![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Mar. Sci.
Sec. Marine Fisheries, Aquaculture and Living Resources
Volume 12 - 2025 | doi: 10.3389/fmars.2025.1545718
This article is part of the Research Topic Challenges in Fishery Assessment Methodologies View all 11 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Long-term conservation of marine resources depends on the availability of data to adequately assess fish stocks, the environmental state and the impact of fishing activity on marine ecosystems. In recent years, electronic monitoring (EM) has developed significantly as a tool to provide data on fishing activity and catches. In this context, the question arises as to how these data can be utilized for scientific fisheries research., given the available EM systems and the wide variety of commercial fisheries. In our study, we tested four case studies in Spanish waters: otter bottom trawling targeting demersal fish, otter bottom trawling targeting mackerel, trammel net fishery and purse seining. To evaluate the utility of EM, in these case studies, we designed a comparative analysis based on two data sources: data from scientific human observers and data from an electronic camera system. Both methods were applied to the same hauls to assess the accuracy of the cameras, the system performance and the problems with adequate data collection for scientific purposes in each fishery studied. The results showed that the camera system recorded an average of 69% to 80% of the total captured species in trawling, full coverage (99%) in trammel nets, and 64% in purse seining. The number of detected individuals varied among the identified species. An 83% agreement was observed for retained Lepidorhombus spp. and 55% for retained Scomber scombrus in bottom trawl fisheries. Likewise, a 90% agreement was recorded for Sepia officinalis in the trammel net fishery. In terms of total estimated weight, a 75% agreement was achieved for retained Sardina pilchardus in the purse seine fishery. Additionally, the camera system was able to record bycatch species, including marine mammals and seabirds, and protected, endangered, and threatened (PET) species. This information provides an opportunity to gather more scientific data from small-scale fisheries, which are the most common type in Spain. Some possibilities are proposed to address several challenges to improve the accuracy of camera recordings in different fisheries so that they are useful for scientific data collection.
Keywords: fisheries science, electronic monitoring, Scientific Data, Discards, sustainable fisheries, Fisheries Management, Electronic observation
Received: 15 Dec 2024; Accepted: 06 Feb 2025.
Copyright: © 2025 Barreiro, Abad, Antelo, Fernández Franco, Pereira, Ovalle, Perez Martin and Valeiras. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Mateo Barreiro, Oceanographic Center of Vigo, Spanish Institute of Oceanography (IEO), Vigo, Spain
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.