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Collision avoidance method for
unmanned ships using a
modified APF algorithm
Lianbo Li1*, Wenhao Wu2, Zhengqian Li1 and Fangjie Wang1

1Navigation College, Dalian Maritime University, Dalian, China, 2DayaBay Maritime Safety
Administration, Shenzhen Maritime Safety Administration, Shenzhen, China
The Artificial Potential Field (APF) algorithm has been widely used for collision

avoidance on unmanned ships. However, traditional APF methods have several

defects that need to be addressed. To ensure safe navigation with good

seamanship and full compliance with the Convention on the International

Regulations for Preventing Collisions at Sea, 1972 (COLREGS), this study

proposes a dynamic collision avoidance method based on the APF algorithm.

The proposed method incorporates a ship domain priority judgment encounter

situation, allowing the algorithm to perform collision avoidance operations in

accordance with actual operational requirements. To address path interference

and unreachable target issues, a new attractive potential field function is

introduced, dividing the attractive potential field of the target point into

multiple segments simultaneously. Additionally, the repulsive force on the own

ship is reduced when close to the target point. The results show that the

proposed method effectively resolves path oscillation problems by integrating

the potential field based on traditional APF with partial ideas from the Dynamic

Window Approach (DWA). In comparison with traditional APF algorithms, the

overall smoothing degree was improved by 71.8%, verifying the effectiveness and

superiority of the proposed algorithm.
KEYWORDS

unmanned ship, artificial potential field algorithm, dynamic window approach, distance
decay factor, dynamic collision avoidance
Highlights
• Proposed a method based on an improved APF that can realize real-time collision

avoidance decision-making operations for unmanned ships.

• The traditional APF is structurally improved to realize the decision-making

operations in line with seamanship and the ship’s maneuverability.

• The scenario setup includes multi-ship meetings in complex water areas and

scenarios deviating from COLREGS.
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1 Introduction

With the deepening of global economic integration, maritime

transportation as the main way of global commodity trade has also

gained huge development momentum, ships have undergone a

trend of large-scale and rapid development, and the navigational

environment has become more and more complex, which brings

new challenges to the ship navigation safety. In this context, the

introduction of artificial intelligence for safe navigation and

collision avoidance operations of unmanned ships in complex

water areas, such as narrow navigation areas in ports, straits, and

waterways, has become a key issue in the field of navigation, and an

effective dynamic collision avoidance method for unmanned ships

is essential to ensure navigation safety, improve the efficiency of

traffic in waters, and promote the development of unmanned ship

technology. At present, the main methods for unmanned ship

dynamic collision avoidance can be summarized into two kinds:

one is the deterministic ship dynamic collision avoidance method

based on mathematics and other theoretical backgrounds; the other

is the method based on intelligent optimization technology such as

heuristic algorithms.
1.1 The deterministic
mathematical methods

Most of the ship collision avoidance studies based on

deterministic methods, such as mathematics, use geometry,

analytics, kinematics, and field theory to analyze and process, and

several common mathematical methods currently include analytic

geometry (Tang et al., 2012; Gil et al., 2020), Velocity Obstacle (VO)

(Lenart, 1983; Fiorini, 1998), Artificial Potential Field (APF) (Lee

et al., 2019; Selvam et al., 2021), Rapidly exploring Random TTree

(RRT) (Kuner et al., 1999; Zhang J. et al., 2022), and the Expert

Advisory Automatic Collision Avoidance System (Fiskin et al.,

2021). It can be traced back to the early 1990s, when Japanese

scholars Iijima and Hagiwara (1991) developed an automatic

collision avoidance decision control system for ships that can

automatically execute collision avoidance strategies, and the

width-first search method was used in this control system to

select and plan the collision avoidance path, but the collision

avoidance scenario was single in the design of the system, and the

universality of the system was poor.

With the rapid development of the shipping industry, more and

more scholars have devoted themselves to the field of ship collision

avoidance. Zhang et al. (2021) proposed a real-time collision

avoidance model combining the B-spline-based Collision

Avoidance Trajectory Search (BCATS) algorithm and a real-time

collision avoidance model combining waypoint-based collision

avoidance trajectory optimization and path speed decoupling

control to achieve real-time and autonomous collision avoidance

operations for multi-vessel encounter situations in uncertain

environments, thereby planning dynamic and safe collision

avoidance schemes. Zhang W. et al. (2022) proposed an

Automatic Identification System (AIS)-based Real-time Collision

Probability (RtCP) ranking method that is quantified using a safety
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distance influence index consisting of real-time factors of ship

maneuverability such as speed and heading angle, and the

Conflict Probability Level (CPL) is classified by analyzing a large

amount of AIS historical data to provide collision avoidance

decision support for ships. Yuan et al. (2021) proposed a real-

time ship collision risk assessment method. Based on the AIS data to

determine the encounter situation, the collision risk is assessed

based on an improved nonlinear VO algorithm by considering

the target vessel as a dynamic obstacle while using a collision

risk model. Zaccone Zaccone (2021) proposed an optimal

path planning algorithm based on RRT* and made it possible to

satisfy safe collision avoidance distance, comply with COLREGS

requirements, and feasibly generate optimal paths. The effectiveness

of the algorithm was verified by real-time simulation tests of

multiple scenarios. Zhang K. et al. (2022) proposed a new

autonomous ship real-time collision avoidance model based on an

improved VO algorithm and ship maneuvering characteristics. The

VO algorithm is used to determine whether a ship in the Potential

Collision Area (PCA) is at risk of collision, and then an Asymmetric

Grey Cloud (AGC)-based model is used to quantify the collision

risk of a ship in different encounter situations in the PCA and

provide a timely warning. The method considers various

constraints, including the Convention on the International

Regulations for Preventing Collisions at Sea, 1972 (COLREGS),

the ship’s maneuverability, and seafarers’ usual practices, and can

provide appropriate collision avoidance decision options for

autonomous ships. Yu et al. (2022) proposed a dynamic ship path

planning method based on Dynamic Cluster Analysis (DCA),

which dynamically clusters target ships with similar attributes

into a group, reducing the number of computational targets and

improves the efficiency of path planning and considers the action

requirements of COLREGS, and the simulation results show that

the method can obtain safe and feasible dynamic collision

avoidance paths.
1.2 The intelligent optimization
technology methods

With the rapid development of artificial intelligence (AI), Deep

Reinforcement Learning (DRL) (Li et al., 2021), heuristic algorithms

such as swarm intelligence algorithms, genetic algorithms

(Ma et al., 2018), and the Markov Decision Process (MDP)

(Howard, 1960; Woo and Kim, 2020) have also been widely used

in collision avoidance decision-making problems.

Wang et al. (2024a, 2024b) proposed two methods: Safe

Reinforcement Learning (SRL) with a reliability and risk

hierarchical critic network (SRL-R2HCN) and a novel risk and

reliability critic-enhanced safe hierarchical reinforcement learning

(RA-SHRL), to address the challenges of Collision Avoidance

Decision Making (CADM) for Maritime Autonomous Surface

Ships (MASS) in complex maritime traffic and congested water

areas. Their experimental results demonstrate that both methods

could generate safe, efficient, and reliable collision avoidance

strategies in both time-sequenced dynamic obstacle and mixed

environments. Zhang et al. (2023) proposed an autonomous
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Collision Avoidance Decision-Making System (CADMS) for ships.

The system is realized from the perspective of risk identification-

motion prediction-ship control-scheme implementation, and the

dynamic and uncertain characteristics of ship actions (i.e., changing

course or changing speed) are considered in the modeling process to

realize real-time rolling updates of ship collision avoidance decisions.

Rothmund et al. (2022) proposed a Dynamic Bayesian Network

(DBN)-based collision avoidance model for ships and inferred the

intentions of other ships based on the observed real-time behavior.

The prior probability distributions of the intention nodes are

adaptively adjusted according to the current situation to infer the

states of multiple intention variables describing the possible behavior

of the own ship. The model finally generates optimal ship collision

avoidance decisions in real time based on the resulting intent

information. Xu et al. (2021) proposed a dynamic collision

avoidance algorithm based on DRL, which quantifies the collision

risk by developing risk metrics while considering collision factors,

position, speed, heading, and COLREGS compliance to design the

algorithm’s reward function to ensure that the generated collision

avoidance decisions are safe and effective, and demonstrated

this through simulation experiments. Rongcai et al. (2023)

established an autonomous collision avoidance decision system

based on deep reinforcement learning to assess the current

collision hazard through encounter situation recognition and risk

perception. Subsequently, an approximate policy optimization

approach is applied to design the state space, action space, and

reward function. The system considers the ship hydrodynamic

model, environmental disturbance force model, COLREGS, and

good seamanship. The simulation experiments show that

the proposed system can effectively take appropriate actions

when facing COLREGS constraints and hazardous situations in

different scenarios.
1.3 Methods’ summary and comparison

In summary, the ship collision avoidance models based on

deterministic mathematical methods have higher calculation

complexities, and the results are more accurate. However, this

type of method generally calculates the optimal paths or decisions

by only considering the relationship between the meeting ships.

Their flexibility and universality are poor because they cannot

consider the changeable and complex encounter changes at sea.

With the development of computer and artificial AI technology, the

models based on them are widely used in ship collision avoidance

and ship path planning. By using computers to carry out ship

collision avoidance simulations, the process and result of collision

avoidance are more realistic and accurate by considering the

influence of complex factors such as ship parameters and obstacle

shapes on collision avoidance between ships. However, most

heuristic algorithms generally require a lot of training and

iteration to continuously update the calculation results. The

algorithms often fall into local optima due to the uncertainty of

individual updates. Meanwhile, most of the heuristic algorithms are

designed to solve specific problems in the field in which they were

created, are not necessarily applicable to ship collision avoidance,
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and are not very universal. Furthermore, most studies are based on

the final collision avoidance results of ships and rarely consider the

requirements of COLREGS and the maneuverability of ships, so

their actual effect has yet to be verified.

For solving these problems, which means the algorithm

proposed can consider the variation of the meeting situation and

water area and the process of collision avoidance can be

correspondingly realistic, the algorithm has high iteration

efficiency and can escape the local optima or make it hard to fall

into the local optima. Based on the above requirements, this paper

proposed the improved-APF algorithm based on traditional APF

and DWA to achieve the dynamic collision avoidance decision of

unmanned ships, which provides some theoretical references for the

application of unmanned ship systems.

The remainder of this paper is organized as follows: Section 2

details the principle of the traditional APF algorithm and the

improvement measures for the traditional APF algorithm, and

designs the corresponding improvement means for different defects

respectively. Section 3 introduces the pre-conditions for ship collision

avoidance and adds constraints to the collision avoidance operation

of the algorithm by introducing the ship domain and specifying the

requirements of COLREGS. In section 4, different test scenarios based

on COLREGS are designed and simulated. The results are compared

with the traditional method to verify the superiority of the method

proposed in this paper. In section 5, the conclusions of this paper and

further discussion are reviewed.
2 Method

Dynamic collision avoidance methods for unmanned ships are an

important area of research in ship autonomous navigation. In this

field, the APF algorithm is a widely used method, which can

effectively and quickly generate safe navigation paths in real time,

and its simple algorithm structure can easily be combined with the

other algorithms. In addition, for the other defects of the traditional

APF algorithm, (i.e., path interference, unreachable target, and path

oscillation) an improved APF algorithm is proposed in this section,

which integrates the idea of DWA based on the improved potential

field function and can take the ship motion parameters into account,

which not only overcomes its original defects, but also can calculate

the ship’s trajectory more accurately according to the ship motion

parameters and generate a more practical navigation path.
2.1 Principle of APF algorithm

The APF was first formally proposed by Professor Khabit of

Stanford University and applied to real-time collision avoidance of

robots in known static environments (Khabit, 1986). It is a virtual

potential field-based path-planning method that is often applied to

paths in robotics, unmanned ships, unmanned aircraft, and other

field-planning problems. The basic principle of the artificial

potential field method is to consider the own ship as an object

with mass point characteristics and construct a virtual potential

field around it so that the robot is subjected to a total potential
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energy in this potential field and thus moves along the gradient

descent direction to reach the target point. This potential field is

usually composed of two parts: the attractive potential field and the

repulsive potential field.

The attractive potential field Uatt denotes the attractive effect of

the target point qg on the own ship’s position q. The own ship moves

along the gradient direction toward the target point under the

action of the attractive potential field. The traditional attractive

function (Equation 1) is a global static potential field function, and

for each point q on the map with coordinates, the strength of the

attractive potential field at that point is proportional to the square of

the distance of that point from the target point.

Uatt(q) =
1
2
er2(q, qg) (1)

where e denotes the attractive coefficient, which is proportional to

the magnitude of the attractive potential field gradient, r (q, qg)

denotes the distance from the own ship’s position q to the target

point qg, and the attractive force on the own ship at point q can be

expressed as a negative gradient in the strength of the attractive

potential field, with the direction pointing from point q to the target

point qg, with Equation 2:

Fatt(q) = −m ½Uatt(q)� = −
∂Uatt(q)

∂ r
= −er(q, qg )et (2)

where et denotes the unit vector.
The repulsive potential field Urep represents the repulsive effect

of the obstacles around the own ship. The traditional repulsive

potential field is also a global static potential field function but

differs from the attractive potential field in that it has a segmented

structure, there is a repulsive influence range, and the range outside

is not affected by the repulsive force. The own ship is moved away

from the obstacle under the action of the repulsive potential field to

achieve the effect of obstacle avoidance, and the equation of the

repulsive potential field is as Equation 3:

Urep(q) =
1
2 h(

1
r(q,qob)

− 1
r0
)2,r(q, qob) ≤ r0

0,r(q, qob)>r0

(
(3)

where h denotes the repulsion coefficient, which is proportional to

the magnitude of the repulsive potential field gradient, r0 denotes
the potential field boundary coefficient, and the distance between

the own ship and the obstacle is within r0 when the potential field

takes effect. Similar to the attractive force calculation process, the

repulsive force on the own ship at point q can be expressed as a

negative gradient of the repulsive potential field strength, and the

equation is as Equation 4:

Frep(q) = −m ½Urep(q)� = −
∂Urep(q)

∂r

=
h( 1

r(q,qob)
− 1

r0
) 1
r2(q,qob)

et ,r(q, qob) ≤ r0

0,r(q, qob)>r0

(
(4)

where et denotes the unit vector.
At point q, the final combined potential field is the

superposition of the attractive and repulsive fields shown as

Equation 5:
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U(q) = Uatt(q) + Urep(q) (5)

Similarly, the combined force on the own ship at point q is the

superposition of the attractive force and the repulsive force at that

point shown as Equation 6:

F(q) = −m ½U(q)� = Fatt(q) + Frep(q) (6)
2.2 Improvement strategies for
traditional APF

2.2.1 Improvement for potential field function
The centerpiece of traditional APF is the attraction and

repulsion function, which determines the magnitude and

direction of the attraction that the target point exerts on the own

ship. Although the traditional APF algorithm has the advantages of

simple implementation and high computational efficiency, there are

some disadvantages in practical applications, such as path

interference, path oscillation, and target unreachability. The

attractive force function in the traditional artificial potential field

method is usually obtained from the distance between the target

point and the starting point as a quadratic function, where the

position far from the target point is subject to a large attractive

force, and the position near the target point is subject to a small

attractive force. However, the traditional repulsive force function is

only related to the position and size of the obstacle.

This has resulted in the traditional APF being a static potential

field. In the traditional attractive potential field formula, the

gradient of the potential field is proportional to the distance

between the own ship’s position and the target point, resulting in

the gradient at the position far from the target point being much

larger than that at the position close to the target point, and at the

same time the magnitude of change of the gradient at that position

is not uniform. Therefore, the attraction force is larger than the

repulsion force at the position away from the target point, making it

easy to make the own ship directly rush to the target point by the

action of the combined force, thus impacting the target. However,

the attraction force near the target point is too small, which will lead

to the obstacles in its vicinity producing too large repulsive force on

the own ship. Eventually, the combined force on the own ship will

not be able to point to the target, and the own ship will not be able

to reach the target point.

Figure 1 shows the attractive potential field profile and the

attractive force variation at different distances on a vertical plane,

with (0,0) indicating the target point. The path interference and

unreachable target issues of the traditional APF tend to affect each

other. If the repulsive potential field gradient is enhanced for the path

interference problem, then the own ship may over-avoid during

collision avoidance, resulting in an unreachable target. Conversely, if

the attractive potential field gradient is strengthened for the

unreachable target problem, then the own ship may sail directly

toward the target, leading the own ship to ignore the collision

avoidance situation and go directly through the obstacle, i.e., path

interference. Therefore, in order to solve path interference and an

unreachable target, a balance between repulsive and attractive forces
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needs to be sought in order to find the optimal equilibrium point

between collision avoidance and reaching the target. Therefore, this

section demonstrates corresponding improvements to both the

attractive force and repulsive force functions and adds an adaptive

distance decay factor to the attractive force and repulsive force

functions of the traditional APF. This can make the own ship

receive stronger obstacle repulsion in the region far away from the

target point; and receive stronger attraction and weaker obstacle

repulsion in the region close to the target point, which can make the

own ship reach the target point while avoiding the obstacles, thus

improving the path planning effect.

For an unreachable target, this paper segments the traditional

APF functions based on its structure, turning the potential field at

the position near the target point from a quadratic function type to

a cone type, so that the own ship is subject to a sufficiently large

attractive force when it is near the target point and can reach the

target point, and the improved attractive potential field function is

as Equation 7:

Uatt(q) =
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2(q, qg)

q
− m,r(q, qg)<r1

1
2 er

2(q, qg),r(q, qg) ≥ r1

8<
: (7)

where m is a constant. The improved attractive potential field

classifies the position of the own ship, and if the distance from

the target point is greater than the set distance r1, the attractive

potential field is calculated according to the traditional APF

function; if the distance from the target point is less than or equal

to r1, the attractive potential field is calculated according to the

conic surface formula with the constant m to make the difference.

The attractive force at this point is shown in Equation 8:

Fatt(q) = −m ½Uatt(q)� = −
∂Uatt(q)

∂ r

=
−e ,r(q, qg)<r1

−er(q, qg)et ,r(q, qg) ≥ r1

(
(8)

Compared to the traditional APF, the improved algorithm has the

same attraction at distances greater than r1 from the target point,
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while the region within r1 from the target point is subject to a

stronger attraction, thus enabling the own ship to reach the target

point by overcoming the target inaccessibility problem generated by

obstacle repulsion (Figure 2).

Furthermore, the distance between the own ship and the target

point is introduced into the repulsive function, so that the repulsive

force of the obstacle on the own ship changes with the distance from

the own ship to the target point. Specifically, when the own ship is far

from the target point, the repulsive force on the own ship increases

compared with the traditional function, to offset the influence of the

attractive force and overcome the path interference problem to avoid

the obstacle. When approaching the target point, the repulsive force of

the obstacle gradually decreases, and the own ship can be guided to the

target point to complete the navigation task with the attractive potential

field at the same time, which further overcomes the influence of the

problem of an unreachable target. The mathematical expression of the

improved repulsive potential field function is as Equation 9:

Urep(q) =
1
2 h(

1
r(q,qob)

− 1
r0
)2r2(q, qg),r(q, qob) ≤ r0

0,r(q, qob)>r0

(
(9)

The repulsive force Frep(q) at this point is divided into two parts, Fr1
(q) and Fr2(q), as shown in the Equations 10–12:

Frep(q) = −m ½Urep(q)� = −
∂Urep(q)

∂ r

=
Fr1(q) + Fr2(q),r(q, qob) ≤ r0

0,r(q, qob)>r0

(
(10)

Fr1(q) = h(
1

r(q, qob)
−

1
r0

)
r2(q, qg)
r2(q, qob)

et (11)

Fr2(q) = h(
1

r(q, qob)
−

1
r0

)2r(q, qg)et (12)

The direction of vector Fr1(q) is pointing from the obstacle to

the own ship, and the direction of vector Fr2(q) is pointing from the

own ship to the target point, as shown in Figure 3.
FIGURE 1

The attractive potential field. (A) The field gradient change curve. (B) 3D plot of the field.
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Compared with the combined force Fsum0 of the traditional APF,

the improved combined force Fsum1 of the own ship tends to the target

point more and thus overcomes the target inaccessibility problem.

2.2.2 Dynamic window approach
When using the traditional APF for collision avoidance, the two

factors of the obstacles’ repulsion and the target point’s attraction are

usually used as the contributions of the potential fields, respectively,

and their superposition is calculated to enable the own ship to avoid

obstacles while moving toward the target point. However, due to the

certain competition between the attractive and repulsive fields, the

own ship may experience path oscillations when passing through

narrow areas between multiple obstacles, leading to unstable actions

and even falling into the local optimum, which in turn affects the

performance and efficiency of the own ship during navigation.

To solve this problem, this paper introduces the idea of DWA

(Thomas et al., 2008) fused into the APF, which can achieve local

dynamic collision avoidance and smooth path generation at the

same time. DWA is a classical local path planning algorithm. The

process is divided into two main parts.
Frontiers in Marine Science 06
(1) Calculation of the velocity space. Considering the actual

motion constraints, a velocity range can be calculated as expressed

in Equation 13:

V = (v,w)jv1 < v < v2,w1 < w < w2f g (13)

where v1 = v0 - at, v2 = v0 + at,w1 =w0 - t, andw2 =w0 + t. t is the set

prediction time period, which indicates the velocity or angular

velocity after moment t.

This range is determined by a variety of factors, including

velocity, acceleration limits, rotation angle, and angular

acceleration limits, in addition to the stopping distance limit that

can stop the own ship in time before the collision is considered.

(2) Evaluation of the velocity space (v, w). According to the

given evaluation formula, each group in the velocity space is

evaluated, and then the best set of velocities is selected as the

current speed.

Through various parameters of ship motion that are artificially

set before the experiment, such as maximum speed, acceleration,

and maximum angular speed, which are used to update the dynamic

window, the updated positional information is adjusted by

calculating the speed, acceleration, angular speed, and other

factors in the current state of the own ship to avoid the own ship

making violent steering movements and make the own ship act

along a trajectory more in line with the actual operation and more

smoothly and naturally.

Regarding the evaluation formula, this section uses the calculated

dynamic velocity window as a constraint to fuse into the position

update function of the artificial potential field, and constrains the

dynamic window by the gradient descent direction of the established

artificial potential field to reduce the velocity search space, so that the

own ship selects a position that conforms to the gradient change of

the potential field and satisfies the mathematical model of ship

motion to achieve a collision avoidance operation that is more in

line with the actual situation. The ship’s optimal positional

information is then screened and position velocity updated

according to the evaluation formula, and the calculation of the own

ship’s positional information set is shown as Equation 14:
FIGURE 3

The improved-APF for the repulsive force on the own ship.
FIGURE 2

The improved attractive potential field. (A) The gradient change curve. (B) 3D plot of the field.
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X(vi,wi) = ½
x 0

y 0

q 0
� =

½
x − vi

wi
sinq + vi

wi
sin (q + wit)

y + vi
wi
cosq − vi

wi
cos (q + wit)

q + wt

�(wi ≠ 0)

½
x + vi cos qt

y + vi sin qt

q

�(wi = 0)

8>>>>>>>>>>><
>>>>>>>>>>>:

(14)

After obtaining the set of positional information and filtering it

according to the evaluation formula, the evaluation formula consists

of four main parts, which are expressed mathematically as follows:

i. Heading. Calculate all possible positional information in the

range of velocity resolution by prediction time t, and calculate the

difference between its corresponding angle theta and the direction

of the combined force applied to the own ship in the constructed

artificial potential field, the smaller the difference, the higher the

rating. The formula is shown as Equation 15:

heading(vi,wi) = 180 − theta(q, qAPF) − q 0�� �� (15)

ii. Obstacles. Static obstacles must be considered in order to

verify the collision avoidance effect in complex water areas. For

other dynamic ships, it is impossible to avoid them with global path

planning, so the distance between the own ship and other dynamic

ships is calculated after each update of the ship’s position and is

determined by the ship domain set in section 3 of this paper. For the

other ship outside the own ship’s domain, the farther the distance,

the higher the score, while setting the upper limit of the score to

avoid the excessive weight of the evaluation function. The formula is

shown as Equation 16:

distance(vi,wi) =
min½r(q, qob)�, distance < r1

r1, distance > r1

(
(16)

where r is the upper limit of the score set, which takes effect when

the own ship is in open water and there are no dynamic other ships

around, to ensure that the algorithm does not fall into the

local optimum.

iii. Speed. To ensure navigation efficiency, the speed should be as

high as possible, so it is expressed directly in absolute value. The

formula is shown as Equation 17:

velocity(vi,wi) = vij j (17)

iv. Stopping distance. If the distance between the own ship and

other ships is within the own ship’s domain or collision cannot be

avoided then the cycle is jumped out and recalculated, which is

equivalent to the emergency braking operation.

The final evaluation function is mathematically expressed as the

weighted average of the above three components. The formula is

shown as Equation 18:

G(vi,wi) = d · heading(vi,wi) + b · distance(vi,wi) + g

· velocity(vi,wi) (18)

where the value of d, b, g can be adjusted according to the demand.

In addition, the traditional dynamic collision avoidance method can

usually only use the method of changing direction to avoid obstacles
Frontiers in Marine Science 07
during collision avoidance, and although this method is simple and

easy to implement, the efficiency of collision avoidance is limited

and the maneuvering performance of the own ship cannot be fully

utilized. However, the algorithm characteristics of the dynamic

window method can traverse all situations with a set speed

resolution within the eligible condition and can consider

deceleration while steering, thus avoiding collisions to the greatest

extent, and improving the efficiency and accuracy of

collision avoidance.
3 Dynamic collision
avoidance preconditions

3.1 Encounter situation division and the
own ship’s action

A vessel encounter situation refers to two or more vessels

encountering each other in navigation and needing to avoid

collision by mutual communication and coordination. According

to Rules 13, 14, and 15 of COLREGS, the meeting of ships in mutual

encounters can be divided into the following three situations as

shown in Figure 4.

Overtaking: A vessel shall be deemed to be overtaking when

coming up with another vessel from a direction more than 22.5

degrees abaft her beam, that is, in such a position with reference to

the vessel she is overtaking, that at night she would be able to see

only the stern light of that vessel but neither of her sidelights.

Head-on: Such a situation shall be deemed to exist when a vessel

sees the other ahead or nearly ahead and by night, she could see the

masthead lights of the other in a line or nearly in a line and/or both

sidelights and by day she observes the corresponding aspect of the

other vessel.

Crossing: When two power-driven vessels are crossing to

involve risk of collision, the vessel which has the other on her
FIGURE 4

A schematic diagram for identifying the encounter situation.
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own starboard side shall keep out of the way and shall, if the

circumstances of the case admit, avoid crossing ahead of the

other vessel.

In addition, Rule 19 of COLREGS lists an encounter when

visibility is poor as a separate situation, and provides for collision

avoidance actions at this time, which should be avoided as far as

possible as follows:
Fron
i. An alteration of course to port for a vessel forward of the

beam, other than for a vessel being overtaken;

ii. an alteration of course towards a vessel abeam or abaft

the beam.
Figure 5 shows more specific collision avoidance strategies in

three encounter situations, where the black solid arrows indicate the

respective ship’s heading and the red dashed arrows indicate the

direction of steering that should be selected when the corresponding

ship takes collision avoidance action.

In head-on, overtaking, and crossing situations, according to

the requirements of Rule 8 of COLREGS, every vessel is directed to

keep out of the way of another vessel shall, so far as possible, and

take early and substantial action to keep well clear, that is, if the

circumstances of the case admit, the action of collision avoidance

should be positive, made in ample time and with due regard to the

observance of good seamanship, be large enough to be readily

apparent to another vessel observing visually or by radar. In

addition, a succession of small alterations of course and/or speed

should be avoided, and steering alone may be the most effective

action to avoid a close-quarters situation, and it is required that

such an action is in good time and substantial and does not result in

another close-quarters situation. Finally, by giving way to stand-on

vessel to take collision avoidance action. The action taken to avoid
tiers in Marine Science 08
collision with another vessel shall be such as to result in passing at a

safe distance. Due to the complex and changing environment at sea,

the effectiveness of the action shall be carefully checked until the

other vessel is finally past and clear.
3.2 Collision risk assessment

Rule 7 of COLREGS is “Risk of Collision”, but there is no clear

definition or description of it. Risk of collision is a possibility, which

can be generally understood as a potential collision possibility and

all unsafe factors between two ships or between a ship and its

surroundings. The assessment of collision risk is difficult to define

by quantitative methods\ and the same effect can be achieved by

considering a distance appropriate to the prevailing circumstances

and conditions (required by Rule 6 of COLREGS) from the opposite

side, thus giving birth to the concept of ship domain (Arimura

et al., 1994).

The ship domain can be roughly classified into three categories:

determined empirically, experts` knowledge, and analytical.

However, each method has its limitations due to the complex

factors that need to be considered in constructing a ship domain

model. Considering the different safety distances observed in

different directions, this section adopts the concept of quadratic

ship domain as the basis for collision hazard assessment. The

quaternion ship domain considers the requirements of the

COLREGS, good seamanship, ship maneuverability, and ship

length and speed, making it more suitable for collision avoidance

at sea.

The Quaternion Ship Domain (QSD) consists of four defined

elements: Q (i.e., Rf, Ra, Rp, and Rs), with Rf and Ra denoting the own

ship’s fore and aft respectively, Rp and Rs denoting the own ship’s
FIGURE 5

A schematic diagram of three encounter situations.
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port and starboard respectively. The QSD is composed of the region

defined by the closed curve connecting these four elements and the

interior region can be described as Equation 19:

ft (x, y;Q) = (
2x

(1 + sgnx)Rf − (1 − sgnx)Ra
)t

+ (
2y

(1 + sgnx)Rs − (1 − sgnx)Rp
)t (19)

where t is a parameter that controls the shape of the QSD. The

value of t is typically set to 1 or 2 depending on the desired level of

detail for the QSD’s shape. The sgn function is defined as the

signum function, which is used to determine the sign of a variable. It

is defined mathematically as Equation 20:

sgn(x) =
1, x ≥ 0

−1, x < 0

(
(20)

This function is used in the QSD formula to calculate the

contribution of the forward, aft, port, and starboard regions based

on the relative position of the ship. In the context of blocking area

estimation, the lateral and longitudinal radii of the QSD are

calculated, which are important for determining the extent of the

ship’s domain. These radii are defined by Equation 21:

Rf = (1 + 1:34
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2AD + ( kDT2 )2

q
)L

Ra = (1 + 0:67
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2AD + ( kDT2 )2

q
)L

Rs = (0:2 + kAD)L

Rp = (0:2 + 0:75kAD)L

8>>>>>>><
>>>>>>>:

(21)

where L is the own ship’s length and kAD is the gain coefficient of the

own ship’s cyclotron distance AD, representing the own ship’s

position relative to its initial point. Furthermore, kDT is the gain
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coefficient of the cyclotron initial diameterDT, representing the own

ship’s initial speed or other related parameters. These two

coefficients can be calculated from the own ship’s captain and the

own ship’s cyclotron test parameters, and the equations are as

Equation 22 (Kijima and Furukawa, 2003):

kAD = AD
L = 100:3591lg(v0)+0:0952

kDT = DT
L = 100:5441lg(v0)−0:0795

(
(22)

where v0 represents the speed of the own ship. From equation (22),

the gain coefficient shows a positive relationship with the own ship

speed and the quaternion number with the ship length.

Correspondingly, the size of the formed ship domain increases

with an increase in the ship scale and speed. t is taken as 1 and 2 for

the quaternion ship domain model, as shown in Figure 6, and the

value of t for the ship domain model in this paper is taken as 2.

Hereto, all the necessary information about the improved APF

model proposed in this paper is introduced. Figure 7 is a complete

structural block diagram of the model.

As in the block diagram in Figure 7, the model initiates by

computing the attractive and repulsive forces based on the ship’s

current position, target location, and surrounding obstacles. These

forces are then integrated to determine the overall movement

direction. Following this, the dynamic window is established to

define the feasible velocity (v) and angular velocity ranges (w),
taking into account the ship’s dynamic constraints such as

maximum speed and acceleration limits. Within this window, a

set of candidate velocity commands is generated and evaluated

against criteria including alignment with the desired heading,

distance, and velocity (navigation efficiency). The optimal velocity

command is selected to update the ship’s position, and the process

iterates until the target is reached. The subsequent pseudo code

encapsulates these procedural steps, providing a clear and
FIGURE 6

Quaternion ship domain model when t equals 1 and 2. (A) Quadratic ship domain shape when t = 1. (B) Quadratic ship domain shape when t = 2.
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structured implementation framework for the algorithm (See

Algorithm 1).
Fron
Input: current position (q), current velocity (vcurrent,

wcurrent), target position (qg), obstacles {qobs}, ship

parameters, potential field parameters, scoring

weights, time step (Dt)

Output: Navigation path to target

Begin

Initialize presetting parameters and navigation path

While not at target,

//Step 1: Calculate attractive and repulsive forces

//Step 2: Define encounter situation

//Step 3: Define dynamic window

//Step 4: Generate and evaluate velocity candidates

For each current velocity (v, w) in candidates,

//Simulate next position

//Compute scores: heading, obstacle, and speed

//Aggregate scores

//Select best velocity

If Total_Score > Best_Score then

Best_Score = Total_Score

(vopt, wopt) = (v, w)

End if

End for

//Step 5: Update velocity and position

Append current position (q) to navigation path

End while

Return navigation path

End algorithm
Algorithm 1. Algorithm process of the improved-APF.
4 Simulation experiments

In order to verify the generalization ability of the improved-

APF algorithm proposed in this paper under different avoidance
tiers in Marine Science 10
requirements, simulation experiments were conducted on the

performance of the improved-APF algorithm in avoiding other

dynamic ships in different scenarios.

The improved-APF incorporates several critical parameters that

influence its performance, including the weighting coefficients (d, b,
and g) for the evaluation of the own ship’s heading, distance

from obstacles, and velocity, respectively. These parameters are

crucial in determining the balance between safety and efficiency in

collision avoidance. The selection of these coefficients was based

on a combination of theoretical understanding and practical

experimentation. Specifically, the values of d, b, and g were

chosen to prioritize heading control, obstacle distance, and

velocity under typical operational conditions. Heading control (d)
is more critical in real-world navigation scenarios where

maintaining course stability is essential, while the proximity to

obstacles (b) and velocity (g) are secondary to ensuring safe and

efficient maneuvering.

Additionally, the values of the speed and steering parameters,

such as the maximum speed and turning rate, were derived from

practical ship operational limits to ensure realistic and feasible

performance under typical navigation conditions. In order to

determine the weighting coefficients (d, b, and g) of the

evaluation function, a simple control test is shown in Figure 8.

The map was set up as a vector map of a single obstacle of the

same size as the formal simulation trials, as shown in Figure 8. The

coordinates of the starting point and the target point are (0, 0) and

(220, 300) respectively. Furthermore, the ship type parameters and

ship motion parameters used in this section are taken from the

practice ship ‘YUPENG’ of Dalian Maritime University in

conditions for the right rotation back 35° real ship experiment

(Yang et al., 2017), and some of them were selected for the

simulation experiments of the improved-APF. Details are shown

in Table 1:

By setting different weighting coefficients, the path length (PL),

iteration (I) and closest distance to the obstacle (DC) were evaluated

as quantitative indicators. The complete testing process is too long

to be shown in full, and several representative cases (based on

0.2/0.5/0.8) were selected to be analyzed and illustrated in Table 2,
FIGURE 7

The structural block diagram of the improved-APF model.
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∞means the algorithm fails to complete the task, that is, OS collides

with obstacles or fails to reach the target point, which will cause the

values of PL and I to approach infinity.

In Table 2, there are three types of coefficient sets named

Sequence, Peak, and Valley, respectively. They represent the

whole shape of the coefficient sets in an equidistant series or two

small and one large, or two large and one small. The test results for

numbers 3, 5, 6, 9, and 11 were more favorable. Their common

pattern was d > b, while b< g, i.e., the heading was weighted more

than the distance. For this setting, the algorithm generates a

relatively short path, the iteration efficiency is high and can

maintain a certain safe distance from the obstacles. On this basis,

the final program selected was No. 3(d: 0.5, b: 0.2, g: 0.8).
In addition to the own ship type parameters, the parameters of

the improved-APF algorithm itself need to be set, including the

corresponding weights of the evaluation function, the upper limit of
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the algorithm iterations (Emax: 50000), the upper limit of the

velocity (Vmax/kn: 12), and turning speed (wmax/rad·s
-1: 0.52) of

the own ship, and the resolution corresponding to the velocity (VRes:

0.1) and turning speed (wRes: 0.012) in the simulation experiment,

which mean the minimum intervals during changes in the ship’s

velocity and turning speed.

As a basis for evaluating the collision risk, the range of the

quadratic ship domain in the case of different ship speeds also

changes. In order to judge the effect of the simulation test more

accurately, this paper calculated the distance of change of the QSD

in the four directions of the own ship with different speeds by

substituting the parameters in Table 1.

Table 3 shows that the QSD when the speed of the own ship was

zero was a symmetrical ellipse, and when the own ship moves

against the water, it changed to an irregular ellipse as shown in

Figure 6B. With the increasing speed of the own ship, the judgment

range of QSD increases, and its effective region is shown in Figure 9.

Since the maximum ship speed was set to 12kn in the simulation

experiment, the speed change range of the own ship in Table 3 was

set to 0-12kn.

Figure 9 shows the QSD curves for ship speeds from 0kn to

12kn with a superimposed change of 0.1kn, and the increasing

velocity in the range of QSD decreased as the ship speed increased

and the domain stabilized. This situation is also consistent with

reality, as ship speed does not increase indefinitely. It will lead to

unnecessary collision avoidance maneuvers and thus reduce sailing

efficiency if the ship domain is too large.

To more accurately replicate real-world conditions, this study

overlayed a randomly generated composite potential field onto the

simulated map environment as shown in Figure 10. This composite

field comprises Gaussian vortices, constant potential fields, and

random noise. The parameters and quantities of these components

were randomly determined and vary progressively with each

iteration, with the mixed potential field parameters being reset

every 100 iterations. By introducing this background disturbance to

better emulate the actual environment, the proposed method’s
TABLE 1 The parameters of M/V YUPENG.

Parameter name Value

Ship parameters

Length overall/m 199.8

Beam/m 27.8

Average draught/m 6.3

Displacement/t 22036.7

Initial ship speed/kn 17.26

Block coefficient (Cb) 0.661

Longitudinal distance of
center of gravity from

midship (XC)/m
-4.4

Ship motion parameters

Dimensionless approach
(AD)/L

3.6

Dimensionless tactical
diameter (DT)/L

3.8
TABLE 2 The test results under different weighting coefficients.

No. d b g PL I DC

Sequence

1 0.2 0.5 0.8 ∞ ∞ 0

2 0.2 0.8 0.5 ∞ ∞ 35.46

3 0.5 0.2 0.8 499.76 1026 21.91

4 0.5 0.8 0.2 592.21 1247 34.51

5 0.8 0.2 0.5 499.27 1025 21.69

6 0.8 0.5 0.2 502.44 1032 27.26

Peak

7 0.2 0.2 0.8 540.18 1107 33.28

8 0.2 0.8 0.2 ∞ ∞ 36.17

9 0.8 0.2 0.2 499.26 1025 21.70

Valley

10 0.8 0.8 0.2 538.58 1124 34.66

11 0.8 0.2 0.8 499.26 1025 21.70

12 0.2 0.8 0.8 ∞ ∞ 35.46
frontier
FIGURE 8

The simple control test map.
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superiority and robustness were more comprehensively

demonstrated, thereby enhancing the reliability and applicability

of the experimental data.

The above is the static parameter setting process of the

improved-APF. In order to test the avoidance ability of the model

for dynamic obstacles (other ships) in local scenarios, four types of

simulation test scenarios were set up, according to the head-on

situation, overtaking situation, crossing situation, and multi-ship

situation, and the map area was set as a square with a side length of

10 nautical miles and represented by a 500*500 vector map.
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In the simulation situations set up according to the head-on

situation, overtaking situation, and crossing situation, the path of

the own ship (OS) generated by the improved-APF algorithm was

set as a red line and the path of the target ship (TS) was set as a black

line. In order to compare the situations more intuitively, a set of

control tests was added to the same simulation scenario by applying

the traditional APF algorithm, which only adds the improvement of

the attractive repulsive potential field function based on the

traditional APF and the constraints required by COLREGS to

enable it to complete the collision avoidance task without falling

into the local optimum and thus losing its role as a control, which is

represented by the blue line.

(1)Situation 1: Head-on1

The initial information of the OS for Head-on1 is position (10,

10), course (045°), and speed (0kn); while the initial information of

the TS for Head-on1 is position (490, 490), course (225°), and

speed (8kn).

In this scenario, both the traditional-APF and the improved-

APF turn to starboard, complying with the head-on requirements of

COLREGS (i.e., Rule 14). However, the traditional APF’s resulting

path features abrupt angular changes (Figure 11), demonstrating a

lack of maneuverability considerations. This occurs because the

traditional APF treats the obstacle (i.e., the target ship, TS) as a

purely repulsive potential and does not account for the realistic

turning constraints of a vessel, leading to sharp turns that deviate

from actual ship-handling processes.

By contrast, the improved-APF produces a notably smoother

path, initiating its starboard turn earlier and adjusting speed

concurrently (around the 450th iteration in Figure 12). This two-

pronged approach of steering and deceleration results in a more

controlled encounter, ensuring a minimum passing distance of

about 0.56 nm—which meets safety expectations for QSD.

Additionally, the improved-APF re-accelerates and resumes its

heading once past and clear of the TS, reflecting genuine

navigational practices where ships return to their original course

and speed after avoidance maneuvers.

Such behavior underscores the key strength of incorporating

dynamic constraints (e.g., bounded turning rates and variable

speeds) into the path-planning algorithm. Not only does this

produce maneuvers that better align with human navigation

patterns, but it also enhances the vessel’s ability to plan avoidance

actions more proactively. This early and smoother course alteration

is particularly advantageous in reducing the collision risk when the

encounter geometry rapidly changes.

(2)Situation 2: Head-on2

The initial information of the OS for Head-on2 is position (10,

10), course (045°), and speed (0kn); while the initial information of

the TS for Head-on2 is position (500, 460), course (225°), and

speed (6kn).

Unlike Situation 1, the OS and TS are crossing to involve risk of

collision, starboard to starboard, in Situation 2 (Figure 13). If the

steer starboard operation is still taken at this time, it will not only

result in a longer path but also involve the risk of collision of passing

the bow of TS when facing the simulation of the TS because it will

not change its own course. Consequently, both the traditional APF

and the improved-APF opt to turn to port, rather than starboard.
FIGURE 9

The distance change range of the QSD.
TABLE 3 The quaternions at different ship speeds.

Distance/nm
Speed/kn Rf Ra Rs Rp

0 0.11 -0.11 0.02 -0.02

1 0.31 -0.21 0.11 -0.09

2 0.37 -0.24 0.15 -0.12

3 0.41 -0.26 0.18 -0.14

4 0.44 -0.27 0.21 -0.16

5 0.47 -0.29 0.24 -0.18

6 0.49 -0.29 0.26 -0.20

7 0.51 -0.31 0.28 -0.22

8 0.53 -0.32 0.30 -0.23

9 0.55 -0.32 0.32 -0.24

10 0.57 -0.34 0.34 -0.26

11 0.58 -0.35 0.35 -0.27

12 0.60 -0.35 0.37 -0.28
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This decision prevents the OS from attempting to pass starboard-

to-starboard, which would pose a higher collision risk by bringing

the OS closer to the TS’s bow. Thus, the improved-APF calculates

that turning to starboard would produce a longer path and an

increased likelihood of encountering TS’s forward sector. By

turning to port, the OS achieves a safer, shorter route,

demonstrating the algorithm’s capacity to adaptively interpret an

encounter scenario when a standard COLREGS rule (Rule 14 for

head-on) does not yield an optimal or safe solution.

Compared to the traditional APF, the improved-APF initiates

this maneuver at an earlier stage, smoothly coupling the turn with a

slight reduction in speed. This combined adjustment helps maintain

a sufficient passing distance, preventing any near-bow crossings.

Meanwhile, the traditional APF produces a more abrupt change,

reflecting its purely repulsive potential calculation without factoring

in maneuvering dynamics. The smoother profile of the improved-

APF path again emphasizes the importance of accounting for vessel

maneuverability and speed constraints. From a practical standpoint,
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this scenario highlights the algorithm’s flexibility in handling

encounters that deviate from canonical head-on rules.

Figure 14 shows the speed and course change of the OS and the

distance change between the OS and TS in Situation 2. The

minimum distance in the avoidance process is 0.67nm, a safe

distance according to maritime safety standards, confirming the

algorithm’s capability in avoiding potential collisions.

(3)Situation 3: Overtaking

The initial information of the OS for overtaking is position (10,

10), course (045°), and speed (0kn); while the initial information of

the TS for overtaking is position (110, 100), course (045°), and

speed (3kn).

The overtaking in Situation 3 (Figure 15) is set in a channel,

requiring the OS to navigate as far as possible to the starboard, so the

most suitable direction of overtaking is on the port side of the TS.

According to the provisions of COLREGS for overtaking situations

and quantitative analysis, the OS, as the give-way ship, should take

effective avoidance action as early as possible. As can be seen from the
FIGURE 11

The comparison of simulation paths for Head-on1.
FIGURE 10

The composite field. (A) 3D plot of the composite potential field. (B) Vector field representation of the negative gradient of the composite
potential field.
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path diagram, while both the improved-APF and the traditional APF

algorithms generate a safe overtaking route, the traditional APF

exhibits significant path oscillation during the process. This

oscillation results in unnecessary changes in direction and course

adjustments, which not only cause instability in the trajectory but also

reduce the overall control precision and stability of the avoidance

maneuver. In contrast, the improved-APF algorithm maintains a

smoother and more stable path, making fewer abrupt course changes.

It anticipates the overtaking maneuver with greater efficiency,

applying the necessary adjustments earlier than the traditional

APF. This results in a much more predictable and efficient

overtaking trajectory. Additionally, the improved-APF algorithm

integrates speed control during the overtaking process to reduce

unnecessary acceleration or deceleration. This enhances the safety

and stability of the maneuver, ensuring that the OS can smoothly

navigate past the TS without overshooting or risking a collision, and

the improved-APF algorithm is also adjusting its own course to do

course-again operation after the TS is finally past and clear.
FIGURE 14

Situation 2 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
FIGURE 12

Situation 1 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
FIGURE 13

Comparison of simulation [aths for Head-on2.
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Figure 16 shows the process of speed and course variation of the

OS and the process of inter-ship distance variation between the OS

and TS in Situation 3 by the improved-APF. The minimum distance

in the avoidance process is 0.84nm, a safe distance according to

maritime safety standards, confirming the algorithm’s capability in

avoiding potential collisions.

(4)Situation 4: Crossing1

The initial information of the OS for Crossing1 is position (10,

10), course (045°), and speed (0kn); while the initial information of

the TS for Crossing1 is position (450, 310), course (270°), and

speed (8kn).

In Situation 4 (Figure 17), according to the provisions of

COLREGS for crossing situations and quantitative analysis, the

OS should take effective avoidance action as the give-way ship at an

early stage, and it can be seen from the collision avoidance path

diagram that both the improved-APF and the traditional APF can

take the avoidance measure of turning to starboard for the chase

crossing situation, but it can be seen from the partially enlarged
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diagram in the lower right corner that the traditional APF has the

path with a sharp angle and oscillation phenomenon that appeared

in the first two sets of simulations. This sharp turn, which may seem

valid in a simplified simulation, does not align with the actual

maneuvering behavior of vessels in real-life scenarios. Vessels, in

practice, rarely make sharp course changes due to physical

limitations, such as turning radii and handling characteristics. In

contrast, the improved-APF algorithm delivers a much smoother

and more consistent course adjustment. It anticipates the need for a

gentler steering action, thus mimicking the more realistic turning

behavior of actual ships. The improved algorithm not only avoids

making drastic course changes but also adjusts timing and steering

intensity more effectively, leading to a much smoother trajectory.

This enhancement makes the path safer and more realistic, avoiding

the overshoot that the traditional APF might cause.

Figure 18 shows the speed and course change of the OS and the

distance between the OS and TS in Situation 4. While the OS’s

heading changes (about 280 iterations), the speed also decreases,

and after about 350 iterations, the OS is successfully past and clear,
FIGURE 16

Situation 3 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
FIGURE 15

Comparison of the simulation paths for overtaking.
FIGURE 17

Comparison of simulation paths for Crossing1.
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and the OS’s speed also gradually returns to the upper limit, as

unlike the previous four simulations the OS’s speed in the Crossing1

situation reaches the maximum speed of 12 knots. The improved-

APF optimizes the speed adjustment in tandem with the course

changes. As the OS turns to the starboard, its speed is adjusted to

ensure that the turning radius is maintained without jeopardizing

the ship’s stability. This smoother speed profile ensures that the OS

avoids a collision efficiently without veering off course or risking

excessive speed. The minimum distance achieved during this

avoidance was recorded at 1.36 nm, a safe distance according to

maritime safety standards, confirming the algorithm’s capability in

avoiding potential collisions.

(5)Situation 5: Crossing2

The initial information of the OS for Crossing2 is position (10,

10), course (045°), and speed (0kn); while the initial information of

the TS for Crossing2 is position (250, 500), course (180°), and

speed (8kn).

In Situation 5 (Figure 19), according to the COLREGS for the

crossing situation and quantitative analysis, the OS as the stand-on
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ship should have maintained its course and speed, but since this

simulation set the give-way ship to navigate at a uniform speed, that

is, “The vessel should keep her course and speed may however take

action to avoid collision by her maneuver alone, as soon as it

becomes apparent to her that the vessel required to keep out of the

way is not taking appropriate action in compliance with these

Rules”. As shown in the simulation, the traditional APF takes a

longer route to avoid the TS, leading to excessive distance being

covered, which reduces the efficiency of the maneuver. In real-world

conditions, time is critical, especially in high-density traffic areas,

and an overly long avoidance path could potentially lead to further

collisions with other vessels. Moreover, the traditional APF still

exhibits sharp angle turns, which result in path oscillations, further

compounding the inefficiency and making the avoidance trajectory

less predictable and harder to execute in practice. In contrast, the

improved-APF algorithm delivers a significantly more efficient

avoidance path, which is not only shorter but also smoother. This

is largely due to the adaptive nature of the improved algorithm,

which takes into account the ship’s current course and speed and
FIGURE 19

Comparison of simulation test paths for Crossing2.
FIGURE 18

Situation 4 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
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the predicted future movement of the TS. The improved-APF

anticipates the need for more gradual steering changes, which

allows for precise and stable maneuvering while ensuring that the

ship does not veer off course unnecessarily. The traditional APF

does not make any effort to adjust the speed of the OS while

performing the avoidance. This is problematic because, in practice,

reducing speed during a maneuver helps maintain stability and

control, especially when making sharp turns.

Figure 20 shows the speed heading change process of the own

ship and the distance change process between the own ship and

other ships of the improved-APF in the cross-encounter situation 2.

OS’s speed decreases while the own ship’s heading changes (about

280 iterations), and the TS is successfully past and cleared around

400 iterations, and the OS’s speed gradually returns to the upper

limit and tries to return to course again in the subsequent

navigation. The speed of the OS in Situation 5 reached 12 knots,

and the distance curve between the two ships shows that the

minimum distance during the avoidance process is 1nm, a safe

distance according to maritime safety standards, confirming the

algorithm’s capability in avoiding potential collisions.

(6)Situation 6: Multi-situation

The initial information of OS for the Multi-situation is position

(250, 10), course (000°), and speed (0kn); the initial information of TS1

for the Multi-situation is position (400, 200), course (243°), and speed

(5kn); the initial information of TS2 for the Multi-situation is position

(300, 350), course (180°), and speed (6kn); the initial information of

TS3 for theMulti-situation is position (0, 350), course (090°), and speed

(6kn); and the initial information of TS4 for the Multi-situation is

position (200, 150), course(000°), and speed (2kn).

In Situation 6, Figure 21, the initial course of the OS crosses

the course of TS1 and TS3, and it is give-way to TS1 and stand-on

to TS3, and it is head-on with TS2 and in starboard overtaking

with TS4. From Figures 21B, C, the OS steers starboard to cross

the stern of TS1 and the bow of TS2 in 200 to 300 iterations, and

steers port to cross the stern of TS3 in 500 to 600 iterations, and

then turns starboard to avoid TS4 before heading straight to the

target point.
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It can be seen in Figure 22 that the closest distances to TS1, TS2,

TS3, and TS4 during OS avoidance are 0.84nm, 1.09nm, 1.24nm,

and 1.09nm, respectively, safe distances according to maritime

safety standards, confirming the algorithm’s capability in avoiding

potential collisions.

Considering the above experimental results, the improved-APF

can complete a collision avoidance operation according to COLREGS

requirements in the scenario of two-ship meeting in open water area,

and the generated path is smooth and safe, which is in line with

the reality.

From the distance curve between two ships, by introducing the

quadratic ship domain to set the safety distance, the minimum

distance between two vessels in six scenarios is kept above 0.4nm,

which can ensure safe navigation.

It can also be seen from the speed change curve that the

improved-APF does not simply steer during the avoidance

operation but performs the deceleration operation at the same

time to achieve maximum avoidance efficiency. After the collision

avoidance operation, the algorithm also has the ability to resume the

original heading after the avoidance operation is finished and the

TSs are all past and clear.

In order to more accurately describe the smoothness of the path

generated by the algorithm, this paper extracts the set of fitting

points of each path, traverses the slope between each two points to

obtain the slope set, and takes the absolute value of the difference

between each adjacent two values in the set and sums them up, as a

quantitative index to indicate the smoothness of the path. Thus, the

closer to 0, the smoother the path is. The comparison results of the

smoothness indexes by the improved-APF are 6.238 in head-on

scenarios, 595.8 in overtaking scenarios, and 36.96 in crossing

scenarios; while the comparison results of the smoothness indexes

by the traditional APF are 92.14 in head-on scenarios, 1565 in

overtaking scenarios, and 554.4 in crossing scenarios.

It can be seen that the improved-APF is better than the

traditional APF in all the path smoothing degrees in compared

simulation scenarios, and the overall smoothing degree was

improved by 71.8%.
FIGURE 20

Situation 5 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
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FIGURE 22

Situation 6 data change curve. (A) Distance between two ships and speed change of the OS. (B) Changes in the OS's course.
FIGURE 21

The collision avoidance process in a multi-situation. (A) Initial situation. (B) OS avoiding TS1 and TS2. (C) OS avoiding TS3 and TS4. (D) OS arrives at
target point.
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5 Conclusion

Ship collision avoidance decision-making methods have a wide

range of applications in the field of unmanned or autonomous

ships. In this field, factors such as collision avoidance in complex

water areas and encounter scenarios have high requirements for

ship navigation and control. This paper analyzes and summarizes

the effect of the traditional APF algorithm on local dynamic

collision avoidance of unmanned ships from the point of view of

the ship’s maneuverability and COLREGS, and proposes a new

autonomous collision avoidance decision-making method for

unmanned ships, the improved-APF, which is applicable to

actual navigation.

This paper introduces the feasibility and basic principles of the

traditional APF in unmanned ship navigation and describes the

problems associated with traditional APF such as path interference,

path oscillation, and an unreachable target. The improved-APF

proposed is introduced purposefully and its specific strategies are

elaborated: the improvement of attractive-repulsive function and

proposing of an own ship position posture selection mechanism

based on the DWA and the requirements of COLREGS to make the

generated trajectory smoother and more operable. Finally, the

improved-APF is compared and analyzed using the MATLAB

platform with static and dynamic obstacles to further verify the

effectiveness and avoidance performance of the improved-APF.

Furthermore, the experimental setup incorporates simulated

environmental factors, such as composite potential fields formed by

wind, waves, and currents, which adds complexity and realism to the

collision avoidance simulations. The effectiveness and superiority of the

algorithm were verified by comparing it with the traditional APF

algorithm. The overall smoothing degree was improved by 71.8% and

the effectiveness and superiority of the algorithm were verified.

However, there is still a gap between the simulation tests in this

paper and the real scenarios. In further research, the improved-APF

needs to be explored under the real-time influence of environmental

factors, instead of updating every 100 iterations. A potential field

model of the surrounding environment should be acquired and

modeled in real time and integrated into the collision avoidance

process. Additionally, the scalability of the algorithm could be

explored, with the potential to extend its application to larger,

more complex vessel fleets in congested waterways. Furthermore,

studies could explore the combination of machine learning and

reinforcement learning techniques with the proposed method to

continuously improve the algorithm’s decision-making capabilities

based on accumulated experience, making it more robust and

efficient in varied maritime environments.
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