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In recent years, Ulva prolifera green tide, as a large-scale marine ecological

phenomenon, has occurred frequently in coastal areas such as the Yellow Sea

and the East China Sea, significantly affecting marine ecosystems and fishery

resources. With the continuous advancement of remote sensing technologies,

these technologies have become indispensable tools for monitoring Ulva

prolifera green tides. This review provides a comprehensive overview of the

advances in remote sensing band indices for detecting green tides, including

spatiotemporal distribution analysis, area and biomass estimation, drift trajectory

modeling, and investigations of their driving mechanisms. Additionally, it

identifies the limitations and unresolved challenges in current approaches,

such as constraints on data resolution, algorithmic biases, and environmental

variability. The potential for integrating multi-source remote sensing data with

marine environmental parameters and deep learning techniques is discussed,

emphasizing their roles in improving the accuracy and reliability of monitoring

and predicting Ulva prolifera green tides. This review aims to guide future

research efforts and technological innovations in this field.
KEYWORDS
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1 Introduction

Considering global environmental change, the dynamics of large-scale algal blooms,

particularly Ulva prolifera green tides, have become a central topic of research. Since 2007,

large-scale green tides have occurred annually in the Yellow Sea of China, attracting

considerable attention from the government and researchers, especially after the 2008
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outbreak in the waters near Qingdao, which interfered with

Olympic sailing events (Hu and He, 2008; Zhang et al., 2019).

Figure 1 illustrates the annual extent of green tides in the Yellow Sea

from 2008 to 2023. Although the maximum distribution and

coverage areas were relatively low in 2012, 2020, and 2022, the

extent and coverage of green tides have shown an increasing trend

over the years. These blooms not only affect the coastal landscape

but also obstruct navigation channels, thereby posing serious

threats to coastal fisheries, aquaculture, and tourism (Hu and He,

2008; Xing and Hu, 2016).

Over the past two decades, the cultivation areas for Porphyra in

China have expanded nearly fourfold, as shown in Figure 2. The

Porphyra aquaculture rafts areas in the Subei Shoal (Lianyungang,

Yancheng, and Nantong) are widely recognized as the primary

breeding grounds for Ulva prolifera green tides (Hu, 2009; Liu et al.,

2010; Xing et al., 2011; Keesing et al., 2011; Xing et al., 2018). These

regions provide optimal conditions for the proliferation and

dispersal of Ulva prolifera, driven by aquaculture activities,

nutrient enrichment (both inorganic and organic), sea surface

temperature, solar radiation, and hydrodynamic conditions.

Previous studies have also highlighted a strong correlation

between large-scale seaweed cultivation in the Subei region and

the occurrence of extensive macroalgal blooms in the southern

Yellow Sea (Geng et al., 2015; Zhang et al., 2017). In addition, this

strong correlation was further confirmed through rDNA sequence

analysis, with identical morphological characteristics observed (Liu

et al., 2010; Zhang et al., 2014). In general, Porphyra cultivation

begins every October, with rafts and ropes deployed into the sea,

providing surfaces where green algae such as Ulva readily attach

(Liu et al., 2010). By the following spring, as seawater temperatures

reach approximately 20°C, Ulva prolifera rapidly competes with

Porphyra for space. During Porphyra harvest and raft removal,

someUlva inevitably detaches in shallow waters (Liu et al., 2016; Hu

et al., 2023). A study estimated that approximately 4,000 tons of

Ulva prolifera biomass detached from aquaculture rafts during the
Frontiers in Marine Science 02
raft retrieval period, floating into the surrounding waters of the

Subei Shoal and providing the initial biomass for the large-scale

green tide outbreak in the Yellow Sea (Han et al., 2020). Driven by

tides, currents, and winds, these algae float to the surface and

flourish under favorable light, temperature, and nutrient conditions,

thereby drifting northward to the Shandong coast (Hu et al., 2010;

Liu et al., 2013; Wang et al., 2015; Xing et al., 2019). Figure 3

illustrates the temporal and spatial dynamics of Ulva prolifera green

tides over May, June, and July. During May, Ulva prolifera first

appears in the Subei Shoal, marking the initial stage of its

development. In June, it undergoes rapid growth, reaching its

maximum coverage. In July, the algae gradually drift and

accumulate in the waters near Qingdao, driven by prevailing

hydrodynamic conditions. These spatiotemporal dynamics are

consistent with findings reported by Kwan et al. (2022) and Yuan

(2022), who also observed similar growth patterns and drifting

behaviors in their studies. This phenomenon can be attributed to a

combination of favorable natural conditions, such as hydrodynamic

patterns and nutrient availability, alongside anthropogenic

influences like coastal aquaculture and pollution, making the

Yellow Sea and the East China Sea a hotspot for Ulva prolifera

green tide blooms (Li et al., 2017; Zhang et al., 2019, 2020).

Additionally, Ulva prolifera green tide has also occurred along the

coasts of South Korea, certain regions of Southeast Asia, and the

Gulf of Mexico (Hu, 2009; Kim et al., 2020; Shao et al., 2024).

Although the frequency and extent of these green tide events in

these regions are relatively lower than those in the Yellow Sea and

the East China Sea, they still represent potential sites for green tide

growth because of favorable environmental conditions.

Satellite remote sensing offers extensive monitoring coverage,

high temporal resolution, and low-cost monitoring of green tides,

enabling long-term dynamic observation. Consequently, remote

sensing is widely applicable for monitoring green tide coverage,

biomass, and drift trajectory of Ulva prolifera blooms. As reviewed

in the literature, various sensors with distinct spectral bands and
FIGURE 1

Maximum distribution area and coverage area of green tides in the Yellow Sea from 2008 to 2023 (data from the China Oceanic Information
Network, https://www.nmdis.org.cn/).
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resolutions have been used to monitor Ulva prolifera green tides,

including MODIS, VIIRS, GOCI I/II, Landsat-3/5/7/8/9, as well as

China’s GaoFen series, HJ-1 series, and HaiYang-2 series satellites

(Son et al., 2015; Xing and Hu, 2016, 2016; Sun et al., 2021; Men

et al., 2023), as summarized in Table 1.

Ulva prolifera green tides are characterized by their dark green

appearance in remote sensing imagery, primarily due to the

filamentous structure of their thalli. This distinctive appearance of

Ulva prolifera green tides is attributed to its unique spectral nature,

which features higher reflectance in the green wavelength range and

lower reflectance in the near-infrared (NIR) band (Zhang et al.,

2013). Based on these spectral characteristics, several band indices

have been developed and applied for detecting Ulva prolifera green

tides. A comprehensive summary of these indices and their

applications is presented in Table 1. These band indices include

the normalized difference vegetation index (NDVI) (Hu and He,

2008; Hu, 2009), the normalized difference algae index (NDAI) (Shi

and Wang, 2009), the floating algae index (FAI) (Hu, 2009; Garcia

et al., 2013; Hu et al., 2015), the alternative floating algae index

(AFAI) (Wang and Hu, 2016, 2017), the scaled algae index (Keesing

et al., 2011), the enhanced vegetation index (EVI) (Xing et al., 2018;
Frontiers in Marine Science 03
Zheng et al., 2020), the difference vegetation index (DVI) (Li et al.,

2018; Xing et al., 2019), virtual-baseline floating algae height (VB-

FAH) (Li et al., 2018), and the ratio vegetation index (RVI) (Wang

et al., 2019; Zheng et al., 2020), among others indices (Yu et al.,

2023; Wei and Wang, 2024; Zhang et al., 2024a). These indices have

significantly advanced the detection of location, estimation of the

coverage area and biomass, and prediction of the drift trajectories

for Ulva prolifera green tides. Furthermore, the integrating of

optical remote sensing indices with oceanographic dynamic

parameters and environmental variables has yielded valuable

insights into the spatiotemporal characteristics of green tides (Son

et al., 2015; Jin et al., 2018; Wang et al., 2023a; Li et al., 2022).

However, the dynamic nature of the marine environment often

results in clouds and fog obstructing observations, making it

challenging to obtain valid data. Fortunately, synthetic aperture

radar (SAR), with its ability to penetrate clouds and fog and operate

in all-weather, day-and-night conditions, has proven invaluable in

overcoming these challenges (Cui et al., 2018; Gao et al., 2022; Li

et al., 2023, 2024). For example, Li et al. (2023) effectively utilized

Sentinel-1 SAR data to monitor the spatial distribution of Ulva

prolifera, demonstrating its robustness in capturing key
FIGURE 2

Cultivated area of Porphyra in China (data from the National Fisheries Statistical Yearbook).
FIGURE 3

Distribution of Ulva prolifera detected using Sentinel-1 from May to July 2019. From Left to right: May, June, and July. Green areas indicate the
distribution of Ulva prolifera.
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TABLE 1 Overview of remote sensing data, resolutions, and methods for Ulva prolifera green tide monitoring.

Author Study area Sensor Spatial
Resolution

Index Method

(Lou et al., 2006) Zhejiang Coast East
China Sea

MODIS 500 m FRGB Visual Interpretation

(Nezlin et al., 2007) Upper Newport Bay Aerial photography,
field measurements

25 cm Spectral signatures Spectral Angle Mapper

(Hu and He, 2008) Qingdao MODIS 250 m NDVI Visual Interpretation

(Liu et al., 2009) north-eastern coast
of China

MODIS – RGB, NDVI Visual Interpretation

(Shi and Wang, 2009) Yellow Sea MODIS – NDAI Histogram threshold

(Hu et al., 2010) Yellow Sea and East
China Sea

MODIS, Landsat 30 m,250 m FAI Visual Interpretation and
set threshold

(van der Wal et al., 2010) Netherlands and
United Kingdom

MODIS, In situ 250 m NDVI Fix threshold

(Casal et al., 2011) NW Galicia, Spain CHRIS-PROBA,
Field survey

17 m Band3/5/7/9-11/12/
14-17

ML, Spectral Angle Mapper

(Xing et al., 2011) Yellow Sea and East
China Sea

MODIS, Landsat 500 m,30 m NDVI Dynamic threshold

(Keesing et al., 2011) Yellow Sea MODIS 250 m NDVI, SAI Statistical analysis and
set threshold

(Son et al., 2012) Yellow Sea and East
China Sea

GOCI, In situ 500 m NDVI, EVI Fix threshold

(Garcia et al., 2013) Yellow Sea MODIS 250 m SAI, NDVI, FAI Global threshold

(Zhang et al., 2013) Yellow Sea HJ-1A/1B, field survey 30 m FRGB –

(Hu et al., 2015) Gulf of
Mexico, Bermuda

MODIS, Landsat,
WorldView-2,
HICO, AVIRIS

250-1000 m, 30 m, 2
m, 90 m, 8-15 m

NDVI, FAI Visual inspection and
interpretation, set threshold

(Liu et al., 2015) Yellow Sea MODIS 250 m NDVI Fix threshold

(Son et al., 2015) Yellow Sea and East
Coast Sea

GOCI 500 m NDVI, IGAG Fix threshold

(Xing et al., 2015) Yellow Sea MODIS, SeaWiFS 9.2 km NDVI Statistical analysis

(Qi et al., 2016) Western Yellow Sea MODIS 250 m FAI Fix threshold, Linear
mixing method

(Xing and Hu, 2016) Yellow Sea and East
Coast Sea

Landsat, HJ-1, Field data 30 m NDVI, EVI, FAI,
VB-FAI

Visual inspection and
interpretation,
Statistic analysis

(Xu et al., 2016) Yellow Sea MODIS, Landsat, HJ-1,
ENVISAT, CCD

NDVI, NRCS Otsu threshold

(Wang and Hu, 2016) Central West Atlantic MODIS 1 km,4 km AFAI Global threshold

(Hu et al., 2017) Yellow Sea MODIS, field-measured 250 m FAI Set threshold

(Wang and Hu, 2017) Caribbean Sea MODIS 1 km AFAI Statistic threshold

(Qi et al., 2017) East China Sea MODIS, VIIRS, GOCI,
Landsat-8

1 km, 0.75 km, 0.5
km, and 30 m

AFAI Statistical analysis

(Xiao et al., 2017) Yellow Sea MODIS, HJ-1B 500 m, 30m NDVI Statistic threshold,
Spectral unmixing

(Xu et al., 2017) South Yellow Sea MODIS, HJ-1, UAV,
Field Observations

250 m, 30 m, 12 cm NDVI, RGB Set threshold

(Cui et al., 2018) Yellow Sea MODIS, GOCI, HJ-1, GF-
2, airborne SAR

250 m and 1km, 500
m, 30 m, 4 m, 3 m

NDVI, DVI Statistic threshold

(Continued)
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TABLE 1 Continued

Author Study area Sensor Spatial
Resolution

Index Method

(Harun-Al-Rashid and
Yang, 2018)

Eastern Yellow Sea Landsat-8 30 m NDVI, FAI Fix threshold

(Jin et al., 2018) Southern Yellow Sea GOCI, Landsat 500 m, 30 m AFAI Fix threshold

(Li et al., 2018) Yellow Sea HJ-1, GF-1 30 m, 16 m NDVI, DVI, VB-FAH Linear mixing
reflectance spectra

(Qiu et al., 2018) Yellow Sea GOCI 500 m NDVI, AFAI Machine learning

(Sun et al., 2018) Southern Yellow Sea HJ-1, MODIS, GOCI 30 m, 250 m, 500 m NDVI Visual interpretation,
Set threshold

(Wang et al., 2018) Yellow Sea Radarsat-2 5 m PDP Statistical analysis

(Xing et al., 2018) Yellow Sea MODIS, GF, CBERS 16 m, 30 m, 250 m DVI Dynamic threshold

(Cao et al., 2019) Yellow Sea MODIS 30 m NDVI Fix threshold

(Chen et al., 2019) Southern Yellow Sea GF-2, in-situ spectral data 4 m NDVI Fix threshold

(Kim et al., 2019) Yellow Sea, East
China Sea

MODIS, GOCI, Landsat 1 km, 500 m, 30 m NDVI Fix threshold

(Li et al., 2019) The easternmost end
of the
Shandong Peninsula

MODIS, GF-1 16 m, 250 m NDVI Visual interpretation and
set threshold

(Wang et al., 2019) Yellow Sea MODIS, Sentinel-2 500 m, 10 m NDVI, RVI, DVI, FAI GMM fuzzy classification and
improved D-S evidence theory

(Xing et al., 2019) Yellow Sea Sentinel-2, GF-1, Landsat,
MODIS, UAV,
Spectro-radiometer

10 m, 16 m, 30 m,
250 m,10 m, less
than 25 cm

DVI Fix threshold

(Jiang et al., 2020a) South Yellow Sea UAV 0.09-0.15 m EXG, NGBDI,
NGRDI, RGB_FAI,
RGBVI, VDVI

Histogram threshold

(Kim et al., 2020) Yellow Sea, East
China Sea

GF-1 16 m RGB Deep learning

(Kim et al., 2020) Jeju coast of Korea UAV 4.86 cm RGB ML, MHD, MID, ANN

(Li et al., 2020) Yellow Sea MODIS, GF-1, UAV 250 m, 16 m, - NDVI Dynamic threshold

(Zhang et al., 2020a) Southern Yellow Sea MODIS, HJ-1A/B 250 m, 30 m NDVI Visual interpretation and
fixing threshold

(Zheng et al., 2020) Yellow Sea MODIS, GOGI, Sentinel-3,
Landsat8, GF-1

1000 m, 500 m, 300
m, 30 m, 16 m

RVI, NDVI, EVI, FAI,
other indices.

Semi-automatic threshold

(Li et al., 2021) Yellow Sea Sentinel-2,
Landsat, MODIS

10 m, 30 m, 250 m NDVI Gray-level thresholding

(An et al., 2021) Yellow Sea MODIS, HJ-1A/1B, GF-1,
and Sentinel-2

250 m, 30 m, 16 m,
and 10 m

DVI Dynamic threshold

(Qi and Hu, 2021) Yellow Sea and East
China Sea

Sentinel-2/3, Laboratory
and field data

10 m, 300 m AFAI Statistical analysis

(Sun et al., 2021) South Yellow Sea Landsat 15 m FAI, other indices Statistic threshold

(Wan et al., 2021) Yellow Sea GOGI 500 m RGB Deep learning

(Wang et al., 2021b) Yellow Sea MODIS, Sentinel-1 250 m, 10 m NDVI Deep learning

(Zhang et al., 2021) Southern Yellow Sea Landsat-8, Sentinel-2 30 m, 10 m NDVI Adaptive threshold

(Chen et al., 2022) Gouqi Island UAV 5.8 cm NDVI, RVI, EVI,
other indices

Machine learning (RF, GBDT

(Continued)
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TABLE 1 Continued

Author Study area Sensor Spatial
Resolution

Index Method

(Gao et al., 2022) Yellow Sea MODIS, Sentinel-1, GF-3,
Ship Survey Data

250 m, 10 m, 10 m RGB, VV+VH,
HH+VH

Deep learning

(Guo et al., 2022) Yellow Sea Sentinel-1 10 m Deep learning

(Li et al., 2022) Yellow Sea Sentinel-2, Landsat,
MODIS, UVA, ship data

10 m, 30 m, 10 m,
-, -

NDVI Adaptive threshold

(Ma et al., 2022) Yellow Sea Sentinel-1, MODIS 10 m, 250 m DVI Visual interpretation
and threshold

(Qi et al., 2022) Yellow Sea, East Coast
Sea, Atlantic Ocean

Sentinel-1/2 10 m FRGB, VV, AFAI Deep learning

(Yuan, 2022) Western Yellow Sea MODIS 250 m DVI Fix threshold

(Zhang et al., 2022) South Yellow Sea MODIS 250 m and 500 m NDVI Visual interpretation and
set threshold

(Cui et al., 2023) Yellow Sea GOCI 500 m NDVI Fix threshold and
machine learning

(Ji et al., 2023) Western Yellow Sea Landsat, Sentinel-2 30 m, 10 m NDVI Global threshold, histogram
threshold, Maximum
cross-correlation

(Li et al., 2023) Southern Yellow Sea Sentinel1/3, NPP 10 m/300 m/375 m NRCS, NDVI Visual interpretation and
set threshold

(Men et al., 2023) Yellow Sea GF-1, MODIS 16 m, 250 m NDVI Machine learning (a linear
regression model)

(Pan et al., 2023) Yellow Sea GF-1/4, Landsat, MODIS 16/50 m, 30 m,
250 m

NDVI Context-sensitive level set

(Qi et al., 2023) Yellow Sea MODIS, Sentinel-2 250 m, 10 m AFAI Fix threshold

(Shang et al., 2023) Yellow Sea PlanetScope Super Dove
images, UAV

3 m, 12.4 megapixels RGB Deep learning (VGGUnet)

(Wang et al., 2023a) Yellow Sea MODIS 250 m Band1, NDVI, Band2 Deep learning (LSTM)

(Wang et al., 2023b) Yellow Sea GF-1, HY-1, Sentinel-2 16 m, 50 m,10m DVI Statistic threshold

(Xing et al., 2023) Bohai Sea UAV, GF-1, Landsat 0.10-0.17 m, 16 m,
30 m

RGB Deep learning(U-Net)

(Xu et al., 2023) Yellow Sea GF-1, Landsat, HJ-
1, MODIS

16 m, 30 m, 50 m,
250 m

NDVI Statistic threshold

(Yu et al., 2023) East China Sea Sentinel-2, GF-1 10 m, 16 m DVI, Blue-Green,
SUI-I

Machine learning (RF)

(Liu et al., 2024) Yellow Sea, East China
Sea, and
northern Vietnam

GF-1 16 m RGB, Red tide
detection index,
Pseudo hue angle

Deep learning

(Zhang et al., 2024a) Yellow Sea HY-1C/D, GF-1, HJ-1A/B,
Sentinel2, COCI

50 m, 16 m, 30 m, 10
m, 250 m

TCG Adaptive thresholding

(Zhan et al., 2024) Yellow Sea HY-1, MODIS, GF-1/3/6,
RADARSAT-2

16 m and 50 m, 250
m,16 m and 10 m,
25 m

NDVI Maximum inter-class variance

(Hou et al., 2024) South Yellow Sea GOCI I/II 250 m/500 m ACI, NDVI Machine learning

(Zhang et al., 2024b) Northwest Yellow Sea GOCI, MODIS, in Situ 500 m, - AFAI Machine learning

(Wei and Wang, 2024) Gulf of Mexico and
Yellow Sea

MODIS, Landsat 500 m, 30 m AFAI, FRGB, REA Statistic threshold
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morphological features, even under adverse weather conditions.

Moreover, SAR’s sensitivity to variations in surface roughness

allows for the identification of floating algal blooms by

differentiating them from surrounding water surfaces and other

floating objects (Qi et al., 2022). In addition, SAR has been

employed in biomass estimation and spatiotemporal tracking of

green tides. By integrating SAR-derived backscatter metrics with

auxiliary environmental data, researchers have developed models to

estimate algal density and monitor its drift trajectories under

varying oceanographic conditions (Guo et al., 2022; Li et al., 2023).

Given its wide coverage and strong monitoring capability,

remote sensing has become a vital tool for studying the dynamics

of large-scale Ulva prolifera green tide blooms. However, the

accuracy of remote sensing monitoring and green tides

assessments is influenced by the spatial and temporal resolution

of various remote sensing data sources. For example, low-resolution

satellite imagery (particularly within the range of 100-1000 m) tends

to overestimate the coverage area of large algal blooms, often

missing smaller patches in affected areas (Wang et al., 2021a).

This overestimation occurs because pixels containing algae are often

mixed, including background water information, as highlighted by

Hu et al. (2019) and Qi et al. (2019). To address this issue, linear

spectral unmixing techniques have been employed to decompose

mixed pixels, thereby improving the accuracy of algal coverage and

biomass estimates (Hu et al., 2023). Moreover, image compositing

methods, which integrate individual images or average monthly

observations, have been shown to further enhance the accuracy of

coverage assessments (Qi et al., 2016).

The effectiveness of green tide detection methods depends

heavily on the algorithm employed, as certain approaches

inherently introduce biases and limitations that can impact the

accuracy and reliability of the results. For example, manual visual

interpretation, fixed thresholding, or adaptive threshold for

threshold selection remains a common practice in green tide

monitoring. However, these methods are often unstable due to

varying observational conditions (Cui et al., 2023; Tang et al., 2023).

In contrast, machine learning and deep learning models have

demonstrated greater capability, accuracy, and efficiency in

detecting and analyzing Ulva prolifera green tides. Nevertheless,

their application faces several challenges, such as the need for large,

high-quality training datasets, and the issue of limited

interpretability (Zhu et al., 2017). Compounding these challenges,

the dynamics of Ulva prolifera green tide blooms are influenced by a

range of environmental factors, which make large-scale monitoring

even more complex. For example, several studies have reported that

the highest Ulva prolifera green tide coverage occurred in 2021,

which was several times greater than that in 2019 (Li et al., 2022;

Zheng et al., 2022a). In contrast, another study indicated that the

coverage ofUlva prolifera green tide peaked in 2019 (Qi et al., 2022).

These discrepancies underscore the inconsistencies arising from

differences in sensors, methodologies, and environmental

conditions, which collectively complicate the detection and

estimation of Ulva prolifera green tide blooms.

In summary, significant progress has been achieved in remote

sensing-based monitoring of Ulva prolifera green tides. However,

several critical challenges remain, including the influence of data
Frontiers in Marine Science 07
resolution on area and biomass estimations, biases introduced by

algorithmic selections, and inconsistencies in monitoring results

caused by sensors and environmental conditions variations.

Therefore, it is essential to systematically review the progress in this

field, summarize the strengths and limitations of existing approaches

and explore future research directions. By providing a comprehensive

overview of recent developments, key techniques, and applications

related to Ulva prolifera green tides, this study offers valuable insights

to advance research and proposes feasible strategies to address current

scientific challenges. This work serves as a valuable resource for

researchers in remote sensing, marine ecology, and environmental

science. Furthermore, it offers guidance for practitioners involved in

coastal management and algal bloom prevention, as well as for

policymakers and government administrators.
2 Development and current status

This study focuses on the field of remote sensing monitoring of

Ulva prolifera green tide blooms. A literature search was performed

using the keywords “Ulva prolifera and remote sensing” and “green

tides and remote sensing” in the Web of Science, yielding 153

relevant publications from 2009 to 2024. A visual analysis of these

publications was conducted using the CiteSpace bibliometric

analysis tool, revealing the developmental trajectory and current

state of research in the remote sensing monitoring of Ulva prolifera

green tide blooms.

The temporal variation in publication numbers reflects the

growing interest in Ulva prolifera green tide monitoring,

underscoring its increasing importance in the scientific community.

Between 2009 and 2017, the number of relevant articles remained

relatively low, with no publications in 2012. However, since 2017, the

volume of publications has steadily increased, peaking in 2023 with 26

articles. These publications were distributed across 60 journals, with

Remote Sensing leading with 19 articles, followed by Marine Pollution

Bulletin with 12, and Marine Environmental Research with 7, among

others. This upward trend in publication volume indicates that remote

sensing–based monitoring of green tides has become a prominent

research focus, in line with the latest scientific developments, as shown

in Figures 4, 5.

Further analysis of the author collaboration network, using

CiteSpace, identifies several prominent research groups, with two

central clusters led by Hu Chuanmin and Xing Qianguo. This

finding indicates a growing trend toward collaborative research in

the field of Ulva prolifera green tide monitoring, as shown in

Figure 6. In addition, the research institution collaboration

network underscores the remarkable contributions of institutions

such as the Chinese Academy of Sciences, Ocean University of

China, and Yantai Institute of Coastal Zone Research, all of which

play key roles in advancing this area of study, as illustrated

in Figure 7.

Figure 8 presents the keyword co-occurrence network analysis,

highlights the frequently used keyword terms such as Ulva prolifera,

green tide, Yellow Sea, East China Sea, remote sensing, biomass, and

area estimation. Research on Ulva prolifera green tides focuses on

topics such as growth, expansion, bloom events, dynamics,
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interannual variability, growth rates, biomass, area estimation, and

prediction modeling, with a strong emphasis on applications of

remote sensing technologies. Notably, this study specifically centers

on the Yellow Sea and East China Sea regions, which serve as key

areas for understanding the dynamics and impacts of Ulva prolifera

green tides.
3 Overview of data sources

The remote sensing monitoring of Ulva prolifera green tide

primarily relies on satellite, aerial, and unmanned aerial vehicle

(UAV) technologies, as listed in Table 1. Each platform offers

advantages and limitations in monitoring green tides, as

summarized in Table 2. Satellite remote sensing technology is

highly effective for large-scale, long-term observations, extensive

coverage and regular revisit capabilities. However, their spatial

resolution and ability to detect smaller patches of green tides are

insufficient compared to aerial remote sensing. In addition, in-situ

measurements and oceanographic environmental data, such as sea

surface temperature (SST), sea surface wind (SSW), sea surface

salinity (SSS), rainfall, ocean currents, and solar radiation, are used

to calibrate and validate remote sensing data.
3.1 Remote sensing data

3.1.1 Satellite remote sensing data
MODIS (TERRA/AQUA) has been providing data from 36

bands with spatial resolutions of 250 m, 500 m, and 1 km capturing

observations twice daily since 2002, making it a widely used tool for

long-term monitoring of algal blooms (An et al., 2022; Men et al.,

2023; Qi et al., 2023). Similarly, GOCI I/II, with its capability for

high-frequency observations at 1-hour intervals and spatial

resolution of 250 and 500 m, is particularly well-suited for real-

time monitoring of algal bloom dynamics, distribution, and drift of
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Ulva prolifera green tides (Gu et al., 2011; Son et al., 2012). The first

application of MODIS data for green tide research was conducted

by Hu and He (2008), who studied the origin, nearshore

distribution, and temporal variations of floating algae during the

2008 Beijing Olympic sailing competitions (Hu and He, 2008).

High-resolution satellites, such as Landsat-3/5/7/8/9, Sentinel-2/3,

GF-1/2, and HY-1A/B/C/D/E, provide high spatial resolution and

they can effectively complement the limitations of MODIS and

GOCI I/II in monitoring green tides over wide areas (Xu et al.,

2016). However, optical remote sensing remains vulnerable to

disruptions caused by cloud cover, fog, and rainfall, which often

hinder data acquisition in real-world scenarios. To address the

limitation, synthetic aperture radar (SAR) satellites, such as ASAR,

ENVISAT, Sentinel-1, and Radarsat-1/2, have been employed (Xu

et al., 2016; Qi et al., 2022). These synthetic aperture radar (SAR)

satellites offer all-weather, day-and-night observation capabilities,

enabling continuous and reliable monitoring of the spatial

distribution and movement patterns of green tides (Wang et al.,

2018; Li et al., 2023). Given the advantages and limitations of optical

and SAR remote sensing, a growing trend in Ulva prolifera green

tide research is the integration of multi-sensor imagery to achieve a

comprehensive understanding of the spatial distribution, temporal

variation, and movement patterns of green tides, while mitigating

the inherent limitations of each data source (Hu et al., 2015; Xu

et al., 2016).

Additionally, SST and SSW derived from passive microwave

sensors play a critical role in the development of green tides,

influencing their germination, growth rates, movement direction,

and spatial distribution (Zhan et al., 2024). A review of the literature

indicates that SSW data are primarily obtained from microwave

scatterometers such as ASCAT and QuikSCAT, which provide a

spatial resolution of 0.25°. In contrast, SST data are commonly

retrieved from MODIS and NOAA sensors, offering higher spatial

resolutions of 0.1° and 0.25°, respectively.

3.1.2 Aerial remote sensing data
In general, aerial remote sensing, including UAV and manned

aircraft, provides higher resolution than satellite remote sensing,

often achieving the centimeter level or even finer. This high

resolution enables the capture of detailed information about Ulva

prolifera green tides, particularly in nearshore and shallow water

areas, where small-scale green tides can be effectively identified

(Xing et al., 2011; Kim et al., 2020; Li et al., 2020; Xing et al., 2023).

For example, Li et al. (2020) investigated the northernmost drift

location of green tides in the Yellow Sea. Although satellite imagery

had suggested that no green tides had reached the Shidao Island

area, UAV imagery revealed small nearshore patches, indicating

that green tides had already invaded local aquaculture zones. In

addition, aerial remote sensing offers flexibility for conducting local

flights within a short time frame, enabling the acquisition of real-

time data without the limitation of satellite revisit cycles.

Furthermore, it facilitates the customization of spectral bands

(e.g., visible light, infrared, thermal imaging, and LiDAR) to

address specific monitoring requirements, thereby making it

highly adaptable to diverse applications (Rossiter et al., 2020;

Chen et al., 2023; Shang et al., 2023; Xing et al., 2023). For
FIGURE 4

Publication trends in remote sensing research on Ulva prolifera
green tide from 2009 to 2024.
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example, Jiang et al. (2020a) developed a new green tide index based

on UAV images, which demonstrated superior extraction accuracy

for green tides during the decay phase under hazy atmospheric

conditions. Similarly, Jiang et al. (2020b) used UAV to detect and

evaluate the initial biomass of green algae attached to aquaculture

rafts in shallow waters of northern Jiangsu.
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While these studies highlight the advantages of aerial remote

sensing in algal monitoring-such as high spatiotemporal resolution,

flexibility, mobility, and the capacity to carry diverse sensors-certain

limitations, including restricted coverage and operational

constraints, primarily position it as a tool or supporting and

validating satellite remote sensing data.
FIGURE 6

Author co-occurrence network map.
FIGURE 5

Number of publications by the journal on Ulva prolifera green tide.
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FIGURE 7

Institutional cooperation co-occurrence network map.
FIGURE 8

Keyword co-occurrence network map.
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3.2 In situ and auxiliary data

3.2.1 Field observations
Field Observation data offer high precision and resolution,

making them crucial for the calibration and validation of remote

sensing data, to ensure the accuracy of remote monitoring results

(Hu et al., 2019; Xiao et al., 2019; Zhang et al., 2024b). On-site

measurements, such as the biomass of green tides and

environmental parameters (e.g., SST, SSS, and nutrient

concentrations), provide essential calibration data for the

validation of remote sensing observations (Zhang et al., 2024b).

Laboratory or field measurements of the surface reflectance of

mixed algae-water samples at various ratios can help establish the

upper threshold values for pixel decomposition, which is critical for

accurately estimating the coverage of green tides (Hu et al., 2017).

Ground-based high-frequency multispectral cameras are used to

measure spectral reflectance in the field, enabling the accurate

identification and classification of different algae types, as well as

the estimation of their coverage and health status (van der Wal

et al., 2014). Additionally, data assimilation techniques allow ocean

buoy data to be integrated with satellite remote sensing and

historical data within ocean circulation models to simulate the

drift paths of floating algae (Choi et al., 2023).

The calibration and validation of remote sensing data using field

observation data play an essential role in ensuring the accuracy and

reliability of remote sensing results. However, despite the high

precision and resolution of these observations, their application in

large-scale monitoring faces several challenges, such as limited

coverage, time-consuming, and substantial costs. Therefore, to

achieve effective monitoring of the occurrence, development, and

temporal dynamics of Ulva prolifera green tides over large spatial

and long temporal scales, it remains essential to integrate satellite

and aerial remote sensing technologies. This integration is crucial

for improving the spatial and temporal accuracy of monitoring.

3.2.2 Oceanographic environmental parameters
Table 3 lists the commonly used oceanic environmental

parameters, including SST, SSW, photosynthetically available
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radiation (PAP), ocean currents, salinity, precipitation,

chlorophyll concentration, and nutrient levels, which influence

Ulva prolifera green tide growth, decay, and drift (Xu et al., 2016;

Li et al., 2017; Jin et al., 2018; Li et al., 2022; Xiao et al., 2024). In

addition to remote sensing data, SST and SSW are frequently

obtained from datasets such as the ECMWF Reanalysis 5th

Generation (ERA5) and the Hybrid Coordinate Ocean Model

(HYCOM), with spatial resolutions ranging from 0.08° to 0.25°

(Li et al., 2020, 2021; Zheng et al., 2022b). Table 3 also lists the

spatial and temporal resolutions for other oceanic environmental

parameters (Li et al., 2021, 2022; Xue et al., 2023; Hou et al., 2024).

Although existing oceanic physical, ecological, and other

environmental data typically have much lower spatial resolution

than remote sensing data, studies have not identified significant

discrepancies in the large-scale spatiotemporal distribution,

biomass estimation, driving factor analysis, or drift trajectory of

green tides when using data from different models.
4 Remote sensing research on Ulva
prolifera green tide

Researchers have developed several remote sensing methods for

monitoring Ulva prolifera green tides, focusing on detecting their

spatial distribution and estimating their biomass and coverage area.

As shown in the Ulva prolifera green tide distribution map from

May to July 2019 in Figure 8. Additionally, studies have extended to

analyzing the spatial and temporal distribution patterns of green

tides, integrating environmental factor analysis to understand the

conditions driving their growth. Furthermore, predictive models

have been applied to track the drift trajectories of green tides,

enhancing understanding of their movement and spread (Li et al.,

2014; Wang et al., 2015). These approaches include band indices,

thresholding segmentation, machine learning, and deep learning

methods. Among these methods, while deep learning approaches

are currently the most widely used, several challenges remain, such

as lack of interpretability and significant computational resources

required, with the detailed summary provided in Table 4.
TABLE 2 Comparing the advantages and limitations of different platforms.

Platforms Advantages Limitations

Optical remote sensing

Large spatial and time coverage
Long-term;
High spatial and spectral resolution;
Rich spectral information

Affected by weather and clouds;
Limited nighttime acquisition capability;

SAR
All-weather and day-night capabilities;
High spatial resolution;
Rich polarimetric information

Speckle noise affects image quality;
Complex interpretation;

Aerial remote sensing
Very high spatiotemporal;
resolution, flexibility, mobility;
Carry diverse sensors

Limited coverage;
High costs;
Dependent on battery life and weather conditions

In-situ
High-accuracy data;
Provides multi-dimensional environmental information

Limited spatial coverage;
Low sampling frequency and high costs
limited coverage, time-consuming, and substantial costs
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4.1 Identification and extraction of Ulva
prolifera green tides

4.1.1 Band indices for identification
Various remote sensing band indices, including NDVI, FAI,

EVI, SAI, DVI, and RVI, have been commonly employed in

monitoring Ulva prolifera green tides, as summarized in Table 1.

The definitions for these indices are provided below in Equations

(1) to (5). NDVI utilizes the reflectance difference between the NIR

bands to identify floating algae. NDVI was first applied successfully

to describe the origin and evolution of floating algae in the Yellow

Sea during the 2008 Beijing Olympic Games (Hu and He, 2008).

However, NDVI values are highly sensitive to environmental factors

such as aerosols, solar/viewing geometry, and water turbidity, which

may complicate its effectiveness in distinguishing floating algae

from surrounding waters (Hu, 2009). For example, in clear water,

the red and NIR bands absorb light, leading to low NDVI values,

while suspended materials like sediments and Sargassum modify

the reflectance characteristics, particularly in these bands. These

variations reduced contrast between floating algae and surrounding

water, complicating the quantitative analysis of NDVI values (Hu,

2009; Huang et al., 2021). Additionally, NDVI’s reliance on the

reflectance difference between red and NIR bands limits its ability to

accurately reflect high biomass levels when algae concentration is
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high. To address these limitations, alternative indices such as EVI

and FAI have been developed. EVI improves upon NDVI by

incorporating the blue band to reduce atmospheric aerosol and

water interference, thereby enhancing the response to vegetation

photosynthesis. This makes it more accurate when monitoring high

concentrations of green tides and Sargassum (Xing et al., 2018;

Zheng et al., 2020). RVI, as an adaptation of the EVI, utilizes the

ratio of reflectance between the NIR and RED bands. This

modification enhances its ability to identify and monitor the

spatial distribution and spread of floating algae, such as

Sargassum and green tides, particularly under variable

environmental conditions (Wang et al., 2019; Zheng et al., 2020).

FAI combines the RED, NIR, and short-wave infrared (SWIR)

bands, greatly reducing the impact of sun glint or haze and

improving its ability to distinguish algae from suspended matter

(Xing et al., 2018; Zheng et al., 2020). Studies have shown that FAI is

less sensitive to environmental and observational changes, making

it more stable than NDVI and EVI (Hu, 2009). However, FAI does

not offer an effective cloud masking method, which results in both

clouds and Sargassum exhibiting high FAI values in images. To

address this, a modified version of FAI, known as AFAI, was

proposed, which uses different spectral bands (RED = 667 nm,

NIR = 748 nm, SWIR = 869 nm) to improve accuracy (Wang and

Hu, 2016). A major limitation of FAI is the unavailability of SWIR
TABLE 3 Potential driving factors of Ulva prolifera green tides.

Data Dataset name Spatial Resolution Time Resolution

SSW

QuickScat 0.25° 3-Day/Weekly/Monthly

ASCAT 0.25° Daily/3-Day/Weekly/Monthly

WindSat 0.25°C Daily/Monthly

ECMWF 0.125° 3 h

Windspeed 0.25°C Daily

SST

MODIS 0.1° –

NOAA CDR OISST 0.25° Daily

ERA5 0.25° Hourly

HYCOM 0.08° 3h/Daily

SSS
HYCOM 0.08° 3h/Daily

WindSat 0.25°C Daily/Monthly

PAR
MODIS-Aqua v2018.0 0.1° Daily

Himawari-8 0.05°C Hourly

Water depths GEBCO 1 km –

Chlorophyll-a concentration
GOCI 500 m Hourly

MODIS 4 km or 9 km Daily/Monthly

Precipitation
GPM 0.1°C Hourly

ERA5 0.25° Hourly

Ocean currents
HYCOM 0.08° 3h/Daily

OSCAR_L4_OC_FINAL_V2.0, OSCAR_L4_OC_NRT_V2.0 0.25° Daily

Nutrients data GLOBAL_MULTIYEAR_BGC_001_029 0.25° Daily
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bands on many satellite sensors, which necessitates the use of

alternatives such as DVI. DVI is particularly sensitive in areas

with low vegetation cover, making it suitable for early-stage and

mid-stage algae detection (Li et al., 2018; Xing et al., 2018, 2019). In

environments with highly variable atmospheric conditions, turbid

waters, or sun glint effects, the Scaled Algae Index (SAI) has been

proposed to improve the detection of floating algae. This index

utilizes reflectance differences among the SWIR, NIR, and RED

bands, reducing interference from water turbidity and other

impurities, and thereby improving algae detection (Keesing et al.,

2011). In addition, several other band indices, such as NDAI (Son

et al., 2012), VB-FAH (Li et al., 2018), and VDVI (Visible-Band

Difference Vegetation Index, VDVI) (Jiang et al., 2020a), have been

developed based on the unique reflectance characteristics of algae.

NDVI = (Rnir �Rred)=(Rnir + Rred) (1)

EVI = G� (Rnir − Rred)=(Rnir + a� Rred − b� Rblue + c) (2)

RVI = Rnir=Rred (3)

FAI = (Rnir �Rred) + (Rred − Rswir)

� (lnir � lgreen)=(lswir � lred) (4)

NDAI =
½rt(lnir) − rr(lnir)� − ½rt(lred) − rr(lred)�
½rt(lnir) − rr(lnir)� + ½rt(lred) − rr(lred)�

(5)

where Rnir Rred Rblue are the reflectance values in the near-

infrared, red, and blue bands, respectively. li are the wavelength

with the subscript band name. rt represents the top-of-atmosphere

reflectance, rr represents the corresponding Rayleigh scattering

reflectance. G is the gain factor, and a, b and c are pixel-

independent coefficients to compensate for aerosol effects and

vegetation background.

However, each of these band index methods has its strengths

and limitations. In complex environments, where meteorological

conditions, solar angles, and aerosol concentrations vary, cloud
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cover or in waters with high suspended matter, relying on a single

band index to detect high-accuracy green tide information across all

stages and sensor types is difficult (Wang et al., 2019). Therefore, a

combination of multiple band indices and approaches may be

required for more effective monitoring of green tide dynamics.

4.1.2 Thresholding methods
The spectral differences between water and algae are commonly

utilized to detect Ulva prolifera green tide information using various

band indices at different resolutions. To effectively distinguish

between water and algae, thresholding methods are frequently

applied based on these band indices, such as fixed threshold,

statistical threshold, global threshold, and dynamic threshold. A

summary of these methods is presented in Table 1.

In earlier studies, adjusting and selecting appropriate thresholds

through visual interpretation and statistical analysis was a relatively

accurate approach (Shi and Wang, 2009). For the green tides in the

Yellow Sea, the NDVI method commonly applies thresholds greater

than -0.2 or 0 for algae, with water values being below 0 (Hu and

He, 2008; Hu, 2009). Similarly, the EVI method uses thresholds

above 0.02, and the FAI method typically adopts thresholds around

0.02, with water values generally being less than or equal to 0 (Hu,

2009). Through iterative visual inspection and calibration, Hu et al.

(2010) refined the FAI lower threshold to a range between -0.001

and 0.001. While thresholding methods adjusted through

interactive visual interpretation are accurate for monitoring

targets with clear boundaries, they lack robustness under varying

conditions, as threshold values often differ across scenarios, which

limits their applicability across periods or regions (Hou et al., 2024).

Son et al. (2012) conducted statistical analyses of NDVI, EVI, and

IGAG values to determine optimal thresholds for extracting green

tide pixels. They observed that the number of extracted pixels was

highly sensitive to the selected threshold (Son et al., 2012). Although

NDVI and EVI methods are effective when applied to both high-

resolution and medium-to-low-resolution satellite data, their

reliability diminishes in scenarios with low algae density or under

complex conditions such as cloud cover, aerosol interference, or
TABLE 4 Comparing the advantages and limitations of green tide monitoring methods.

Method Advantages Limitations

Band indices
Simple and high computational efficiency;
High interpretability

Dependence on environmental conditions;
Lack of adaptability;
Low accuracy

Threshold segmentation
Simple and high computational efficiency;
Strong model interpretability

Sensitivity to threshold selection;
Sensitivity to noise;
Difficulty in integrating multi-source data;
Lower accuracy

Machine learning

High computational efficiency;
Model interpretability;
Small sample advantage;
Multi-source data integration

Dependence on feature selection;
Inability to automatically learn features

Deep learning
Automated feature extraction;
Nonlinear modeling capability;
High accuracy

Data dependency;
High computational cost;
Lack of interpretability;
Hyperparameter tuning
frontiersin.org

https://doi.org/10.3389/fmars.2025.1546289
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Geng et al. 10.3389/fmars.2025.1546289
water turbidity (Son et al., 2012). One solution involves removing

the background water signal from the area of interest to normalize

local algae indices. For example, in the NDAI method, algae pixel

values are refined by subtracting the average value of surrounding

non-algal pixels, resulting in a homogeneous background that

enables the application of global thresholds to isolate floating

algae pixels (Shi and Wang, 2009). However, global thresholds are

prone to underestimation in scenes with highly variable

backgrounds (Garcia et al., 2013). To address these limitations,

Garcia et al. (2013) proposed the SAI algorithm, which scales the

NDVI or FAI images by subtracting local ocean medians and then

applies a scene-wide exclusion method to segment algae pixels.

Additionally, dynamic thresholding methods have been developed

to detect Ulva prolifera green tides under challenging conditions

such as solar flares, thin clouds, or other interferences (Xing et al.,

2018; An et al., 2021). Local adaptive thresholding methods further

enhance performance by dynamically selecting thresholds within

moving pixel windows based on satellite top-of-atmosphere

reflectance data and canopy greenness indices. These methods

have shown promising results in non-optimal observation

conditions, including complex water backgrounds, sun glint, and

cloud cover (Zhang et al., 2024b).

Although threshold-based classification algorithms are widely

adopted for their practicality and simplicity in binary classification,

they face significant challenges in adapting to dynamic marine

environment conditions. Changes in illumination, seasonal

variations, water depth, and turbidity can alter the reflection

properties of green tides, reducing the effectiveness of these

methods. Consequently, thresholding methods require frequent

adjustments and struggle to differentiate fine-scale algae features

under low-resolution conditions, leading to reduced robustness and

adaptability (Hou et al., 2024).

4.1.3 Machine learning methods
Machine learning methods, including the Mahalanobis distance

(MHD), maximum likelihood (ML), minimum distance (MD),

support vector machine (SVM), and random forest (RF), have been

widely applied in the remote sensing monitoring of Ulva prolifera

green tides. These methods, along with their specific applications, are

summarized in Table 1. Gu et al. (2011) demonstrated that decision

tree models could effectively utilize spectral differences among

Sargassum, seawater, and solar glint, reducing image noise caused

by solar flares and extracting Sargassum information from imagery.

Similarly, Casal et al. (2011) demonstrated that the ML method is

highly effective in distinguishing algae pixels from non-algae pixels,

with an accuracy exceeding 90% when validated against ground-truth

samples. Among classification algorithms such as MHD, ML, MD,

and artificial neural networks (ANN), ML and ANN achieved the

highest accuracy in evaluating green tide areas from UAV remote

sensing data (Kim et al., 2020). The multi-layer perceptron effectively

addresses challenges such as clouds, aerosols, and solar flares under

various environmental conditions better than traditional methods

(Qiu et al., 2018). However, these supervised classification methods

inevitably require human intervention for sample delineation and

image interpretation, which is a time-consuming and labor-intensive
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process. To address this, a method combining the Gaussian mixture

model and an improved Dempster-Shafer evidence theory has been

proposed to enable automatic detection of Sargassum distribution.

This approach can automatically integrate NDVI, RVI, DVI, and FAI

features to extract the distribution and coverage of Sargassum

(Wang et al., 2019). Additionally, by applying advanced machine

learning algorithms like RF and gradient boosting decision trees

(GBDT), researchers assessed the biomass of various intertidal algae

species, demonstrating that GBDT provides a more accurate biomass

evaluation (Chen et al., 2022). High-resolution remote sensing data,

with their fine spatial resolution, enable the detection of detailed

green tide features, while low-resolution data, offering higher

temporal resolution, support frequent monitoring of temporal

changes. By integrating high- and low-resolution data, machine

learning models can effectively analyze the appearance, evolution,

and migration patterns of green tides (Men et al., 2023). As spatial

resolution improves, the ability to distinguish different algae features

is significantly enhanced. For example, the RF method, known for its

strong robustness, has been demonstrated to efficiently monitor the

spatial and temporal distribution of Sargassum and other algae

(Yu et al., 2023). Additionally, a hybrid remote sensing model

combining the RF algorithm with the optical algal cloud index has

been shown to accurately distinguish between thin cloud boundaries

and dense green tide areas, outperforming SVM and nearest neighbor

methods (Hou et al., 2024).

Compared with traditional thresholding methods, machine

learning approaches provide greater robustness and adaptability

for detecting Ulva prolifera green tides under varying

environmental conditions, such as changes in lighting,

seasonality, water depth, and turbidity. These models can fully

exploit spectral, spatial, and textural features, enabling automatic

and efficient detection even with limited labeled samples. However,

their performance heavily depends on manually designed feature

extraction processes, requiring expert knowledge to select effective

features such as color and texture, and inadequate or irrelevant

feature selection can compromise the model’s accuracy.

4.1.4 Deep learning methods
Artificial intelligence (AI) is a comprehensive research field

encompassing various technologies and methodologies, with

machine learning serving as a crucial approach for realizing AI,

thus becoming a central component of the field. Deep learning, a

subset of machine learning, employs deep neural networks for data

modeling and feature extraction and has emerged as one of the most

advanced technologies in recent years (Jordan and Mitchell, 2015).

Unlike traditional methods such as threshold segmentation, SVM,

and RF, which typically rely on manually designed features (e.g.,

color, texture, and shape) for green tide detection, deep learning

models can automatically learn these features from raw data,

significantly improving detection accuracy and adaptability.

Additionally, deep learning not only utilizes the spectral

information from individual pixels but also incorporates spatial

relationships among these pixels, thereby achieving better feature

extraction results (Qi et al., 2022). For example, Kim et al. (2020)

compared the performance of MHD, ML, MD, and ANN for coastal
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green tide monitoring and found that ML and ANN methods

yielded the highest accuracy (Kim et al., 2020). Unlike traditional

methods, which often struggle to distinguish algae from other

marine objects with similar spectral features, deep learning

networks can capture subtle differences among various target

features, enabling more accurate differentiation (Kim et al., 2020).

Moreover, deep learning methods can effectively consider the

spectral information of each pixel and the spatial context among

pixels, leading to a remarkable improvement in green tide detection

accuracy compared to traditional approaches (Wan et al., 2021).

Green tide outbreaks are often widely covered in the news, and a

significant correlation is found between these events. Deep learning

can leverage temporal and spatial features to model these

correlations, enabling the detection of daily green tides and

utilizing observed green tides to infer societal reactions (Wang

et al., 2021b). Although deep learning is robust in green tide

detection, it often requires large amounts of labeled data.

However, in practice, pure samples are scarce, and background

samples are often predominant, leading to class imbalance. These

challenges can be addressed by optimizing the loss function to

improve performance (Guo et al., 2022). Furthermore, by

optimizing U-Net model, more accurate estimates of green tide

coverage and biomass density can be extracted (Shang et al., 2023).

Deep learning can also adapt to different illumination conditions

and environmental factors when analyzing remote sensing images,

allowing for the precise detection of green tides under varying

conditions. In particular, mixed pixels in low-resolution images

may hinder accurate biomass estimation, but deep learning can

integrate pre-trained image super-resolution models to enhance the

spatial resolution of satellite imagery and strengthen edge features,

thereby minimizing the impact of mixed pixels (Liu et al., 2024).

Compared to machine learning, deep learning models can

automatically select features, reducing the need for manual

feature design. These models are also better at capturing complex

patterns and features, demonstrating greater stability and

robustness when confronted with diverse marine environments

and conditions. However, there are certain limitations (Zhu et al.,

2017). First, deep learning is highly dependent on labeled data,

requiring a large quantity of high-quality labeled data for training.

Inaccurate labeling or insufficient samples from diverse scenarios

(such as varying lighting conditions or cloud cover) can

significantly impair the model’s generalization ability. Second,

training deep learning models is computationally expensive,

particularly when dealing with high-resolution remote-sensing

images. Third, the black-box nature of deep learning models

makes them less interpretable than traditional machine learning

methods. This lack of interpretability poses challenges for decision-

makers and environmental managers who need to understand why

a model makes certain predictions. Furthermore, the complexity of

deep learning models limits their explainability.
4.2 Estimation of green tide biomass

With the expansion of seaweed farming on the northern Jiangsu

shallow shoals, Sargassum (green tide) shed or discarded during the
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harvesting and dismantling of seaweed farming rafts has been

identified as a major source of large-scale green tide outbreaks in

the Yellow Sea (Liu et al., 2009; Keesing et al., 2011). To estimate the

cumulative biomass of these outbreaks, Wang et al. (2015)

developed a mathematical model that utilized initial biomass data

from seaweed farming rafts, combined with floating and growth

rates of green tides derived from field experiments. Expanding on

this work, Liu et al. (2015) established 27 monitoring stations in

regions with the most severe outbreaks and employed both remote

sensing and field surveys during and after seaweed raft cleaning to

estimate large-scale green tide biomass accurately. To improve

biomass estimation, Hu et al. (2017) developed a remote sensing

model based on reflectance-derived FAI, using biomass and

reflectance data from laboratory experiments. Subsequently, this

model was later extended to MODIS remote sensing imagery,

enabling large-scale biomass estimation of green tides in the

Yellow Sea (Hu et al., 2017). Furthermore, Hu et al. (2019)

refined this approach by constructing an FAI gradient image to

reduce the impact of suspended sediments, atmospheric turbidity,

and sunlight on coverage estimation. They extracted algae-

containing pixels and calibrated the relationship between

coverage and biomass based on tank and field experiments (Hu

et al., 2019). While effective, this method still faced challenges under

extreme observational conditions, such as large viewing angles or

high atmospheric turbidity (Hu et al., 2019). In addition to FAI,

other indices have been explored for green tide biomass estimation.

Xiao et al. (2019) demonstrated strong exponential relationships

between biomass per unit area and indices such as EVI, NDVI, and

FAI, with EVI being the least affected by mixed pixels. They further

applied EVI to MODIS imagery to estimate the maximum green

tide biomass in the Yellow Sea from 2007 to 2016. Similarly, Xing

et al. (2018) utilized the DVI to develop linear regression models for

surface coverage, enabling potential biomass estimation. Xu et al.

(2023) adopted Gompertz and logistic growth models to fit

cumulative coverage area data from 2008 to 2022, effectively

tracking daily variations in green tide coverage.

Despite these advancements, most biomass assessments still rely

on measurements of maximum algal coverage or manually removed

biomass, often overlooking the significant growth potential of

Sargassum. Under favorable conditions, daily biomass growth

rates can exceed 25%, resulting in underestimations of green tide

coverage (Xing et al., 2018; Yuan, 2022). To address this limitation,

Yuan (2022) proposed a folding model to predict upstream algae

growth and the potential maximum biomass of green tide

outbreaks. This model incorporates both growth dynamics and

cumulative coverage, providing a more accurate estimation of

outbreak scales in the Yellow Sea.
4.3 Drivers of green tide growth
and outbreak

Many researchers have investigated the factors driving the

growth and outbreak of Ulva prolifera green tides, focusing

particularly on the environmental and physical conditions

influencing its proliferation and movement. Studies consistently
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highlight that SSW plays a pivotal role in the movement and

horizontal drift of floating algae. Xu et al. (2014) analyzed the

impact of SST and SSW, finding that while SST was not a critical

factor affecting the scale of algal bloom, SSW significantly

influenced the movement and distribution of floating algae.

Similarly, Li et al. (2020) analyzed the development, dissipation,

and northward drift of green tides in Rongcheng from 2013 to 2018,

concluding that SSW had the greatest impact on the occurrence and

movement of Ulva prolifera green tide blooms. Furthermore, Zhang

et al. (2022) tracked Ulva prolifera green tides using remote sensing

from 2015 to 2019 and confirmed that SST provided necessary

growth conditions, while SSW was the primary driver of horizontal

drift, determining the distribution patterns of green tides.

Environmental factors affecting green tide growth vary across its

life cycle. Jin et al. (2018) found that during the initial phase, SST

and available radiation were the primary factors influencing algal

biomass; during the outbreak phase, water transparency,

precipitation, and wind activity facilitated algal proliferation; and

in the dissipation phase, SST, strong radiation, and human cleanup

operations accelerated algal mortality. Adequate light conditions

have also been identified as a crucial factor. Zhang et al. (2020a)

observed that sufficient light during the growth period was a key

driver of Ulva prolifera green tide outbreaks. Similarly, Cui et al.

(2015) identified the optimal SST range for Ulva prolifera growth as

20°C to 27°C, a finding that was further corroborated by

Nukapothula et al. (2022), who analyzed MODIS SST data. They

found that algal blooms typically initiated when SST rose from 18°C

to 25°C and that abundance declined when SST exceeded 25°C.

These findings highlight the interconnected roles of nutrient

availability and physical forcing in both the growth and

dispersion of green tides.

In addition to physical conditions, nutrient availability

significantly impacts green tide growth. Zhang et al. (2020a)

emphasized that while suitable SST and sufficient light promote

growth, these factors alone are insufficient under nutrient-poor

conditions. High concentrations of nutrient salts, particularly

phosphate, and balanced N/P/Si ratios are essential for sustaining

rapid algal proliferation. Precipitation also plays a complex role in

green tide dynamics. Li et al. (2021) noted that during the

dissipation phase, SST was negatively correlated with green tide

abundance, as higher temperatures accelerated dissipation.

However, precipitation slowed this process, and typhoons could

disrupt it. Zheng et al. (2022b) further revealed that moderate light

conditions promoted growth and reproduction, while excessive

ultraviolet radiation could inhibit algal proliferation.

Recent studies have expanded the understanding of green tide

dynamics by integrating multiple environmental and water quality

parameters. Hou et al. (2024) identified phosphate content, N/P/Si

ratios, and water transparency as additional factors influencing the

growth rate of Ulva prolifera. These findings underscore the

importance of considering a combination of physical, chemical,

and biological factors to fully understand the mechanisms driving

green tide outbreaks.
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4.4 Ulva prolifera green tide drift trajectory
analysis and prediction

Recent advancements in remote sensing and modeling have

significantly improved our ability to monitor and predict the drift

trajectories of Ulva prolifera green tides. In early May, large algae

originate from the turbid waters near the northern Shandong shoals

of the Yellow Sea and begin to drift southward. However, as the East

Asian summer monsoon strengthens, the primary drift direction

shifts northward (Xing et al., 2011). The radial sand ridges in the

northern Shandong shoals contribute to longitudinal and transverse

ocean currents, with the longitudinal net movement serving as the

primary driver for transporting green tides into nearshore waters

(Bao et al., 2015). Various studies have confirmed the influence of

ocean currents and wind fields on green tide dynamics. For

example, Son et al. (2015) highlighted that typhoons and

enhanced wind conditions significantly influenced the movement

of floating algae patches. Liu et al. (2015) and Li et al. (2020)

documented the northward drift of green tides from the coastal

waters of Jiangsu Province in May, eventually reaching the southern

coast of Shandong Province. Ma et al. (2022) used optical and

microwave remote sensing data to monitor the movement of green

tides in the Yellow Sea and the East China Sea in 2021, indicating a

consistent northward trajectory passing through multiple coastal

regions before gradually dissipating near Qingdao. Similar trends

were observed using remote sensing at different spatial resolutions,

where the overall drift direction of Ulva prolifera green tide was

found to be northward (Wang et al., 2023a). Recent remote sensing

studies indicate that the northward drift of Ulva prolifera is

primarily driven by ocean currents and wind fields (Hou

et al., 2024).

To predict green tide drift trajectories, researchers have

combined remote sensing with different modeling methods, such

as numerical models and ecosystem models (Hu et al., 2018). Xu

et al. (2016) used a Lagrangian spill trajectory model to simulate the

migration of floating algae in the Yellow Sea, achieving results

consistent with satellite observations. Zhou et al. (2021) enhanced

this approach by incorporating an ecological dynamic growth

module into the Lagrangian model, enabling the prediction of

spatiotemporal variations in large-scale green tide blooms.

Despite the utility of Lagrangian models, limitations such as low

spatial resolution in large-scale grids and instability in high-

resolution settings have been noted (Sheng et al., 2023). To

address these challenges, Sheng et al. (2023) developed a

bidirectional feedback model that uses algae distribution data

from remote sensing as the initial input. This model integrates

drift, diffusion, and elimination mechanisms, demonstrating

superior predictive performance compared to traditional methods.

During the decay phase, green tide growth is closely linked to SST,

PAR, and phosphate levels, while salinity and nitrate have minimal

effects. Based on these findings, Yang et al. (2023) created a

regression model using SST, PAR, and phosphate to predict green

tide production rates during this phase.
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The growth of Ulva prolifera green tide typically follows an S-

shaped curve (Banks et al., 2017). Xu et al. (2023) analyzed daily

coverage data of green tides in the Yellow Sea from 2008 to 2022 and

applied Gompertz and logistic growth curves to model cumulative

coverage over time. However, estimating green tide outbreaks solely

based on cumulative or maximum coverage can lead to inaccuracies,

as these metrics may not fully capture the outbreak scale or temporal

dynamics (Yuan, 2022). Sheng et al. (2023) proposed a bidirectional

feedback model for Ulva prolifera green tide drift, which uses the

spatial distribution of algae extracted from remote sensing images as

the initial model. Based on the drift and diffusion mechanisms of

Ulva prolifera green tide, a bidirectional feedback model between

algae elimination and driving modules was established, showing

superior performance in predicting algae drift and dispersion

compared with traditional methods. In cases where remote sensing

data have long revisit cycles or limited spatial coverage, predictive

challenges arise. To overcome these limitations, Wang et al. (2023b)

proposed using Long Short-Term Memory Networks. This approach

leverages spatiotemporal features from oceanic physical factors (e.g.,

SSW and ocean currents) and biological factors (e.g., SST, SSS, and

solar radiation) to learn drift patterns. The model can accurately

predict the geometric position of Ulva prolifera green tides within a

seven-day window, offering a robust tool for short-term

trajectory forecasting.
5 Challenges and opportunities in
monitoring Ulva prolifera green tides

Despite significant advancements in understanding the outbreak

areas, detection methods, spatiotemporal distribution

characteristics, biomass estimation, driving factors, and drift

trajectory prediction of the Yellow Sea green tide, several

challenges remain unresolved. For example, there remains a

persistent trade-off between high temporal and high spatial

resolution in multi-source remote sensing data, and effective

methods for integrating data from different platforms to fully

exploit their complementary strengths are still lacking.

Additionally, the estimation of green tide coverage and biomass is

susceptible to variations in image quality, data sources, and

algorithm selection, which increases the uncertainty of monitoring

results. Although factors such as temperature, salinity, and light

intensity have been identified as key drivers of green tides, the

interactions among these factors and their relationship with the

reproduction of Ulva prolifera remain inadequately studied. The

absence of physical-biological coupled models that integrate ocean

dynamics with the biological characteristics of Ulva prolifera limits

the accuracy of drift trajectory predictions and the spread of green

tides. Advanced multimodal data fusion techniques offer a

promising solution to overcome the limitation by integrating high-

resolution spatial, high-frequency temporal remote sensing data, and

filed data. This approach offers a way to enhance the precision and

responsiveness of green tide monitoring (Li et al., 2022). It can

effectively mitigate challenges associated with cloud cover, weather

variability, and noise, enabling researchers to better capture the
Frontiers in Marine Science 17
dynamic processes of Ulva prolifera, including its growth, outbreak,

and dissipation phases, thus significantly improving biomass

estimation and spatial coverage analysis. Furthermore,

incorporating marine environmental factors (e.g., SST, SSS, light

intensity, and SSW) and extreme climatic events (e.g., typhoons and

heatwaves) into predictive models of green tide drift trajectories

provides a more comprehensive understanding of the driving

mechanisms underlying the spread and drift of Ulva prolifera.

Convolutional Neural Networks (CNNs) offer promising

solutions for addressing the challenges associated with the

temporal and spatial resolution differences in green tide

monitoring, as well as improving predictions of drift trajectories

and outbreak trends (Zhu et al., 2017; Wang et al., 2023a). Future

research should focus on multi-source fusion (e.g., optical imagery,

SAR data, hyperspectral imagery) and non-remote sensing data

(e.g., oceanographic monitoring data, meteorological data) to

extract and align multimodal features using CNNs, thereby

addressing challenges related to temporal and spatial resolution

discrepancies. In addition, exploring the nonlinear relationships

between Ulva prolifera and environmental factors, and developing

coupled models that integrate biological processes with remote

sensing data, will help reveal the growth, drift, and decay

processes of Ulva prolifera, as well as predict its drift trajectories

and outbreak trends. These studies will facilitate the development of

more accurate and real-time monitoring solutions, thereby

improving the efficiency of green tide detection and optimizing

strategies for early warning, evaluation, and management.

In conclusion, this study comprehensively reviews green tide

remote sensing research, highlighting current trends, technological

limitations, and future directions. It not only provides researchers

with insights into the trends and dynamics of Ulva prolifera green

tide studies and highlights potential research opportunities but also

serves as a valuable reference for government administrators in

formulating evidence-based strategies.
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