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The spatial distribution of aquaculture ponds plays a critical role in the layout,

management, and evaluation of the aquaculture industry. While extensive

research has been conducted on aquaculture pond extraction and monitoring,

studies focusing on the differentiation of aquaculture ponds by species remain

limited. The similar shapes and spectral features of water bodies associated with

different species pose a challenge for extraction. A method for extracting sea-

cucumber aquaculture ponds is proposed based on spectral temporal features

using Sentinel-2 satellite imagery in this study. The method involves selecting the

optimal sensitive spectral bands or combinations to construct two remote

sensing indices of land-based aquaculture ponds. Using a time-series dataset

of these indices, three key features—the mean and two slopes—are extracted.

The corresponding time windows and thresholds for these key features are

identified to develop a decision-tree algorithm for extracting sea-cucumber

ponds. This method was applied to coastal aquaculture zones in Liaoning

Province, China, to identify the spatial distribution of sea-cucumber

aquaculture ponds in 2016 and 2023. The results showed that: (1) the

proposed method achieved high extraction accuracy, with an overall accuracy

of 79.24%; (2) Total area of sea-cucumber ponds in Liaoning Province was 931.08

km2, primarily located along the Huludao Xingcheng-Jinzhou Linghai and

Yingkou Xishi-Dalian Zhuanghe coastal zones; (3) Over the past seven years,

the area of sea-cucumber ponds increased by 624.57 km2, with expansion

concentrated on the northwest coast of Liaodong Bay and both the eastern

and western sides of the Liaodong Peninsula. These findings provide scientific

support for the sustainable development of sea-cucumber aquaculture.
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1 Introduction

In recent years, China’s aquaculture industry has undergone

rapid development, maintaining its position as the world’s largest

producer of aquaculture products for 32 consecutive years (FAO,

2024). Marine aquaculture, a critical component of the aquaculture,

achieved a production value of 488.55 billion yuan in 2023,

accounting for 37.40% of the total aquaculture production value

(Fisheries Bureau of the Ministry of Agriculture, 2024). Sea

cucumber, as one of the primary species characterizing the fifth

wave of marine aquaculture development in China—following

earlier waves dominated by fish, shrimp, shellfish, and algae

farming—has experienced substantial industrial growth over the

past two decades (Hou et al., 2019). Sea cucumbers not only play a

crucial ecological role in marine material and energy cycling, but are

also regarded as one of the primary species used in multi-trophic

integrated aquaculture systems and marine ranching practices (Han

et al., 2016). As breeding and aquaculture technologies have

advanced, the farming of sea cucumbers, which was initially

limited to shallow-sea bottom-seeding, has gradually diversified to

include pond culture, industrial aquaculture, shallow-sea cage

culture, offshore suspended cage farming, and polyculture with

multiple species. Among these various farming methods, pond

culture stands out as a most widely adopted approach due to its

technical maturity, ease of operation, moderate investment

requirements, and high productivity (Yang et al., 2024).

Sea-cucumber aquaculture ponds are predominantly located in

coastal intertidal zones, which often displace natural habitats and

breeding grounds of other aquatic species. Excessive stocking

densities, overfeeding, and improper use of antibiotics associated

with aquaculture activities have been identified as major

contributors to water pollution and environmental degradation in

these regions (Li et al., 2011; Dai et al., 2023). Fish and shrimp

farming, in particular, significantly increase the concentrations of

organic matter, inorganic substances, and antibiotics in water,

creating potential risks of eutrophication (Sadeghi-Nassaj et al.,

2018). Sea cucumbers, however, can act as a bioremediation species

by consuming particulate organic matter (POM), thereby

improving water transparency and mitigating the effects of

eutrophication (Watanabe et al., 2012). Unlike fish and

crustaceans, sea cucumbers require minimal artificial feed, as their

growth can be supported by natural food sources such as suspended

organic matter introduced through water exchange (Han et al.,

2016) or organic waste within the ponds (Purcell et al., 2012). This

results in reduced water exchange requirements, better water

quality, and lower levels of effluent pollution. Consequently, the

extraction of sea-cucumber aquaculture ponds is essential for

accurately assessing the ecological and environmental impacts of

aquaculture in coastal zones.

Remote sensing has been widely used for extracting and

monitoring of aquaculture ponds (Føre et al., 2018), using various

data sources, including optical and radar imagery. Wang et al

(Wang et al., 2022). employed dense time-series Sentinel-2 data

to calculate water indices and integrated image edge detection

algorithms to produce global spatial mapping of land-based
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aquaculture ponds. Xu et al (Xu et al., 2024). used Landsat series

satellite data with a 30-meter resolution to map the global

distribution of inland and coastal pond systems across three

periods: 1984–2000, 2001–2010, and 2011–2020. While optical

data are widely used, their application is often constrained by

cloud coverage. Radar data, characterized by all-weather and all-

day imaging capabilities, have proven effective for extracting

aquaculture ponds in cloudy and rainy coastal regions by

leveraging the differences in backscatter responses between pond

water bodies and other water bodies. For instance, Ottinger M et al

(Ottinger et al., 2017). developed an aquaculture pond

segmentation algorithm based on backscatter intensity, size, and

shape features using dense time-series Sentinel-1 data. However,

compared to optical data, the narrow range of frequency bands in

radar data limits its ability to capture water quality differences

across various types of aquaculture ponds.

Numerous remote sensing methods have been developed for

extracting aquaculture ponds, ranging from traditional visual

interpretation to machine learning and deep learning approaches.

For instance, Hou et al (Hou et al., 2022). incorporated shape and

water quality features of aquaculture ponds into a supervised

classification model. Zeng et al (Zeng et al., 2019). used boundary

curve features and a support vector machine (SVM) classifier to

extract aquaculture ponds surrounding inland lakes. In another

study, Zeng et al (Zeng et al., 2020). proposed a fully convolutional

network (FCN) deep learning model, integrated with a recurrent

channel-spatial attention mechanism (RCSANet), to extract inland

aquaculture ponds based on high-resolution infrared imagery.

Aquaculture ponds often display distinct shapes, such as

rectangular geometries, making object-oriented classification

methods both highly effective and widely used. For example, Li

et al (Li et al., 2023). developed an object-oriented method for

aquaculture pond extraction on the Google Earth Engine (GEE),

combining gray-scale morphology with an iterative image edge

detection algorithm. Similarly, Prasad et al (Prasad et al., 2019).

employed an object-oriented classification approach using Sentinel-

1 time-series data to extract aquaculture ponds along the Indian

coast. However, these methods face challenges in optimizing

segmentation parameters and classification rules. In contrast,

machine learning-based classification methods, characterized by

simplicity and efficiency, have gained widespread application in

aquaculture pond extraction.

Remote sensing techniques for aquaculture ponds extraction are

numerous; however, research on the differences between ponds for

different species and farming methods remains limited. There is no

universal classification method for extracting species-specific

aquaculture ponds. Edwards (2015) suggested that the level of

environmental pollution caused by aquaculture depends on the

type and the intensity of farming system. Chang et al (Chang et al.,

2019). investigated the water quality of six different freshwater

aquaculture species in Jiangsu Province and observed that the water

quality of single-species shrimp and crab farming was significantly

better than that of mixed shrimp-crab and fish-crab farming. The

worst water quality was observed in ponds where different fish

species were farmed together, with chlorophyll-a concentrations
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being dozens of times higher than in single or mixed shrimp-crab

farming. This is mainly due to the increased feed requirements for

mixed fish farming, which leads to higher levels of organic matter,

such as fish feces and feed residues, resulting in a significant

accumulation of nitrogen and phosphorus in the water. This, in

turn, leads to algal blooms and a marked increase in chlorophyll-a

concentrations. These studies indicate that water quality parameters

have significant potential for differentiating various aquaculture

species. Chlorophyll-a, as one of the key water quality indicators,

plays a crucial role in absorbing light in the water, causing changes

in water color, which can be prominently reflected in the spectral

features of the water (Mishra and Mishra, 2012). The absorption

and scattering properties of chlorophyll-a in aquaculture water

determine the overall spectral reflectance features of the water.

Different aquaculture and species and farming methods create

variations in chlorophyll-a levels, making the analysis of water

spectral features a fundamental approach for distinguishing

different aquaculture species.

To extract sea-cucumber aquaculture ponds using Sentinel-2

time-series data, (1) a method is proposed that combines the

spectral and temporal features of water bodies from different
Frontiers in Marine Science 03
aquaculture species and uses decision-tree algorithm; (2) The

method is applied to extract sea-cucumber aquaculture ponds in

the coastal regions of Liaoning Province, China, for the years 2016

and 2023; (3) The spatial-temporal changes of sea-cucumber

aquaculture ponds over the past seven years are analyzed. This

study aims to provide scientific support for the sustainable

development of sea-cucumber aquaculture.
2 Materials and methods

2.1 Study area

Liaoning Province, China, bordered by the Yellow Sea to the

south and the Bohai Sea to the southwest, has a coastal marine area

of 64,000 km2 and a coastal tidal flat area of 2,070 km2 (Figure 1). Its

coastline extends from the mouth of the Yalu River in the east to the

border between Liaoning and Hebei provinces in the west, with a

total length of 2,292 km, accounting for 12% of China’s total

coastline. The province’s long coastline, abundant tidal flat

resources, and large areas of usable marine waters provide
FIGURE 1

Study area and field survey photos (①-③).
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significant natural geographical advantages, resulting in rich fishery

resources within the region. In 2023, the aquaculture area in this

region reached 9,663 km2, of which 7,740 km2 were dedicated to

marine aquaculture, ranking first in the country (Fisheries Bureau

of the Ministry of Agriculture, 2024).

The main aquaculture species in Liaoning Province include fish,

crustaceans, mollusks, algae, and other categories. Among these,

crustaceans primarily consist of shrimp and crabs, mollusks include

scallops, clams, oysters, and others, algae mainly include laver and

kelp, while the other categories includes species such as sea

cucumbers, jellyfish, and sea urchins (Fisheries Bureau of the

Ministry of Agriculture, 2024). With the rapid development of sea

cucumber breeding and farming technologies, sea-cucumber

aquaculture has expanded rapidly, maintaining the largest

aquaculture area in the country for twenty consecutive years,

becoming a pillar industry of the regional fishery economy (Hou

et al., 2019). The primary aquaculture methods for sea cucumbers

include pond farming, cage farming, and bottom-seeding farming

(Han et al., 2016). In addition to sea cucumbers, the main

aquaculture species in the ponds are shrimp, fish, and crabs.

Mollusks are mainly farmed in tidal flats, relying on natural

environments such as mudflats without the need for artificial

breeding or feeding. Algae are cultivated through raft-based

farming in marine environments (Li et al., 2011). Therefore, for

land-based aquaculture ponds, this study classifies the aquaculture

species into three categories: sea cucumbers, shrimp, and fish-crab.
2.2 Data and preprocessing

2.2.1 Sentinel-2 data
The remote sensing data used in this study were acquired from

Sentinel-2 satellite imagery. Sentinel-2 is a satellite launched by the

European Space Agency (ESA), consisting of two satellites, Sentinel-

2A and Sentinel-2B, which provide imagery every five days. These

satellites are equipped with a Multi-Spectral Instrument (MSI) that

covers 13 spectral bands, ranging from visible light to near-infrared

and short-wave infrared wavelengths. The spatial resolution of 10 m

for 4 visible near-infrared bands, and a spatial resolution of 20 m for

4 red edge bands and 2 shortwave infrared bands (SWIR). The

spatial resolution of other bands is 60 m. Due to its high spatial and

temporal resolution, wide field of view, diverse band combinations,

and easy accessibility, Sentinel-2 data have been widely used for

monitoring land surface and coastal area changes (Drusch

et al., 2012).

The Sentinel-2 L1C and L2A data can be accessed free of charge

on the Google Earth Engine (GEE) platform, with L1C data have

been radiometrically and geometrically corrected and the L2A data

already undergoing atmospheric correction preprocessing. For this

study, all Sentinel-2 L2A imagery for the year 2023 and L1C

imagery for the year 2016 with cloud coverage less than 70% was

acquired from the GEE platform. The quality assessment band

(QA60) of Sentinel-2 provides cloud mask information, and the C

Function of Mask (CFMask) algorithm was applied to the QA60
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band to remove clouds and cirrus clouds (Foga et al., 2017).

Aquaculture ponds generally remain in shallow water and do not

freeze from March to November, so images from this period,

specifically from March 1 to November 30, were selected for the

study. In order to ensure the accuracy of the calculation and

analysis, four red edge bands (B5, B6, B7, B8A) and two

shortwave infrared bands (B11, B12) with 20-meter resolution, as

well as the remaining two bands (B1, B9) with 60-meter resolution,

were resampled to 10 meters in GEE using the bilinear

interpolation method.
2.2.2 Aquaculture ponds
A human-computer interactive visual interpretation method

was employed to extract aquaculture ponds. To reduce the noise

from individual image acquisitions, a median composite of all

images captured between March and November was generated

using GEE (Ottinger et al., 2021). To ensure the reliability of the

extraction results, a set of visual interpretation markers and a

validation dataset were established based on field investigations in

the study area. Using ArcGIS 10.2, aquaculture ponds were visually

extracted according to the interpretation standards. The

preliminary interpretation results were then corrected using

auxiliary data, such as high-resolution imagery from Google

Earth, and field survey data were incorporated to verify the

extraction results. The overall accuracy was 94.03%, meeting the

requirements of the study. The main factor limiting the extraction

accuracy of aquaculture ponds is the misclassification between

aquaculture ponds and salt pans. The tidal ponds surrounding

salt pans share similar shapes (mostly rectangular) with aquaculture

ponds. Additionally, the seawater in tidal ponds has a composition

close to that of aquaculture water, resulting in similar spectral

characteristics. These two factors make it easy to confuse salt pans

with aquaculture ponds located around them. However, some tidal

ponds are also used for aquaculture while storing seawater, which

partially reduces the impact of misclassification. Finally, through

format conversion and spatial overlay processing, the spatial

distribution vector data of aquaculture ponds in Liaoning

Province were produced (Figure 1).

2.2.3 Samples
Samples were collected during a field survey conducted from

April 17 to April 21, 2023 in the study area (Figure 1). A total of 341

ground truth samples were gathered, which were then divided into

training and validation samples at an 8:2 ratio. Additionally, to

enhance the accuracy of the extraction results, the validation

samples were expanded by incorporating distribution data from

large sea-cucumber aquaculture bases in Liaoning Province

(Table 1). These data were mainly obtained from POI data in

Google Maps. The POI data related to sea-cucumber aquaculture in

Liaoning Province is retrieved from the Google Maps Platform,

organized, and loaded into Google Earth according to latitude and

longitude, where it is overlaid with high-resolution images to filter

the results. Only search results located within aquaculture ponds

are retained.
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2.2.4 Other ancillary data
The data on the aquaculture area of sea cucumbers in Liaoning

Province over the years were sourced from the China Fisheries

Statistical Yearbook (Fisheries Bureau of the Ministry of

Agriculture, 2024). The administrative boundary of China was

sourced from the National Geomatics Center of China (NGCC)

(https://www.ngcc.cn/).
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2.3 Methods

A method for extracting sea-cucumber aquaculture ponds was

proposed based on a temporal analysis of water spectral features

from various aquaculture species. The specific steps of this method

include five parts (Figure 2): (1) Study the spectral bands features of

the water bodies in three types of aquaculture ponds: sea cucumber,

shrimp, and fish-crab, and construct two new remote sensing

indices. (2) Analyze the time-series features of the indices from

March to November, and identify the key features used for sea

cucumber extraction. (3) Develop a method for extracting sea-

cucumber aquaculture ponds based on spectral temporal features

using the decision-tree algorithm. (4) Use a stepwise searching

method to determine the optimal threshold for the key features. (5)

Once the above threshold is established, apply this method to the

coastal aquaculture ponds in Liaoning Province to extract the

spatial distribution of sea-cucumber aquaculture ponds.

2.3.1 Construction of remote sensing indices for
different aquaculture ponds

Considering the noise influence of single-period imagery, the

Sentinel-2 time-series data was processed using median synthesis.

The median synthesis was chosen to represent the entire time series

instead of the mean value because the mean value can be affected by

extreme outliers (Ottinger et al., 2021). In the preprocessed
FIGURE 2

Flowchart of sea-cucumber aquaculture ponds extraction method.
TABLE 1 The number of samples.

Aquaculture
species

Sea
cucumber

Not
sea cucumber

Total

Shrimp
Fish-
crab

Training samples 127 106 40 273

Validation samples 32 26 10 68

Total 159 132 50 341

Validation samples
(field survey)

32 36 68

Validation samples
(data search)

84 84 168

Total 116 120 236
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Sentinel-2 median imagery, the curves of spectral reflectance were

generated for the three types of aquaculture ponds: sea cucumber,

shrimp, and fish-crab by using mean value of each type in each band

(Yang et al., 2017) (Figure 3). From the spectral bands of B1 to B3,

the differences of surface reflectance among these three aquaculture

types were minimal. From B4 to B8A, the spectral curves of sea

cucumber and shrimp were similar, while fish-crab exhibited

notable differences from the other two types, with an upward

trend in reflectance for fish-crab and a clear downward trend for

sea cucumber and shrimp. Similarly, from B9 to B12, sea cucumber

and shrimp showed comparable reflectance, whereas fish-crab had

significantly higher reflectance, despite all three types displaying a

declining trend. Consequently, relying solely on individual bands

cannot resolve the misclassification challenges among sea

cucumber, shrimp, and fish-crab aquaculture ponds.

The water quality conditions differ among the three aquaculture

species. In areas with more fish farming, the average chlorophyll-a

concentration in aquaculture ponds is relatively high, often tens or

even hundreds of times higher than that in shrimp or crab ponds.

Crab aquaculture ponds also show higher chlorophyll-a

concentrations compared to shrimp aquaculture ponds, as crab

ponds typically include aquatic plants and are generally shallower

(Chang et al., 2019). In contrast, for mollusks like sea cucumber, the

water quality requirements are very strict. Sea-cucumber

aquaculture ponds require regular cleaning to prevent water

quality deterioration. As a result, sea-cucumber ponds generally

have better water quality than those used for fish, shrimp, and crab

farming (Edwards, 2015).

The three aquaculture species were divided into two groups

based on their spectral characteristics. The first group included fish-

crab ponds, which exhibited higher reflectance from B4 to B12,

while the second group comprised sea cucumber and shrimp ponds,

characterized by lower reflectance in the same bands. To enhance

the spectral distinction between these two groups, the B4 (red) and

B8A (red edge 4) were selected. All three types of aquaculture water
Frontiers in Marine Science 06
bodies exhibit an absorption peak in the B4, mainly caused by the

absorption of chlorophyll-a. The B8A is sensitive to changes in

chlorophyll-a concentration in water bodies (Gitelson et al., 2007).

From B4 to B8A, the spectral curves of sea cucumber and shrimp

exhibit a clear downward trend in reflectance because of their better

water quality, while fish-crab with worse water quality shows an

upward trend.

The slope between B4 and B8A was then used to construct the

Land-based Aquaculture Species Classification Index (LASCI). The

formula is as follows (Equation 1):

LASCI = rB8A−rB4
lB8A−lB4 (1)

where rB4 and rB8A represent the surface reflectance of the B4

and B8A, respectively, while lB4 and lB8A denote the central

wavelengths of B4 and B8A, respectively. The value of LASCI is

calculated based on per-pixel using preprocessed Seninel-2 images

in GEE.

For sea cucumber and shrimp, whose surface reflectance is

relatively similar, the increase in shrimp’s reflectance from B4 (red)

and B5 (red edge 1) is significantly higher than that of sea

cucumber. The reflection peak in the B5 is the most notable

spectral feature for water bodies with algae. This because the

absorption coefficient of water and chlorophyll-a is minimal at

this band (Gitelson et al., 2007). Compared to B8A, using the red

edge 1 band to construct the index can further enhance the spectral

distinction in water quality differences between sea cucumber

and shrimp.

Thus, the bands of B4 and the B5are selected to construct the

Sea Cucumber and Prawn Classification Index (SPCI). The formula

is as follows (Equation 2):

SPCI = rB5−rB4
lB5−lB4 (2)

where rB4 and rB5 represent the surface reflectance of the B4

and B5, respectively, while lB4 and lB5 denote the central
FIGURE 3

Spectral reflectance curves for sea cucumber, shrimp, and fish-crab (B1: Aerosols; B2: Blue; B3: Green; B4: Red; B5: Red edge 1; B6: Red edge 2; B7:
Red edge 3; B8: NIR; B8A: Red edge 4; B9: Water vapor; B11: SWIR 1; B12: SWIR 2).
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wavelengths of B4 and B5, respectively. The value of SPCI is

calculated based on per-pixel using preprocessed Seninel-2 images

in GEE.

2.3.2 Temporal features of LASCI and SPCI for
different aquacultures

Using Sentinel-2 imagery in GEE, based on the training samples

of the three types of aquaculture ponds, LASCI temporal curves are

plotted with a 10-day cycle by using mean value of each type (Qu

et al., 2021). Likewise, for the training samples of sea cucumber and

prawn, SPCI temporal curves are plotted with a 10-day cycle by

using mean value of each type. Due to the influence of factors such

as clouds, wet weather conditions and underlying surface, the

LASCI and SPCI time-series data exhibit jagged, irregular

fluctuations, with discontinuities and abrupt rises or falls during

certain periods. These irregularities obscure the temporal trends of

the curves, affecting the extraction of temporal index features for sea

cucumbers, shrimp, and fish-crab, and ultimately affecting

subsequent analyses and the extraction accuracy of sea-cucumber

ponds. The Savitzky-Golay (SG) filtering method smooths the

signal by applying a least-squares polynomial fit to local data

points, effectively reducing noise while preserving sharp features

and the overall trend of the data, and it is widely used for data

smoothing and noise reduction (Savitzky and Golay, 1964).

Consequently, SG filtering is applied to the LASCI and SPCI

time-series data.

LASCI, which is calculated using B4 and B8A, reflects the changes

in chlorophyll-a concentration in aquaculture water. Therefore,

compared to sea cucumber and shrimp, fish-crab aquaculture has

higher LASCI values (Figure 4A), corresponding to the poorest water

quality. From June to September, fish have high feeding rates, with

increased supply of feed and antibiotics, leading to the rapid

accumulation of feed residues and excrement. The levels of

nutrients like nitrogen and phosphorus and organic matter in the

water increase (Cao et al., 2007), which causes the LASCI values for

fish-crab to rise rapidly (from -1.00 on 30 April to 2.12 on 27

September). After September, as the temperature decreases and many

fish are harvested, the LASCI values for fish-crab start to decline.
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As shown in Figure 4A, the LASCI for sea cucumber and shrimp

are consistently less than 0 from March to November, while the

LASCI for fish-crab are greater than 0 during March and from July

to November. Therefore, fish and crab ponds can be distinguished

from sea cucumber or shrimp ponds by using the average values of

LASCI during specific time periods.

From the SPCI time-series curves for sea cucumber and shrimp

(Figure 4B), it is clear that sea cucumber has lower SPCI values than

shrimp fromMarch to November, reflecting its better water quality.

But the trends in the curves are quite different, especially from

March to August. The SPCI for shrimp shows a clear upward trend

from 1 March (3.15) to 10 April (5.02), while the SPCI for sea

cucumbers decreases gradually during the same period, dropping

from -0.11 to -0.58. As the water temperature rises, phytoplankton

in the water begin to proliferate, and the concentration of

chlorophyll-a gradually increases. However, sea cucumbers are

cold-water species, and they begin to enter an active growth

phase in April. During the period from March to early April,

aquaculture ponds strengthen water quality management to

ensure the early growth of sea cucumbers. Therefore, the SPCI

value for sea cucumbers remains relatively stable during this period,

without a noticeable increase. After 10 April, the SPCI for sea

cucumbers starts to increase rapidly, reaching 2.64 by 29 July, while

the SPCI for shrimp shows little change during this period, with a

value of 5.31 on 29 July, only a 0.29 increase from 10 April, and

fluctuates both upward and downward during this time. From April

to June, it is a crucial growth period for sea cucumbers. As the

temperature rises further, algae grow rapidly, leading to an increase

in the SPCI value of sea cucumbers, although it remains at a

relatively low level. Meanwhile, for shrimp, there is no significant

increase in the SPCI value from late April to August, possibly

because shrimp farming gradually starts in May. To ensure the

proper growth of shrimp, the concentration of chlorophyll-a should

not be too high. Therefore, water quality management begins to

strengthen during this period, and the water quality remains stable.

The SPCI for shrimp and sea cucumbers exhibit almost

opposite trends from March to July. Therefore, by using the

distinct upward trend in SPCI values during specific periods, it is
FIGURE 4

Temporal curves of LASCI (A) and SPCI (B) for sea cucumber, shrimp, and fish-crab.
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possible to distinguish between shrimp and sea-cucumber

aquaculture ponds.

In summary, by analyzing the temporal feature differences of

LASCI and SPCI for different aquaculture ponds during various

periods, it is possible to distinguish between the three aquaculture

ponds types of sea cucumber, shrimp, and fish-crab.

2.3.3 A method for sea-cucumber aquaculture
ponds extraction

Based on the section 2.3.2, a method for Sea-Cucumber Ponds

Extraction Based on Spectral Time-series Features (SCPE-STF) is

proposed. The main steps of SCPE-STF are shown in Figure 5.

1) A single-threshold method is used to distinguish between the

fish-crab and the sea cucumber-shrimp. The LASCI for fish-crab are

greater than 0 in March, July-November, while those for sea

cucumber and shrimp are all less than 0 during this period. The

LASCI mean values from 1 March to 31 March and from 9 July to

26 November are used to separate the two groups. Equation 3 is

applied to extract the fish-crab group, and the remaining areas are

identified as sea cucumber or shrimp ponds.

mean(LASCIperiod) > T1 (3)

Where LASCIperiod refers to the mean LASCI from 1 March to

31 March and from 9 July to 26 November. Based on the curve of

LASCI temporal, the initial threshold for T1 is set to 0.

2) The SPCI slope is used to distinguish between sea cucumber

and shrimp. The periods of decline and increase in the SPCI for sea

cucumber are determined. If a signal of slow decline followed by

rapid increase is identified as sea cucumber; otherwise, it is labeled

as shrimp. The rules are as follows (Equation 4).
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slope SPCIfall
� �

< T2 AND slope SPCIriseð Þ > T3 (4)

In the formula, fall refers to the period of slow decline in the sea

cucumber SPCI from 1 March to 10 April, and rise refers to the

period of rapid increase in the sea cucumber SPCI from 10 April to

29 July. T2 and T3 are the threshold for the SPCI slope during the

two periods. Based on the curve of SPCI time-series, the initial

threshold for T2 and T3 are both set to 0.

In summary, three key features, LASCIperiod , SPCIfall , and SPC

Irise, are extracted based on LASCI and SPCI temporal features, and

a decision-tree model is constructed for extraction of sea-

cucumber ponds.
2.3.4 Determination of the optimal threshold
through the stepwise searching method

Using training samples and employing overall accuracy as the

evaluation metric, the stepwise searching method is applied to

determine the optimal thresholds (T1, T2, T3) for the three key

features (LASCIperiod , SPCIfall , SPCIrise).

First, to distinguish between fish-crab ponds and sea cucumber

or shrimp ponds, a stepwise searching is conducted based on the

initial threshold range and step size for T1. The best threshold for

T1 is determined based on the overall accuracy. Then, using the

optimal T1 threshold, the distinction between sea cucumber and

shrimp ponds is made by adjusting T2 and T3. Similarly, the

stepwise searching method is applied for T2 and T3, and the best

thresholds for T2 and T3 are also determined based on the

overall accuracy.

Based on the time-series curves of the two indices (Figure 4), the

initial thresholds for T1, T2, and T3 are set to 0, with a step size of
FIGURE 5

The decision-tree algorithm for sea-cucumber aquaculture ponds extraction.
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0.01. Starting from the initial threshold, the search range is

expanded both forwards and backwards. The range is adjusted

according to the overall accuracy, and if the overall accuracy

remains stable or becomes too small (less than 20%), the search

range is no longer modified. The final search ranges for the three

thresholds are shown in Table 2.
2.4 Accuracy evaluation

The confusion matrix is calculated using validation samples, and

the accuracy is evaluated using Producer’s Accuracy (PA), User’s

Accuracy (UA), Overall Accuracy (OA), and F1 score. OA measures

the proportion of correctly classified samples out of all samples,

indicating the overall classification accuracy. UA reflects the

proportion of correctly classified sea-cucumber ponds among all

samples classified as such, showing the reliability of the classification.

PA indicates the proportion of correctly classified sea-cucumber

ponds out of all actual sea-cucumber ponds, highlighting the

method’s ability to detect the target class. F1 score is the harmonic

mean of UA and PA, providing a balanced evaluation of classification

performance. The formulas for calculating these four accuracy

metrics are as follows (Equations 5–8):

PA =
Xij

Xi*
(5)

UA =
Xij

X*j
(6)

OA = Sd
n (7)
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F1   score =
UA�PA
UA+PA � 2 (8)

where Xij is the number of samples classified as aquaculture

species i, but the true species is j. Xi* is the total number of samples

classified as species i. X*j is the total number of samples with the

true species j. Sd is the number of correctly classified samples. n is

the total number of validation samples.
3 Results

3.1 Optimal thresholds of three
key features

Using the training samples, the initial search ranges for the

three key feature thresholds were determined through the stepwise

searching method (Figure 6).

For the key feature LASCIperiod used to distinguish fish-crab

from sea cucumber and shrimp (Figure 6A), the OA gradually

increased starting from -2.00. It peaked at 84.75% when T1 reached

0.11, and then slowly declined, stabilizing around 80%. When T1

reached -0.57, the OA was 75%, and although it fluctuated slightly

with further increases in T1, it consistently remained above 75%.

When T1 was between -0.31 and 1.42, the OA exceeded 80%.

Therefore, the optimal threshold for T1 was set to 0.11. As T1

increased, the PA for the sea cucumber or shrimp group quickly

rose, reaching over 90% when T1 exceeded 0.10. However, as T1

increased further, the UA for this group gradually declined, but it

remained above 79%.

After setting the threshold T1 to 0.11, a threshold combination

test was conducted for the two key features SPCIfall and SPCIrise to

distinguish sea cucumber and shrimp (Figure 6B). The highest OA

of 80.88% was achieved when T2 was 0.06, 0.07, or 0.08, and T3 was

-0.01. When the range of T2 and T3 was expanded, overall accuracy

exceeded 80% for T2 values between 0.05 and 0.08 and T3 values of

-0.10, -0.009, or -0.01. Additionally, when T2 exceeded 0.02 and T3

was less than 0.01, the overall accuracy reached 75% or higher. As

T2 increased and T3 decreased, the overall accuracy consistently

remained above 75%.
TABLE 2 Searching range and step of three key features (T1, T2, T3).

Threshold Range Step

T1 -2.00 ~ 2.00 0.01

T2 -0.10 ~ 0.20 0.01

T3 -0.10 ~ 0.10 0.01
FIGURE 6

Sensitivity test of T1 (A), T2 and T3 (B) for key feature LASCIperiod , SPCIfall and SPCIrise .
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Based on the sensitivity tests for the three key feature thresholds,

T1, T2, T3 were set to 0.11, 0.06, and -0.01, respectively. These

thresholds were used to construct a decision-tree model (Figure 5)

for extracting sea-cucumber aquaculture ponds in the study area.
3.2 Accuracy of sea-cucumber aquaculture
ponds extraction in Liaoning province

Accuracy validation of the extraction for sea-cucumber

aquaculture ponds in Liaoning Province was conducted using 236

validation samples. The results show that the OA is 79.24%. The PA

is relatively high, reaching 87.07%, while the UA is slightly lower at

74.81%. The F1 score is 0.81 (Table 3).
3.3 Distribution of sea-cucumber
aquaculture ponds in Liaoning province

Using the SCPE-STF, a distribution map of sea-cucumber

ponds in the coastal areas of Liaoning Province was generated
Frontiers in Marine Science 10
(Figure 7). The total area of sea-cucumber ponds in Liaoning

Province is 931.08 km2, primarily concentrated in the coastal

zones of Xingcheng in Huludao-Linghai in Jinzhou, and the

coastal zones of Xishi in Yingkou-Zhuanghe in Dalian city.

The sea-cucumber pond area in the coastal zones of Xingcheng

in Huludao-Linghai in Jinzhou is approximately 255.00 km2,

accounting for 27.39% of the total sea-cucumber pond area in

Liaoning Province. These ponds are mainly concentrated along the

western coast of Liaodong Bay of Xingcheng in Huludao and the

northwestern coast areas of Taihe and Linghai in Jinzhou.

The sea-cucumber pond area in the coastal zones of Xishi in

Yingkou-Zhuanghe in Dalian is approximately 649.94 km2. These

ponds are primarily distributed along the eastern and western coasts

of the Liaodong Peninsula. For instance, the sea-cucumber pond

area in Wafangdian on the eastern side reaches 249.64 km2

(26.81%), while the pond area in Pulandian on the western side is

117.35 km2 (12.60%). East of Heidao Town in Zhuanghe City to

Dandong, sea-cucumber aquaculture is almost nonexistent. This

trend may be related to changes in environmental and water quality

conditions. Salinity in the farming water is one of the most critical

factors affecting sea cucumber growth. Compared to other
TABLE 3 Confusion matrix and accuracy of sea-cucumber ponds extraction in Liaoning Province.

Reference
UA

Positive Negative Total

Extraction result

Positive 101 34 135 74.81%

Negative 15 86 101 85.15%

Total 116 120 236

PA 87.07% 71.67%
OA 79.24%

F1 score 0.81
FIGURE 7

Distribution of sea-cucumber ponds in Liaoning Province.
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aquaculture species such as shrimp and fish, sea cucumbers require

higher salinity levels, with the optimal range being 27‰ to 32‰

(Han et al., 2016). The waters west of Zhuanghe likely have

relatively higher salinity, meeting the salinity requirements for

sea-cucumber aquaculture. However, as one moves eastward

toward the Yalu River estuary, the salinity levels decrease, which

likely explains the absence of sea cucumber farming in those areas.

Among the six coastal prefecture-level cities in Liaoning Province,

Dalian is themostprominent in sea cucumber farming,with the area of

532.86 km2, accounting for more than half (57.23%) of the province’s

total sea-cucumber pond area. It is followed by Jinzhou and Yingkou,

with areas of 219.00 km2 (23.52%) and 117.07 km2 (12.57%),

respectively. Huludao and Panjin have smaller distributions, while

Dandong has almost no sea-cucumber ponds (Figure 8). In detail,

approximately 73% of Huludao’s sea-cucumber ponds are located in

Xingcheng, with an additional 26% in Suizhong.The northerndistricts

of Lianshan, Longgang, and Nanpiao have almost no distribution. In

Jinzhou, which is in the northern part of Liaodong Bay, sea-cucumber

ponds are concentrated along the coastal areas, extending from eastern
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Linghai to central Taihe. Panjin has relatively fewer sea-cucumber

ponds. In Yingkou, more than half of the sea-cucumber ponds are

located in Xishi district, followed by neighboring Laobian and

Gaizhou. Dalian’s sea-cucumber ponds are mainly distributed along

the eastern and western sides of the Liaodong Peninsula. The western

cityofWafangdianhas apondareaof 249.64km2, representing 26.81%

of the province’s total. On the eastern side, Pulandian ranks second in

Dalian with a pond area of 117.35 km2. The southern regions of the

peninsula, such as Lushunkou and Ganjingzi, have minimal sea-

cucumber ponds distribution.
3.4 Spatio-temporal changes of sea-
cucumber ponds in Liaoning province from
2016 to 2023

Using SCPE-STF proposed in this study, the spatial distribution of

sea-cucumber ponds in Liaoning Province for 2016 was further obtained

(Figure 9). In 2016, the area of sea-cucumber pondswas 624.57 km2.After
FIGURE 8

Distribution of sea-cucumber ponds in 6 coastal cities (Huludao, Jinzhou, Panjin, Yingkou, Dalian, Dandong) of Liaoning Province.
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seven years of sea-cucumber aquaculture development and pond

expansion, the area increased by 306.52 km2 (accounted for 49.08%),

with an average annual growth rate of about 38.31 km2/year. Among the

five coastal prefecture-level cities with sea-cucumber aquaculture in

Liaoning, only Panjin experienced a slight decrease in sea-cucumber

ponds, with a reduction of 4.34 km2. In contrast, the other cities

increased significantly. Dalian recorded the largest growth, with an

increase of 167.37 km2, followed by Jinzhou, which added

approximately 107.14 km2. Yingkou and Huludao experienced smaller

increases,with gains of 30.53km2and5.82km2, respectively (Figure 10A).

Over the past seven years, the expansion of sea-cucumber

aquaculture ponds in Liaoning Province has been primarily

concentrated in three areas: Jinzhou on the northwest coast of

Liaodong Bay, Wafangdian on the western side of the Liaodong

Peninsula, and Pulandian on the eastern side of the peninsula. The

areas increased by 79.57 km2, 66.93 km2, and 57.09 km2, respectively

(Figure 10B). The decline of sea-cucumber ponds has mainly been

concentrated in Panshan of Panjin, near themouth of the LiaoheRiver

(Figure10C).The area of sea-cucumberpondsdecreasedby18.61km2.

This reduction is primarily due to strengthened the ecological

restoration of coastal wetlands, protected biodiversity, and the

restoration of saline-alkali land, which have led to the demolition of

many aquaculture ponds in the area, resulting in a decrease in the total

area of sea-cucumber ponds.
4 Discussion

4.1 Advantages of LASCI and SPCI

Currently, remote sensing indices for water quality assessment are

commonly used:NormalizedDifference Chlorophyll Index (NDCI), which

can quantitativelymonitor chlorophyll-a concentration in coastal zones and

estuarine water bodies (Mishra and Mishra, 2012); Floating Algae Index
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(FAI), a marine water color index typically used tomonitor phytoplankton

in inland lakes and nearshore open seas (Hu, 2009); NormalizedDifference

Turbidity Index(NDTI),oftenused forwaterqualityassessment inpondsor

small inlandwater bodies (Bid and Siddique, 2019). These above indices are

mainly applied to coastal waters, estuaries, inland lakes and reservoirs, with

only a few studies exploring their use for aquaculture pond extraction.

However, their feasibility in distinguishing different aquaculture species

remains unknown.

From the time-series features of the three indices for different

aquaculture species (Figure 11), there is a clear difference in the FAI

andNDTI between fish-crab and sea cucumber, shrimp. However, the

FAI and NDTI for sea cucumber and shrimp are very similar.

Compared to the distinct rising features in SPCI (SPCIfall and SPC

Irise) for sea cucumber and shrimp, the NDCI, although showing some

variation in value, has a relatively stable time-series pattern without

obvious trends, making it difficult to distinguish between the two

species. In contrast to NDCI, NDTI and FAI, the LASCI and SPCI

developed in this study are more targeted for differentiating sea-

cucumber ponds from other aquaculture species ponds based on

different species water quality conditions (Figure 4), offering a more

effective approach for sea-cucumber ponds extraction.

The differences in water quality conditions lead to variations in

the LASCI and SPCI for different aquaculture species. Compared to

sea cucumber and shrimp, fish-crab aquaculture has higher LASCI

values (Figure 4A), corresponding to the poorest water quality.

From the SPCI time-series curves for sea cucumber and shrimp

(Figure 4B), it is clear that sea cucumber has lower SPCI values than

shrimp, reflecting its better water quality.
4.2 Application potential of SCPE-STF

The ponds of different aquaculture species are mostly regular in

shape and have similar spectral characteristics, making the
FIGURE 9

Distribution of sea-cucumber ponds in Liaoning Province, 2016.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1551260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du et al. 10.3389/fmars.2025.1551260
FIGURE 10

Area of sea-cucumber ponds in 21 county-level administrative districts (A) and 5 prefecture-level cities (B), and expansion and decline of sea-
cucumber ponds (C) in Liaoning Province from 2016 to 2023.
FIGURE 11

NDCI、FAI、NDTI temporal curves for sea cucumber, shrimp, and fish-crab.
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extraction of sea-cucumber ponds a challenging task. This study

proposes a method for extracting sea-cucumber ponds based on

remote sensing spectral time-series features. By redefining the time

windows and thresholds for three key features, sea-cucumber ponds

can be effectively identified, meeting the requirements for real-time

and dynamic monitoring of sea-cucumber aquaculture distribution

and changes. Notably, in the sea cucumber extraction decision-tree

model, when the thresholds of the three key features reach specific

values (T1>-0.57, T2>0.02 and T3<0.01), a relatively good

extraction can be achieved (OA > 75%).

The SCPE-STF method proposed in this study is based on

Sentinel-2 data and involves three bands (red, red edge 1, and red

edge 4) for remote sensing indices construction. Among these, the

SPCI constructed using the red band and red edge 1 band, is key for

distinguishing between shrimp ponds and sea-cucumber ponds.

The wavelength range of red edge 1 is from 698 to 713 nm.

Currently, while satellites containing red and red edge 4 bands

(sometimes called near-infrared narrow bands, 855~875 nm) are

widely available and well-developed, those also equipped with red

edge 1 band are relatively limited. Common satellites with red edge

1 band include WorldView-2 (Mutanga et al., 2012), WorldView-3

(Solano et al., 2019), RapidEye (Tyc et al., 2005), and Gaofen-6 (Shi

et al., 2022). The SCPE-STF method, in theory, can be adapted for

use with other optical remote sensing data containing red edge

1 band.
4.3 Comparison with statistical data

The extraction results were compared with other statistical data

and statistical yearbook data. According to other statistical data, the

sea-cucumber pond area in Liaoning Province is 963.92 km2,

differing from the extraction results by only 3.41% (32.84 km2),

indicating a satisfactory level of accuracy (Table 4). However,

according to the China Fisheries Statistical Yearbook (Fisheries

Bureau of the Ministry of Agriculture, 2024), the sea-cucumber

aquaculture area in Liaoning Province in 2023 is reported as

1,889.76 km2. The area extracted using the proposed method,

931.08 km2, is approximately 50% smaller, showing a

significant discrepancy.

The discrepancy with statistical data mainly arises from the

sea cucumber farming methods employed. Bottom-sowing

farming is one of the most important sea-cucumber aquaculture

methods in Liaoning Province. This method involves releasing sea

cucumber juveniles of specific sizes at a suitable density in

designated seabed areas, allowing them to grow and reproduce
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naturally on the ocean floor (Yang et al., 2024). According to a

2020 report from official media, Dalian ’s sea-cucumber

aquaculture area was approximately 1,287 km2, with bottom-

sowing farming accounting for about 860 km2, or 66.82% of the

total area. This figure exceeds the entire sea-cucumber aquaculture

area of Shandong Province at that time. Based on the China

Fisheries Statistical Yearbook (Fisheries Bureau of the Ministry of

Agriculture, 2024), Shandong Province ’s sea-cucumber

aquaculture area in 2023 was 899.24 km2, which can be used as

an estimate for the bottom-sowing sea-cucumber aquaculture area

in Liaoning Province for 2023. Additionally, cage farming is

another aquaculture method used in Liaoning Province,

covering an area of 75.71 km2 in 2023. Thus, the total area for

aquaculture ponds in 2023 is approximately 914.81 km2.

The sea-cucumber aquaculture area reported in the statistical

yearbook refers to the surface area of natural seawater used for

farming, including pond farming, bottom-sowing, and cage

farming. Factory-based and deep-water cage aquaculture are

excluded from the reported area (Fisheries Bureau of the Ministry

of Agriculture, 2024). This study only calculated the surface area of

ponds used for sea cucumber farming, which differs from the

statistical data by only 16.27 km2, or 1.78%.
4.4 Limitations of SCPE-STF

In Liaoning Province, sea cucumbers are often co-cultured with

shrimp, pufferfish, sea urchins, and jellyfish. This study considered

mixed farming with sea cucumbers as sea-cucumber aquaculture

ponds and did not specifically differentiate between mixed and

single-species farming. The ability to accurately distinguish

aquaculture water bodies from non-aquaculture water bodies is a

critical prerequisite that limits the precision of sea-cucumber

aquaculture ponds extraction.

Due to factors such as latitude and climate, the spectral index

temporal features of the same aquaculture species may vary across

different regions. These variations can affect the position and range

of key features time windows, potentially impacting the extraction

accuracy of sea-cucumber aquaculture ponds. If the thresholds (T1,

T2, T3) are not optimized using the stepwise searching method but

are uniformly set to 0 based on indices temporal analysis, the OA

drops significantly to only 59.56% (Figure 6). Thus, achieving better

results with the three key features (LASCIperiod , SPCIfall , SPCIrise)

requires training with samples. Developing an automated method

for the extraction of sea-cucumber aquaculture ponds remains a key

area for further research.
TABLE 4 Comparison with statistical data.

Total area (km2) SCPE-STF (km2) Difference (km2) Difference proportion (%)

Statistical yearbook data 914.81 931.08 +16.27 1.78

Other statistical data 963.92 931.08 -32.84 3.41
frontiersin.org

https://doi.org/10.3389/fmars.2025.1551260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du et al. 10.3389/fmars.2025.1551260
SCPE-STF identified the most sensitive time periods for

extracting sea cucumber ponds between March and November

and determined the optimal threshold for these periods. In the

analysis of the reasons behind the index time-series variations,

water quality changes induced by temporal variations were

considered, where time changes are somewhat associated with

seasonality. However, there is still a lack of analysis of index

changes and their seasonal driving factors from a seasonal

perspective. The seasonal variations in chlorophyll-a levels in the

aquaculture water of different ponds are the driving factors for the

changes in the three thresholds. If seasonal thresholds can be

integrated into the model, this approach could be applicable to

different regions and climate zones, and may also improve

extraction accuracy.
5 Conclusions

Using Sentinel-2 data, this study analyzed the spectral and

temporal features of aquaculture water bodies for three species. A

method for extracting sea-cucumber aquaculture ponds based on

spectral temporal features (SCPE-STF) was proposed, providing

decision-making support for the sustainable development of sea

cucumber farming. Future improvements to SCPE-STF should

focus on the automated identification of key features time

windows and its applicability to other datasets.
Fron
1. Two remote sensing indices,LASCI andSPCI,weredeveloped

for different aquaculture species. By combining the required

water environment for the growth of aquaculture species with

the temporal features of the indices, three temporal key

features (LASCIperiod , SPCIfall , SPCIrise) were constructed

specifically for sea-cucumber aquaculture ponds.

2. When the thresholds for the three key features (T1,T2, T3) in

the decision-tree model reach certain values, high

classification accuracy can be maintained. Specifically, when

T1 is greater than -0.57, the OA between the fish-crab and sea

cucumber-to-shrimpgroups exceeds 75%. Similarly, whenT2

is greater than0.02 andT3 is less than0.01, theOA for all three

aquaculture species can also exceed 75%.

3. SCPE-STF has achieved good accuracy in Liaoning

Province. The OA is 79.24%, PA is 87.07%, UA is

74.81%, and the F1 score is 0.81. This demonstrates that

remote sensing techniques can effectively be used to extract

sea-cucumber aquaculture ponds.

4. The total area of sea-cucumber ponds in Liaoning Province

is 931.08 km2, primarily distributed along the coastal areas

of Xingcheng in Huludao-Linghai in Jinzhou, and Xishi in

Yingkou-Zhuanghe in Dalian. From 2016 to 2023, the area

of sea-cucumber ponds increased by 624.57 km2, with the

expansion mainly concentrated along the northwest coast

of Liaodong Bay in Jinzhou and both the eastern and

western sides of the Liaodong Peninsula.
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