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Due to the carrier’s role of microplastics, attached microalgae may be transported

further, posing a threat to marine ecosystems, especially those red tide species. By

combining the investigated results of Dongshan Bay and Quanzhou Bay with the

simulation of transport trajectories using the Lagrangian particle tracking model,

this study systematically investigated the characteristics and transport trajectories

of epimicroplastic red tide species. Based on the investigations of Dongshan Bay

and Quanzhou Bay respectively in summer of 2022, the characteristics of

epimicroplastic red tide species were learned. Results showed that totally 13 red

tide species were found in two bays, with 6 species in Dinophyta, 5 species in

Diatom, 1 species in Ochrophyta and 1 species in Cyanophyta respectively. Also,

the potential transport trajectories of epimicroplastic species were simulated to

study their effect to the ecological environment of the surrounding waters.

According to the simulated transport trajectories, those species could be

transported further by microplastics while some particles would be obstructed

during these three-month processes. During the transport processes,

epimicroplastic red tide species from two bays would influence three provinces,

which have high records of red tide outbreak in China. This study firstly combined

models to investigate the potential transport trajectory of epimicroplastic red tide

species, providing insights into the mechanisms of red tide outbreak.
KEYWORDS
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1 Introduction

Red tide (also known as harmful algal blooms, HABs) recorded with those proliferations

of algae that can cause fish kills, or contaminate seafood with toxins, or form unsightly scums,

or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and

duration worldwide (Glibert et al., 2014). There was a global increase in the frequency,

magnitude, and geographic extent of HAB events over the preceding decades (Anderson et al.,

2012). Generally, the expansion of red tide is used considered to be caused by ballast water
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transport, climate change and eutrophication (Anderson et al., 2012).

In addition to eutrophication of seawater, there are many factors that

affect the occurrence of red tide (Gao et al., 2024). Regions of

convergence resulting from dynamic processes like tidal fronts,

Langmuir circulation, and thermal convection can agglomerate

organisms, significantly increasing plankton concentrations beyond

those in surrounding waters (Gao et al., 2024). These physical

mechanisms engender a transport impact on red tide organisms. In

instances of vigorous wind and ocean current interplay, they also

function as diffusion mechanisms (Steidinger and Haddad, 1981; Gao

et al., 2024). To date, some researchers have suggested that floating

plastics may play potential roles on the expansion of HABs (Wang

et al., 2022; Do Prado Leite et al., 2022). Microplastics (MPs) are

plastic particles smaller than 5 mm in size (Thompson et al., 2004;

Rocha-Santos, 2018), which contaminate marine habitats across the

globe (Eriksen et al., 2014) and are recognized as a significant

environmental challenge requiring urgent management (UNEP,

2016; Green et al., 2016). Previous studies have proposed that MPs

can affect the algal growth, photosynthesis, antioxidant system (Su

et al., 2020; You et al., 2021; Zhang J. et al., 2022), and further

influence the phytoplankton community and marine ecosystem.

However, through exposure experiment, Zhang J. et al. (2022)

found that the effects of MPs on microalgae will likely not be

substantial in future warming scenarios if MPs concentrations are

controlled at a certain level. Therefore, the carrier effect of MPs to red

tide species should be pay more attention to in the future study. Naik

et al. (2019) indicated that MPs in ballast water could be an emerging

source and vectors for harmful chemicals, antibiotics, metals,

bacterial pathogens and red tide species.

MPs, as novel substrata for microbial colonization within aquatic

ecosystems, are a matter of growing concern due to their potential to

propagate foreign or invasive species across different environments

(Song et al., 2022). Xianbiao et al. (2023) defined microalgae

colonizing on MPs as epimicroplastic microalgae (EMP-MA).

Meanwhile, harmful species have been found on EMP-MA

community in many bays worldwide (Masó et al., 2003; Wang

et al., 2022). Because MPs persist longer than other natural

substrates such as feathers, wood, and macroalgae, it can traverse

significant distances, and it has been shown to transport invasive

species (Senderovich et al., 2010; Zettler et al., 2013). These invasive

species may proliferate rapidly and even develop into HABs in suitable

environment (Wang et al., 2022). An illustrative example of such

transportation is the Great East Japan Tsunami of March 2011, which

carried vast amounts of plastic debris into the North Pacific Ocean

(González-Ortegón et al., 2024). In the following years, numerous

coastal species from Japan were found on polyethylene, polystyrene,

polyvinyl chloride, and fiberglass materials in North America and

Hawaii (Haram et al., 2023; González-Ortegón et al., 2024).

Previous studies focused on the modeling transport process of

microplastics or red tide species, by combining hydrodynamic

model and particle tracking model, to assess their respective

negative effects to marine ecosystem. Many studies indicated that

while algae continually grow and perish during their diffusion, they

generally move as a cohesive unit, allowing particle tracking

methods to be utilized for simulating HABs trajectories
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(Yamamoto and Okai, 2000; Chen et al., 2007; Kuang et al.,

2016). While red tide species transporting with microplastics, a

stable substrate, their impact on the marine ecosystem as a whole is

more long-lasting and wide-ranging.

In this study, the potential transport effects of epimicroplastic

red tide species in marine environment were learned. Based on the

survey data and current reanalysis data of epimicroplastic red tide

species in Dongshan Bay and Quanzhou Bay, located on the west

side of the Taiwan Strait of China in 2022, this paper investigates

the characteristics and transport trajectories of epimicroplastic red

tide species under the ocean currents by using the Lagrangian

particle tracking model. This study firstly combined models to

investigate the potential transport trajectory of epimicroplastic red

tide species, providing new insights into the mechanisms of red tide.
2 Materials and method

2.1 Study area

Dongshan Bay and Quanzhou Bay, both are typical bays around

west of the Taiwan Strait, playing important roles in the socio-

economic development of coastal areas in China (Figure 1). The

Taiwan Strait connected the South China Sea and the East China Sea,

is an important pathway for the water and materials, and the main

navigation channel (Hong et al., 2011; Yang, 2021). Dongshan Bay,

located along the southwestern coast of the Taiwan Strait, is an

important area for mariculture and seawater fishing in China (Zheng,

2019; Wang, 2023). With unique location advance and rich fishery

resource, Quanzhou Bay is an inner bay of Fujian Province,

surrounding by Meizhou Bay, Weitou Bay and the Taiwan Strait

(Xie, 2021).
2.2 Sample collection and analysis

Surveys were conducted on April 22, 2022 in Dongshan Bay and

on May 17, 2022 in Quanzhou Bay, respectively. The procedure of

sample collection was according to Wang et al. (2022). Floating

microplastics were collected by a 330 mm manta trawl and rinsed

gently with sterile artificial seawater (salinity = 30) for three times,

then transferred into 10 mL glass vials containing 2–5 mL of sterile

artificial seawater and 1 mL of formaldehyde solution (Wang et al.,

2022). Epimicroplastic red tide species were separated by ultrasonic

cleaner at 300 W for 25 s and identified under a research

microscope (Leica DMi8A) (Wang et al., 2022).
2.3 Modelling approach

2.3.1 HYCOM
The three-month (90-day) potential transport trajectories of

these particles were calculated with the 3 hourly 1/12° flow fields

from the Hybrid Coordinate Ocean Model (HYCOM, https://

www.hycom.org, accessed 3 January 2024) Global Ocean Forecast

System (GOFS) 3.1 output. HYCOM simulations include the Navy
frontiersin.org
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Coupled Ocean Data Assimilation data (NCODA) (Cummings,

2006; Cummings and Smedstad, 2013; Allende-Arandıá et al.,

2023). We used the eastward (u-component) and northward (v-

component) surface current velocity from the HYCOM + NCODA

GOFS 3.1 reanalysis from April to August, 2022.

2.3.2 Particle tracking
Using the Lagrangian particle tracking model to develop the

potential transport process of epimicroplastic red tide species from

Dongshan Bay and Quanzhou Bay. Following a Lagrangian

framework, microplastics were assimilated to point-like particles

whose passive movement is completely consistent with that of

surface water masses (Guerrini et al., 2021). Studies on the

plastisphere have shown strong shifts of distinct communities

throughout the early stage of colonization (Dey et al., 2022).

However, in mature biofilms, microbial communities are converged

over time and remained stable (Dey et al., 2022). Cultivation

experiments have demonstrated little difference in epimicroplastic

microalgae community structure over a 7-month period, and no
1 Wang, K., Peng, C. H., Lin, H., Dong, X., Lin, H. N., Chen, B. H., et al.

Epimicroplastic harmful algae in Fujian coastal waters of China. (Submitted).
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significant community succession characteristics have emerged

(Wang et al., summited)1. Therefore, any internal or external

factors affecting community succession or structure variation were

not considered in the simulated processes. 1,000 particles were placed

randomly and uniformly within a radius of 10 km in the mouth of

two bays and those on land were removed. Therefore, the number of

particles in the actual tracking simulation of Dongshan Bay and

Quanzhou Bay were 897 and 876, respectively (Table 1).

In the model, microplastics in water bodies were treated as

discrete particles to simulated their transport processes in the

water. There were three assumptions in this model: (1) though the

potential transport trajectory of red tide species was discussed, the

microplastics, as a vector, do not have the ability to move

autonomously, so the particles in the model only transport

passively with the ocean currents; (2) the density of microplastics is

relatively small, and these samples in this study were collected from

the surface water, so the transport trajectory was only simulated in

horizontal direction, which may cause the estimated trajectory longer

than the actual; (3) the particles in the model are conservative

particles and do not participate in biochemical reactions. The

changes of their positions are described by the following equations:

X(t) − X0 =
Z t

0
Usurfacewater(t 

0)dt 0
FIGURE 1

Geographic location of the investigated areas in this study. (a) Quanzhou Bay; (b) DongshanBay.
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In the above equation, X(t) is the position of the particles at time

t, and X0 is the initial position of the particle. The migration rate is

represented by the surface current, with a time step of 3 hours.
2.4 Data analysis

Statistics and calculation were performed in Microsoft Excel

2021 (Microsoft Corporation, Washington, DC, USA). Lagrangian

particle tracking model was run by MatLab and the figures of the

transport trajectory was drawn with Qgis (3.32).
3 Result

3.1 Biodiversity of epimicroplastic red tide
species in two bays

In this study, 1022 and 433 items of microplastics particles were

collected and processed for the identification of epimicroplastic red

tide species in Dongshan Bay and Quanzhou Bay, respectively. A
Frontiers in Marine Science 04
total of 13 epimicroplastic red tide species from 4 phyla (Diatom,

Dinophyta, Ochrophyta and Cyanophyta) were observed by optic

microscope, with 5 species in Diatom and 6 species in Dinophyta,

which contributed 38.5% and 46.2% of the species richness,

respectively (Table 2). However, the composition and diversity of

those epimicroplastic species between two bays were different.

There were 4 species shared in these two bays, and 1 and 8

unique species were observed in Dongshan Bay and Quanzhou

Bay, respectively. Some typical red tide species, such as

Prorocentrum donghaiense from Dinophyta and Trichodesmium

erythraeum from Cyanophyta, were only found in Quanzhou Bay.

The unique species in Dongshan Bay was Pseudo-nitzschia pungens,

a potentially toxic species from Diatom. Another toxic species was

Chattonella marina from Ochrophyta, occurring in both two bays.
3.2 Potential transport trajectories of
epimicroplastic red tide species

Three-month transport trajectories of epimicroplastic red tide

species from Dongshan Bay were simulated (Figure 2). During the
TABLE 2 Epimicroplastic red tide species in Dongshan Bay and Quanzhou Bay (Wang, 2024).

Phylum Species Mode Toxin
Abundance (cells/m3)

Dongshan Bay Quanzhou Bay

Diatom Amphora coffeaeformis Benthic 2.53 11.36

Thalassionema nitzschioides Planktic 0.71 12.16

Melosira moniliformis Planktic 0.73 0.29

Pseudo-nitzschia pungens Benthic/
Planktic

Neurotoxin domoic acid
(Lundholm et al., 2009)

0.26

Chaetoceros debilis Planktic 1.21

Dinophyta Ceratium fusus Planktic 0.21

Katodinium glaucum Planktic 0.08

Prorocentrum donghaiense Planktic 0.30

Prorocentrum mexicanum Planktic 0.27

Prorocentrum micans Planktic 0.38

Prorocentrum triestinum Planktic 0.08

Ochrophyta Chattonella marina Planktic Ichthyotoxin
(Lundholm et al., 2009)

0.28 0.54

Cyanophyta Trichodesmium erythraeum Planktic 0.10
TABLE 1 Summary of the particle tracking simulation performed.

Investigated area

Particle deployment
position Number of the

placed particle
Number of the particles in the

simulated processes
Processed
duration

Longitude Latitude

Dongshan Bay 117.54 E 23.7 N 1000 897
April 22 – July

20, 2022

Quanzhou Bay 118.9 E 24.85 N 1000 876
May 17 – August

14, 2022
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first-month transportation, the particles transported along the

coastal water of Guangdong Province in a southwestward

direction. About 50% particles had reached Mirs Bay and the

surrounding waters areas of Hong Kong in Day 30. The particle

started to transport in the opposite direction until they reached

around the Pearl River Estuary at the beginning of the second

month. Meanwhile, some particles started to be obstructed.

According to the second month transport trajectories, the

particles turned back to Fujian coastal water and entered the

middle part of the Taiwan Strait. A total of 46.4% particles were

obstructed in other sea areas during the second month, including

22.2% particles in West Lamma Channel, 19% particles in Daya

Bay, 5.1% particles in Port Shelter and 0.1% particle in Mirs Bay. In

the last month, some particles were dispersed in northern Fujian

waters, like Pingtan sea area, and kept transporting in a

northeastward direction. Meanwhile, 36.1% particles were

obstructed, of which 24.7% particles in Mirs Bay. In these

epimicroplastics red tide species transport trajectories from

Dongshan Bay, about 82.5% particles were obstructed in the

surrounding sea area of Guangdong Province and Hong Kong,

while mainly obstructed in Daya Bay, Mirs Bay and West

Lamma Channel.

Three-month transport trajectories of epimicroplastic red tide

species from Quanzhou Bay were simulated (Figure 3). During the

first month, the particles transported in a southwestward direction,

then turned back to the surrounding waters of Quanzhou Bay, and
Frontiers in Marine Science 05
finally transported to other sea areas in a northeastward direction.

According to the first-month transport trajectories, Xiamen Bay,

Shenhu Bay and Weitou Bay were potentially affected by those red

tide species. In the second month, the particles spread

northeastward to Meizhou Bay and other waters, and reached as

far as the coast of Zhejiang Province, but most of the particles

always lingered around Quanzhou Bay. However, due to the

influence of coastal topography and hydrological characteristics,

some particles started to be obstructed in the second month,

including 5.9% particles in Weitou Bay and 0.6% particles in

Shenhu Bay. In the third month, 16.3% particles were obstructed,

including 12.2% and 4.1% particles in Weitou Bay and Shenhu Bay,

respectively. In these transport trajectories from Quanzhou Bay,

only 2.2% particles moved into waters further, while other 97.8%

particles still transported or be obstructed in the surrounding waters

of Quanzhou Bay.
4 Discussion

4.1 The potential effect of epimicroplastic
red tide species to the marine environment

With an increasing frequency, red tide outbreak has posed a

threat to the marine ecosystem (Yan, 2022), by changing the

community structure of marine organisms (Yu et al., 2017),
FIGURE 2

Three-month transport trajectory of epimicroplastic red tide species from Dongshan Bay. (a) Initial position of the released particle; (b) Potential
transport trajectory within 30 days; (c) Potential transport trajectory within 60 days; (d) Potential transport trajectory within 90 days.
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destroying the fisheries resources and harming human health (Song

et al., 2018; Baohong et al., 2021). In the recent years, researchers

have started to suggest that red tide species can transported by

attaching to microplastic in addition to ballast water and ocean

currents, which has been confirmed by the discovery of the red tide

species in the EMP-MA community (Wang et al., 2021, 2022;

Pasqualini et al., 2023). In this study, totally 13 epimicroplastic

red tide species from 4 phyla were found, with 5 species in Diatom

and 6 species in Dinophyta. Among them, two species have been

identified as may contain algal toxins in previous studies, namely C.

marina may produce Ichthyotoxin (Lundholm et al., 2009); and P.

pungens may produce neurotoxin domoic acid (Lundholm et al.,

2009). Additionally, A. coffeaeformis has been reported to have the

ability to produce neurotoxin domoic acid (Shimizu et al., 1989),

while this finding has been disputed (Bates, 2000; Zabaglo

et al., 2016). In our simulated potential transport processes,

epimicroplastic red tide species from Dongshan Bay and

Quanzhou Bay would influence three provinces, including

Guangdong Province, Fujian Province and Zhejiang Province, all

of which have high records of red tide outbreak in China. T.

nitzschioides and P. donghaiense, found in the epimicroplastic

community in our study, were two of the main red tide species in

these three provinces (Li et al., 2019; Shiyong et al., 2021; Zhang,
Frontiers in Marine Science 06
2022). The remaining 10 red tide species, except for A. coffeaeformis,

also have outbreaks records in Chinese coastal waters (Chen and

Zhang, 2021; Chen and Chen, 2021), indicating that they have the

potential to become main causative species to the other provinces’

waters in the future. Previous studies about epimicroplastic

microalgae, also identified as a part of “plastisphere” (Zettler

et al., 2013) or biofilm, have proved their species specificity

(Wang et al., 2022) and community stability (Dey et al., 2022) in

natural waters. When we describe the transportation of red tide

species by the vector of microplastics and further causing red tide

outbreak in other waters, the ability of those species to detach from

microplastics in the waters with suitable nutrient condition become

a crucial node. A laboratory experiment has demonstrated that

microalgae in the biofilm consortium could easily detach and

develop in the pelagic phase by dispersal following shaking and

movements (Binda et al., 2024). This does not mean, however, that

the microplastics will be completely ‘washed’ by physical factors

such as marine currents. Same experiment also showed that besides

colonizing the pelagic environment, species composing in the

biofilm further colonize the plastic surface (Binda et al., 2024).

The epimicroplastic red tide species we found in this study were

almost planktonic, and the species richness between Diatom and

Dinophyta were almost the same. Most studies have proved that
FIGURE 3

Three-month transport trajectories of epimicroplastic red tide species from Quanzhou Bay. (a) Initial position of the released particle; (b) Potential
transport trajectory within 30 days; (c) Potential transport trajectory within 60 days; (d) Potential transport trajectory within 90 days.
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Diatom dominated in the epimicroplastic microalgae community,

since these diatom species are benthic and capable of adhesion and

motility on natural or artificial substrata (Chiovitti et al., 2006;

Wang et al., 2022). Over the last decades, red tide outbreak

associated with epiphytic dinoflagellates (BHABs) have also been

reported more frequently, as most of their representatives are

potential toxin producers (Wang et al., 2022). Do Prado Leite

et al. (2022) suggested that plastics provides significant surfaces

for potential colonization by planktonic and benthic harmful

microalgae and for the adsorption of their toxins. Binda et al.

(2024) has found that microplastic can be xenobiotic substrates for

benthic species, leading to competition with the natural pelagic

community and posing risks for the depletion of available nutrients.

Those benthic microalgae can even form another biofilm

community at the bottom of all microcosms while engaging in

competition in the surface (Binda et al., 2024). This means that as

long as those epimicroplastic benthic species turn over with the

currents for a certain period of time in the waters, they have the

potential to cause an outbreak event.

Microplastics in aquatic environments have been shown to absorb

pollutants from surrounding water (Wang et al., 2021). Many studies

have examined the absorption ability of various pollutants on

microplastics (Guo and Wang, 2019; Guo et al., 2020) and

thoroughly reviewed by several researches (Koelmans et al., 2016;

Mei et al., 2020; Wang et al., 2021). Recently, the absorption of

pollutants on biofilm-developed microplastics has been studied by in

situ experiments and laboratory studies (Richard et al., 2019; Wang

et al., 2020; Wang, 2024). Extracellular polymeric substances, natural

dissolved organic matter, and other organic macromolecules can be

absorbed onto themicro(nano)plastic surface to form the so-called eco-

corona (Wei and Xinghui, 2024). The formation of biofilm on the

surface of MPs changes its surface morphology, roughness, surface

functional groups, and other physical and chemical properties (He

et al., 2022; Tu et al., 2020; Yan et al., 2024), which further affect its

adsorption behavior with environmental pollutants (Bhagwat et al.,

2021; Xu et al., 2021). Numerous studies have demonstrated that

biofilm formation increases the adsorption capacity of MPs for various

environmental pollutants, such as organic pollutants (José and Jordao,

2022), heavy metals (Zhou et al., 2022), and radionuclides (Johansen

et al., 2018; Yan et al., 2024). Microplastics with biofilm have higher

affinities to pollutants than virgin microplastics, which may pose more

serious consequences (Wang et al., 2021). Microplastics, with attaching

red tide species and adsorbed pollutants, transport in the coast water,

the harm they cause to the marine ecological environment will

be aggravated.
4.2 Hydrodynamic conditions during the
transport process of the epimicroplastic
red tide species

Red tide outbreak event involves algal growth and migration

(Chen, 2019). In addition to the effects of temperature (Singh and
Frontiers in Marine Science 07
Singh, 2015), light (Edwards et al., 2015) and nutrients (Wang et al.,

2016), hydrodynamic conditions are also considered to be essential

factors affecting the growth and aggregation of algae in the waters

(Chen et al., 2015; Zhong et al., 2024). Algal migration can lead to the

aggregation of algae in the surface water within a short period of time,

causing red tide outbreaking (Chen, 2019). Under certain conditions,

algal aggregation is mainly affected by hydrodynamic conditions

(Chen, 2019). Hydrodynamic conditions, including water velocity,

changes in water flow and water level, directly affect the survival and

growth of algae in the waters, which in turn play a crucial role in the

occurrence and development of a red tide outbreak event (Zhong et al.,

2024). The mechanism of hydrodynamic conditions on algal growth is

mainly reflected in three aspects: (1) It affects the distribution of

nutrient, regulating the growth and enrichment of algae; (2) It alters

the transport process of nutrient, impacting the function of the algal

cell; (3) It destroys the structural integrity of the algal cell structure of

algae, rendering their inactive (Zhong et al., 2024). However, most red

tide species possess a certain degree of autonomous motility, allowing

them alter their movements in response to changes in current

characteristics (Chen, 2019). For example, P. donghaiense, which

allow the algal cells to move independently through the movement

of these flagella (Chen, 2019). Motile algae exhibit distribution patterns

different from scalar particles in various environments, such as

phototaxis, thermotaxis, chemotaxis, and rheotaxis (Rusconi and

Stocker, 2015; Pedley and Kessler, 1992). Water flow plays a role in

carrying and transporting algae, thereby influencing their spatial

distribution. When the transportation of red tide species in the

waters carried by microplastics, the impact of the algal swimming

ability may be negligible. Therefore, this study only considers the

physical process of epimicroplastic species transportation with ocean

currents, without taking into account the algal autonomous swimming

ability. Additionally, this study does not consider the deposition caused

by the weight of microplastics; the entire migration process occurs at

the surface, so the only physical factors needed to consider are current

velocity. The surface current velocity is generally greater than that at

other depth levels in the vertical direction; therefore, this study only

considers surface currents, resulting in a relatively larger simulated

transport range.

Simulating by Lagrangian particle tracking model, the transport

trajectories of epimicroplastic red tide species from Dongshan Bay and

Quanzhou Bay were learned in this study. Results showed that particles

in those simulated processes of this study were crossing the South

China Sea and the East China Sea, covering the coastal waters of three

provinces – Guangdong, Fujian and Zhejiang through the Taiwan

Strait. The duration of the simulation process is in summer, when the

Taiwan Strait is mainly influenced by the wind field. Therefore, driven

by the southwestern monsoon, a northeasterly flow in the same

direction as the wind direction occurs along the western coast of the

Taiwan Strait (Figure 4). Our study was conducted in the spring, which

is the main red tide outbreak season in Fujian Province. Additionally,

the ocean currents affecting the transport process are primarily

influenced by the season and currents, so the simulated transport

trajectory outside of spring would differ from the actual ones.
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According to two simulated trajectories in our study,

epimicroplastic red tide species were transported under the

current velocities below 0.5m/s in the Taiwan Strait. Generally,

hydrodynamic conditions affect the growth of algae mainly in the

form of low flow rate to promote growth (Cao et al., 2008), medium

intensity of disturbance will increase the nutrient uptake by algal

cells and promote algal metabolism (Xiao et al., 2016); on the

contrary, high intensity of disturbance inhibits algal growth,

nutrient uptake and cellular metabolism (Tan et al., 2019; Zhang

H. et al., 2022). However, the response of different algal species to

flow velocity varies significantly in different water bodies (Zhong

et al., 2024). When algal species are present in the water column in

an epiphytic state, the effect of flow velocity on them is not that

much. Similar with other biofilms, epimicroplastic community

(“plastisphere”) generally involves microbial attachment, secretion

of extracellular polymeric substances, and microbial proliferation

(Zettler et al., 2013; Du et al., 2022). Biofilms often feature open-

channel and pore structures, enhancing solute and microbial

transport and promoting frequent cell-cell contacts (Flemming

and Wingender, 2010; Wuertz et al., 2004; Dang and Lovell,

2016). Due to the close positioning of microorganisms, the

protective nature of the EPS matrix, and the development of

sensing, signaling, and regulatory mechanisms and social

behaviors among different microorganisms in biofilms (Davey

and O’Toole, 2000; Nadell et al., 2009; Dang and Lovell, 2016),

the functional efficiency of biofilm microbial communities should

be higher and more stable than those of planktonic microbial

communities. biofilm-associated microbial communities may

thrive in extreme or hostile environments where individual

microorganisms would find the maintenance of activity and

growth, even survival, challenging (Dang and Lovell, 2016).

Meanwhile, hydrodynamic conditions still influence the

epimicroplastic species. For example, in laminar flows, the biofilm

is patchy and comprises round cells; in turbulent flows, it comprises

wavy and elongated cells (Stoodley et al., 1998). The flow rate affects

the density of the biofilm coverage on microplastics surfaces (Xiao

et al., 2023; Qin et al., 2024).
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By attached on the surface of microplastics, those red tide species

may be transported further and posing a threat to marine ecosystems.

Combined the investigated data of Dongshan Bay and Quanzhou Bay

and the simulated transported trajectories, the characteristics and

potential transport trajectory of epimicroplastic red tide species were

learned in this study. 13 red tide species were totally found in two

bays, with 6 species in Dinophyta and 5 species in Diatom. According

to the simulated transport trajectories, epimicroplastic species could

be transported further by microplastics while some particles would be

obstructed during this three-month process. In these simulated

trajectories from two bays, 82.50% particles from Dongshan Bay

were obstructed in the surrounding waters of Guangdong Province

and Hong Kong. However, 97.8% particles from Quanzhou Bay

would be transported or be obstructed in the surrounding waters of

Quanzhou Bay. During the transport processes, epimicroplastic red

tide species from two bays would affect the surrounding waters of

three provinces, which all have high records of red tide outbreak in

China. This study firstly combined models to investigate the potential

transport effect of epimicroplastic red tide species, providing insights

into the mechanisms of red tide outbreak.
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José, S., and Jordao, L. (2020). Exploring the interaction between microplastics,
polycyclic aromatic hydrocarbons and biofilms in freshwater. Polycycl. Aromat. Compd.
42, 2210–2221. doi: 10.1080/10406638.2020.1830809

Koelmans, A. A., Bakir, A., Burton, G. A., and Janssen, C. R. (2016). Microplastic as a
vector for chemicals in the aquatic environment: critical review and model-supported
reinterpretation of empirical studies. Environ. Sci. Technol. 50, 3315–3326.
doi: 10.1021/acs.est.5b06069

Kuang, C., Xie, H., Su, P., Gu, J., and Map, X. (2016). Tracking migration and
diffusion of red tides in Qinhuangdao coastal water based on FBM method. China
Environ. Sci. 36, 2505–2515.

Li, L., Lü, S., and Cen, J. (2019). Spatio-temporal variations of Harmful algal blooms
along the coast of Guangdong, Southern China during 1980–2016. J. Ocean. Limnol. 37,
535–551. doi: 10.1007/s00343-019-8088-y

Lundholm, N., Churro, C., Escalera, L., Fraga, S., Hoppenrath, M., Iwataki, M., et al.
(2009). IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae. Available
online at: https://www.marinespecies.org/hab (Accessed September 1, 2024).
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