) China Actinomadura glauciflava S. aureus; 4 mma, 0.5 mg/mL (Zou et al., 2024)

Maduraflavacin B (26) NA03286 M. luteus; 3 mma, 0.5 mg/mL

Alkaloids

Alpiniamide H (27) China Streptomyces sp. ZS-A65 Inactive (Pu et al., 2024)

Alpiniamide I (28) P. aeruginosa 87.5 mM

1-Chloro-4-methoxy-9H-carbazol-8-ol (29) Thailand Streptomyces sp. OUCMDZ-5511 C. violaceum 100 (Liu et al., 2024)

Tunicamycin VII (30) Korea Streptomyces sp. MBTG32 S. aureus 0.13; E. faecalis 2; E. faecium 2 (Lee et al., 2024)

Tunicamycin VIII (31) S. aureus 0.13; E. faecalis 2; E. faecium 2

Corynetoxin U17a (32) S. aureus 0.06; E. faecalis 1; E. faecium 2

Tunicamycin IX (33) S. aureus 0.25; E. faecalis 4; E. faecium 8

Nocarterphenyl I (34) China Nocardiopsis sp. HDN154086 B. subtilis 0.8; E. coli 0.8 mM (Zhou et al., 2024)

(Continued)
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identification of four new compounds, kebanmycins A-D (21-24)

(Figure 1D) (Zhao M. et al., 2024). Among them, kebanmycin A

(21) stood out for its potent antibacterial activity against S. aureus

and MRSA, with an MIC value of 0.125 mg/mL, which is generally

lower than that of the positive control vancomycin (MIC 1 mg/mL).

Kebanmycin A’s (21) notable anti-MRSA efficacy makes it a

promising candidate for further drug development targeting

MRSA. Additionally, two new phenyl polyene metabolites,

maduraflavacins A and B (25, 26), were isolated from a rare

marine-derived actinomycete strain, Actinomadura glauciflava

NA03286 (Figure 1D) (Zou et al., 2024). These compounds

displayed weak antibacterial activity against the Gram-positive

bacteria S. aureus and M. luteus, respectively (Table 1).
3 Alkaloids

Alkaloids are a class of nitrogen-containing alkaline organic

compounds with complex and diverse chemical structures,

occupying an important position among secondary metabolites

(Liu et al., 2020; Sun et al., 2020; Zhang C. et al., 2020; Wang et al.,

2022; Xia et al., 2022). Alkaloids exhibit abundant physiological

activities and pharmacological effects, such as antibacterial, anti-

inflammatory, and antitumor activities, making them a crucial

resource for drug development and possessing potential value for

the research and development of new drugs (Liu et al., 2021; Bhatti

et al., 2022; Waseem et al., 2022; Mei et al., 2023; Yu et al., 2023).

During an investigation of Streptomyces sp. ZS-A65, which was

isolated from marine sediments, two novel alpiniamide-type alkaloids

were discovered: alpiniamides H and I (27, 28) (Figure 1D) (Pu et al.,
Frontiers in Marine Science 05
2024). When tested for antibacterial activity against P. aeruginosa,

compound 28 demonstrated robust antibiofilm activity, with an MIC

of 87.5 mM (Table 1). Additionally, a new 9H-carbazole derivative,

compound 29, was isolated from a solid fermented medium of the

mangrove-derived Streptomyces strain OUCMDZ-5511, collected in

Thailand, which was grown under fluoride stress conditions

(Figure 1D) (Liu et al., 2024). Compound 29 exhibited antiquorum

sensing activity against C. violaceum by reducing violacein production

and inhibiting biofilm formation in a concentration-dependent

manner, suggesting its potential as a novel quorum sensing inhibitor

(Table 1). Furthermore, four tunicamycin class compounds,

tunicamycin VII (30), tunicamycin VIII (31), corynetoxin U17a

(32), and tunicamycin IX (33), were isolated from the culture broth

of the marine-derived Streptomyces sp. MBTG32 (Figure 1D) (Lee

et al., 2024). These compounds displayed potent antibacterial activity

against Gram-positive bacteria, particularly S. aureus, withMIC values

ranging from 0.06 to 0.25 µg/mL (Table 1). The research also

supported the notion that tunicamycins exert their antibacterial

effects by inhibiting the MraY enzyme activity in S. aureus.

Utilizing the OSMAC strategy, researchers isolated and

characterized one novel p-terphenyl and two new a-pyrone
derivatives, specifically nocarterphenyl I (34) and nocardiopyrone

D-E (35, 36), from the marine sediment-derived actinomycete

Nocardiopsis sp. HDN154086 (Figure 1D) (Zhou et al., 2024).

Notably, compound 34 features a rare 2,2’-bithiazole structure

among natural products and exhibited promising antibacterial

activity against B. subtilis and E. coli, with MIC values of 0.8 mM.

36 displayed notable antibacterial activity against MRSA when

compared to the positive control ciprofloxacin (Table 1). In

another study, Douglas Sweeney and colleagues employed
TABLE 1 Continued

Compounds Source Species Activities (MIC, mg/mL) Ref

Alkaloids

Nocardiopyrone D (35) Inactive

Nocardiopyrone E (36) MRSAc 12.5; B. subtilis 50 mM

Indanopyrrole A (37) United States Streptomyces sp. CNY-716 MRSAc 2; VREd 2; E. coli 4 (Sweeney et al., 2024)

Indanopyrrole B (38) Inactive

Macrolactams

Seco-geldanamycin B (39) China Streptomyces sp. ZYX-F-97 S. aureus 64; B. subtilis 64 (Yi et al., 2024)

Hydroxycapsimycin (40) Japan Streptomyces sp. KKMA-0239 M. intracellulare 50 (Shigeno et al., 2024)

Brokamycin (41) M. avium 50; M. intracellulare 12.5

Ikarugamycin (42) M. avium 25; M. intracellulare 25; B.
subtilis 3.13

Peptides

Homiamide A (43) Korea Streptomyces sp. ROA-065 B. subtilis 32; S. aureus 32; E. coli 64 (Ding et al., 2023)

Homiamide B (44) B. subtilis 64; S. aureus 32; E. coli 32

Homiamide C (45) B. subtilis 32; S. aureus 64; E. coli 64
aZones of inhibition (mm).
bMRCNS, methicillin-resistant coagulase negative Staphylococci.
cMRSA, methicillin-resistant Staphylococcus aureus.
dVRE, vancomycin-resistant Enterococcus faecium.
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pattern-based genome mining to explore the biosynthetic potential

of the marine-derived actinomycete Streptomyces sp. CNY-716.

Th i s l ed to the d i s covery o f the fi r s t ha logena ted

pyrroloketoindane natural products, indanopyrrole A (37) and B

(38) (Figure 1D) (Sweeney et al., 2024). Indanopyrrole A (37)

demonstrated potent broad-spectrum antibiotic activity against

clinically relevant pathogens, including E. coli (MIC = 4 mg/mL),

MRSA (MIC = 2 mg/mL), and VRE (MIC = 2 mg/mL) (Table 1).
4 Macrolactams

Macrolactams are a class of large molecular cyclic compounds

produced by microorganisms through secondary metabolic

pathways, containing amide bonds and multiple ring structures

(Hong et al., 2018; Wang P. et al., 2020; Ding L. et al., 2021).

Macrolactams generally exhibit pharmacological activities such as

antibacterial and antitumor effects, making them an important

resource for drug development.

The ansamycin derivative, seco-geldanamycin B (39), was

obtained through solid fermentation of the marine-derived

actinomycete Streptomyces sp. ZYX-F-97 (Figure 1D) (Yi et al.,

2024). This compound displayed moderate inhibitory effects against

S. aureus and B. subtilis, with MIC values of 64 mg/mL (Table 1).

Additionally, two novel polycyclic tetramate macrolactams (PTMs),

hydroxycapsimycin (40) and brokamycin (41), were isolated

alongside the known PTM ikarugamycin (42) from the culture

broth of marine-derived Streptomyces sp. KKMA-0239 (Figure 1D)

(Shigeno et al., 2024). Compound 40 showed weak activity against

M. intracellulare, with an MIC of 50µg/mL. Compound 41

exhibited moderate activity against both M. intracellulare and

drug-resistant M. avium, with MICs of 12.5 and 50 µg/ml,

respectively. In comparison, ikarugamycin (42) demonstrated

more potent antimicrobial activity than both 40 and 41 (Table 1).
5 Peptides

Peptides are primarily synthesized by microorganisms through

non-ribosomal peptide synthetase (NRPS) pathways, and these

compounds typically possess complex structures and diverse

biological activities (Xu et al., 2023). Peptides occupy an

important position among microbial secondary metabolites, not

only in terms of their large quantity but also their rich variety. They

often exhibit pharmacological activities such as antibacterial,

antitumor, and immunoregulatory effects, holding tremendous

potential value and application prospects for new drug

development (Xu et al., 2020; Liang et al., 2018; Zhang et al.,

2019; Wen et al., 2020; Wong et al., 2020; Chai et al., 2021).

From a marine sediment-derived strain of Streptomyces sp. ROA-

065 (Figure 1D), researchers isolated three novel depsipeptides

named homiamides A-C (43-45) (Ding et al., 2023). These

compounds displayed weak antibacterial activities against both

Gram-positive (B. subtilis, S. aureus) and Gram-negative (E. coli)

bacteria, with MIC values ranging from 32 to 64 µg/mL (Table 1).
Frontiers in Marine Science 06
6 Conclusion

The escalating problem of global drug resistance has spurred

intensive searches for novel antibacterial agents. Marine natural

products have proven pivotal in drug discovery, forming the

foundation for the early stages of generic drug development (Cao

et al., 2016; Hussain et al., 2021; Shams Ul Hassan et al., 2021;

Hassan et al., 2022; Carroll et al., 2024; Hassan et al., 2024). This

review delves into 45 compounds reported in 2024 to possess

antibacterial activity, sourced from marine actinomycetes. These

compounds encompass polyketides, alkaloids, macrolactams, and

peptides (Figure 1D; Table 1). The review outlines the origins,

chemical structures, and biological activities of these compounds. In

essence, the persistent emergence of drug-resistant bacteria poses a

grave risk to human health. Marine microbial secondary

metabolites present a promising avenue for discovering natural

antibacterial agents characterized by unique structures,

robust activities, and specific modes of action. Thus, the pursuit

of novel antibacterial drugs from marine actinomycetes warrants

particular focus.
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