Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.

Sec. Ocean Observation

Volume 12 - 2025 | doi: 10.3389/fmars.2025.1542832

This article is part of the Research Topic Remote Sensing Applications in Oceanography with Deep Learning View all 8 articles

Small Object Detection in Side-Scan Sonar Images Based on SOCA-YOLO and Image Restoration

Provisionally accepted
Xiaodong Cui Xiaodong Cui Jiale Zhang Jiale Zhang Lingling Zhang Lingling Zhang Qunfei Zhang Qunfei Zhang Jin Han Jin Han *
  • Northwestern Polytechnical University, Xi'an, China

The final, formatted version of the article will be published soon.

    Although side-scan sonar can provide wide and high-resolution views of submarine terrain and objects, it suffers from severe interference due to complex environmental noise, variations in sonar configuration (such as frequency, beam pattern, etc.), and the small scale of targets, leading to a high misdetection rate. These challenges highlight the need for advanced detection models that can effectively address these limitations. Here, this paper introduces an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO, which integrates a Small Object focused Convolution module and an Attention mechanism to improve detection performance to tackle the challenges. The SOCA-YOLO framework first constructs a high-resolution SSS(sidescan sonar image) enhancement pipeline through image restoration techniques to extract fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-to-Depth Convolution) module is incorporated to optimize the feature extraction network, effectively preserving discriminative characteristics of small targets. Furthermore, the model integrates the standardized CBAM (Convolutional Block Attention Module) attention mechanism, enabling adaptive focus on salient regions of small targets in sonar images, thereby significantly improving detection robustness in complex underwater environments. Finally, the model is verified on a public side-scan sonar image dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It outperforms the current state-of-the-art object detection method, YOLO11, as well as the original YOLOv9. Specifically, our model surpasses YOLO11 and YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the SOCA-YOLO model provides a new and effective approach for small underwater object detection in side-scan sonar images.

    Keywords: side-scan sonar, image restoration, YOLOv9, attention mechanism, Space-to-Depth Convolution

    Received: 10 Dec 2024; Accepted: 11 Mar 2025.

    Copyright: © 2025 Cui, Zhang, Zhang, Zhang and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Jin Han, Northwestern Polytechnical University, Xi'an, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more