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Introduction: The advancement of Underwater Human-Robot Interaction

technology has significantly driven marine exploration, conservation, and

resource utilization. However, challenges persist due to the limitations of

underwater robots equipped with basic cameras, which struggle to handle

complex underwater environments. This leads to blurry images, severely

hindering the performance of automated systems.

Methods: We propose MUFFNet, an underwater image enhancement network

leveraging multi-scale frequency analysis to address the challenge. The network

introduces a frequency-domain-based convolutional attention mechanism to

extract spatial information effectively. A Multi-Scale Enhancement Prior

algorithm enhances high-frequency and low-frequency features while the

Information Flow Interaction module mitigates information stratification and

blockage. A Multi-Scale Joint Loss framework facil itates dynamic

network optimization.

Results: Experimental results demonstrate that MUFFNet outperforms existing

state-of-the-art models while consuming fewer computational resources and

aligning enhanced images more closely with human visual perception.

Discussion: The enhanced images generated by MUFFNet exhibit better

alignment with human visual perception, making it a promising solution for

improving underwater robotic vision systems.
KEYWORDS

underwater image enhancement, underwater human-robot interaction, multi-scale
knowledge, multi-frequency extraction, convolutional attention, deep learning
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1 Introduction

Underwater Human-Robot Interaction(U-HRI) is an emerging

technology that explores and optimizes interactions between

humans, computer systems, and intelligent devices in underwater

environments. With the increasing underwater activities, such as

marine resource exploitation, environmental monitoring, and

scientific research, the demand for efficient and intuitive

underwater interaction technologies has grown significantly (Birk,

2022). The development of U-HRI advances ocean exploration,

offering innovative solutions for marine resource research.

However, image blurring is a critical factor limiting U-HRI

performance and efficiency during underwater tasks. The

uniquely underwater environment renders capturing sharp images

with autonomous underwater vehicles (AUVs) extremely

challenging. Underwater light absorption and scattering intensify

with depth, significantly reducing image contrast and brightness.

Light at different wavelengths decays at varying rates underwater,

with red light decaying the fastest and blue light the slowest,

resulting in predominantly blue or green-hued images. The

presence of suspended particles and microorganisms further

exacerbates image degradation. Furthermore, the underwater

environment is highly dynamic, with uneven illumination and

turbulence-induced relative motion between the camera and

target frequently causing blurred images. Considering the above

factors, research on underwater image enhancement (UIE)

technologies is crucial for accurately understanding the

underwater world and enhancing the efficiency and safety of

U-HRI.

UIE methods are categorized into hardware-based, physical

model-based, and Artificial IntelligenceDriven (AID)-based

approaches. Hardware-based UIE primarily relies on specialized

auxiliary imaging equipment, such as polarization filters, color

correction lenses, and multi-spectral sensors, to enhance

underwater image quality (Lu et al., 2017). Multi-dimensional

environmental information is obtained by integrating professional

sensing equipment, improving the underwater image quality.

However, expensive hardware devices significantly increase

system costs. Additionally, factors such as energy endurance,

renewal cycles, and system maintenance further restrict the

broader application of these methods.

Physical model-based UIE primarily utilizes the absorption and

scattering theory of light to model the propagation dynamics of the

underwater medium. It inverts the physical model by simulating the

underwater propagation environment parameters to restore image

quality (Bi et al., 2024; Zhuang et al., 2022). The processing of this

method involves (a) building the degradation model, (b) calculating

the model parameters, and (c) tackling the inverse problem.

Although this technique has a solid theoretical foundation,

greater flexibility, and automation, it also has limitations. Firstly,

the method is computationally complex and depends on accurate

environmental models and prior knowledge, which becomes

particularly ineffective in extreme underwater environments.

Additionally, selecting and optimizing the model for various
Frontiers in Marine Science 02
underwater conditions poses challenges to the real-time

processing capabilities and robustness of UIE.

Recently, AID-based methods have performed well in UIE tasks

by utilizing Deep Neural Networks (DNN) to automatically extract

underwater image features and perform complex nonlinear

transformations, resulting in enhanced image quality (Cheng

et al., 2023). However, the cost of data collection and the

substantial computational resource requirements restrict the

model’s real-time inference and generalization ability, tending to

performance bottlenecks in UIE tasks. Moreover, model

performance commonly underperforms when confronted with

highly dynamic underwater environments.

To address the above challenges, we propose a novel network

framework with AID-based, namely MUFFNet, which strikes a

trade-off between effect and efficiency. MUFFNet, using an

asymmetric Encoder-Decoder architecture, combines Multi-scale

Enhancement Prior (MEP) and Multi-scale Joint Loss (MJ-loss) to

increase the feature extraction ability and accelerate network

convergence. Additionally, we incorporate a frequency-domain-

based convolutional attention mechanism (FFMS) to extract

frequency features. Finally, Integrating the Information Flow

Interaction (IFI) module into the Decoder accelerates the

circulation and fusion of feature information. Notably, the

asymmetric structure has significant advantages over traditional

symmetric networks in underwater image enhancement. It can

specialize in high-frequency and low-frequency features,

improving efficiency and reducing redundant computation

through targeted module design. The flexible multi-scale feature

fusion mechanism helps to better combine the information of

different frequencies and is adaptable to the diversity of complex

degradation of underwater images, performing differentiated

processing for different degradation factors. MUFFNet considers

the trade-off between resource limitations and enhanced effects,

outperforming vanilla CNNs in UIE tasks. Figure 1 illustrates a

performance comparison between MUFFNet and vanilla CNN

architecture. The main contributions of this article are

summarized as follows:
1. We propose an asymmetric network, MUFFNet, which

integrates Multi-scale Enhancement Prior (MEP) and Multi-

scale Joint Loss (MJ-loss) to improve the network’s feature

extraction and convergence capabilities. Moreover, the design

of an Information Flow Interaction (IFI) module facilitates the

flow and fusion of frequency-domain information.

2. Designing frequency-domain-based convolution attention

extracts high- and low-frequency information in features.

Notably, the Multi-scale Enhancement Prior (MEP) can

preprocess images, enriching the frequency domain

information of the image to enhance the network’s

feature extraction effects.

3. Comprehensive experiments demonstrate that MUFFNet

surpasses baseline models in UIE tasks, achieving superior

image enhancement and alignment with human visual

perception while maintaining lower resource consumption.
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2 Related works

2.1 U-HRI

The U-HRI has gained swift development, improving the

efficient and secure communication between divers and

autonomous underwater vehicles (AUVs).

In (Hong et al., 2024), a diver identification framework

deployed on an AUV was proposed, which extracted robust

features from diver pose estimates and utilized an embedding

network to mitigate the risk of diver identification errors caused

by similar-looking scuba gear. Similarly, (Fulton et al., 2023)

introduced the SIREN framework, which employs sound

generated by underwater robot vibrations for underwater

communication. To improve the control of subsea remotely

operated vehicles (ROVs) during subsea operations, (Xia et al.,

2023a) presented a control algorithm integrating Virtual Reality

(VR) and haptic simulators. This approach enhanced operators’

perception of proximity conditions and predictive capabilities,

improving operational performance and accuracy. Additionally,

(Xia et al., 2023b) proposed a control method based on VR for

human body motion and hand gestures, significantly improving

navigation and stabilization control precision in Remotely Operated

Vehicles (ROVs), thereby advancing subsea engineering

exploration. Research into underwater equipment encompasses

diverse aspects (Praczyk, 2023; Wang et al., 2024b), greatly

accelerating the progress of underwater research.

Image processing is an essential component when deploying

AUVs for underwater tasks. However, the dangerous degradation of

underwater image quality adversely impacts AUV decision-making,

increasing the risk of underwater accidents. Upgrading underwater

equipment is commonly challenging due to the expensive advanced

devices, which restricts the applicability and reliability of systems.

Therefore, a cost-effective, efficient, and widely applicable method is

required to address these issues.
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2.2 Physical model-based UIE

The physical model-based UIE algorithm can restore the

natural color and clarity of underwater images by simulating the

transmission characteristic of underwater light, which has obtained

in-depth study due to its wide adaptability and solid

theoretical foundation.

(Zhang et al., 2022a) introduced a Retinex-inspired color

correction and detail-preserving fusion method to address color cast

and blurring issues in underwater images. To resolve underwater image

color deviations and low visibility, (Zhang et al., 2022b) proposed the

MLLE algorithm, inspired by the phenomena of light absorption and

scattering, which significantly enhances image quality. Building on

frequency-domain analysis, (Zhang et al., 2023c) developed a weighted

wavelet visual perception fusion strategy that generates high-quality

images by fusing multi-scale frequency information. Additionally,

(Zhang et al., 2023b) utilized a piecewise color correction and dual

prior optimized contrast algorithm to solve severe underwater image

degradation. Meanwhile, (An et al., 2024) proposed a hybrid fusion

algorithm to mitigate the visual challenges of underwater images,

effectively resolving various quality issues in underwater scenes.

Numerous other studies have also contributed to spurring physical

model-based UIE methods from diverse perspectives (Qi et al., 2021;

Hou et al., 2023; Rao et al., 2023; Kang et al., 2022; Wang et al., 2023).

Despite their advantages, physical model-based UIE methods

face certain limitations. Firstly, these algorithms are sensitive to

environmental parameters and tend to underperform in varying

underwater scenarios. Secondly, simulating the light propagation

and scattering process is widely computationally intensive,

prolonging the processing time. Furthermore, reliance on

specialized equipment and the complexity of underwater

environments restricts the generalization and practical application

(González-Sabbagh and Robles-Kelly, 2023). Therefore, developing

a novel UIE method with improved generalization capabilities and

superior imaging quality is essential.
FIGURE 1

Performance comparison of networks on the LSUI and UIEB datasets. The PSNR and VIF values were divided by 30 and 1.3 on the LSUI dataset and
25 and 1.3 on the UIEB dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1541265
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kong et al. 10.3389/fmars.2025.1541265
2.3 AID-based UIE

The development of artificial intelligence (AI) has pioneered new

research avenues for UIE, demonstrating exceptional performance in

underwater image processing (Xu et al., 2023; Liu et al., 2024). To

improve underwater image quality, (Peng et al., 2023) introduced a

U-shape Transformer network, marking the first introduction of

transformer models. This approach achieved remarkable results on

public datasets and the LSUI dataset built. As a representative of the

pioneering application of large foundation model technology, (Wang

et al., 2025) presents a discriminative underwater image enhancement

method leveraging large foundation models, which utilizes the

Segment Anything Model for foreground-background

segmentation, followed by adaptive color compensation and high-

frequency edge fusion. The algorithm alleviates the underwater color

difference issue, improving the underwater image enhancement

effect. Additionally, (Zhang et al., 2024) proposed the CNMS

framework, which integrates triple attention and a multi-scale

cascade mechanism to capture spatial details and contextual

information across images of varying scales. Compared with

traditional CNNs, (Wang et al., 2024a) introduces a reinforcement

learning framework for underwater image enhancement that

transparently selects and configures enhancement methods in a

self-organized manner, incorporating human visual perception and

underwater color priors. The emergence of transformer (Vaswani

et al., 2017) has further enhanced network performance in AID-based

UIE tasks, yielding favorable results in underwater image

enhancement (Jin et al., 2024; Zhou et al., 2023; Li et al., 2024; Cai

et al., 2023).

For extreme underwater environments, (Zhang et al., 2023a)

introduced Rex-Net, a model that leverages information from

underwater images and reflectance to improve performance

across diverse underwater scenes. Similarly, (Cong et al., 2023)

proposed a physical model-guided approach based on Generative

Adversarial Networks (GANs). This hybrid model combines the

strengths of GANs with physical model-based techniques to address

challenges in downstream underwater understanding tasks. GANs

have demonstrated outstanding performance in various image

processing applications, including image inpainting, super-

resolution, and style transfer, making them widely studied in the
Frontiers in Marine Science 04
UIE domain (Jiang et al., 2023; Liu et al., 2023; Wang et al., 2021;

Ummar et al., 2023; Hu et al., 2023).

The continuous advancement of AID-based UIE methods has

significantly improved the efficiency and performance of underwater

image processing, facilitating progress in underwater tasks. However,

some challenges remain unresolved. The requirements of large-scale

datasets and intensive computational resources affect the adaptability

and availability of these models, which may present data

inconsistencies in highly dynamic underwater scenes (Cong and

Zhou, 2023). Therefore, developing a UIE network with strong

robustness and high-speed inference capabilities is essential to

ensure efficient and reliable task execution.
3 Methodology

Focusing on AID-based UIE, we propose MUFFNet, a dynamic

underwater image enhancement network based on multi-scale

frequency, as illustrated in Figure 2. Utilizing the FFMS and IFI

extract the image frequency information and increase the datastream

follow speed, respectively. In addition, the introduction of the Multi-

scale Enhancement Prior highlights critical image information,

providing prior knowledge for each subnetwork. Finally, designing

the Multi-scale Joint Loss accounts for diverse optimization paths,

accelerating the network convergence.
3.1 FFMS module

The image frequency domain contains abundant high-

frequency and low-frequency information, which aids in

extracting and analyzing edge textures while reducing distractions

from irrelevant features. Traditional attention mechanisms and

convolutional networks typically deal with local and global

information of images in the spatial domain and lack

optimization specifically for frequency components, which fails to

cope well with degradation in the frequency domain. Therefore,

some studies have integrated neural networks with the frequency

domain to enhance perceptual information from features Wu et al.

(2023); Yang et al. (2023); He et al. (2023); Zhang et al. (2023d).
FIGURE 2

MUFFNet structure. The image is scaled to produce I1, I2, and I3. Then enhanced images E1, E2, and E3 are generated by the MEP, which is input into
the sub-network for feature extraction, generating the final enhanced images Z1, Z2, and Z3.
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In the article, we propose the FFMS module, as illustrated in

Figure 3, which utilizes Convolution Attention (CA) to extract in-

depth features from image frequency space. Firstly, CA replaces the

linear network in traditional attention mechanisms with

convolution operations without cutting the image into patches.

This approach reduces model parameters and accelerates inference

speed. By combining CNNs with the attention mechanism, the

FFMS captures both global structures and local details,

demonstrating superior performance in processing complex

underwater images. Secondly, the crucial high-frequency

information of underwater images is identified by extracting

frequency features, improving the image edge definition. The CA

can highlight the helpful high-frequency information, which

allocates more attention, by analyzing different frequency

components while decreasing its weight for low-frequency

information with interference to restrict. Remarkably, convolution

operations are converted to point multiplication when transforming

features into the frequency domain using the Fourier transform

(FFT), significantly reducing computational resource requirements.

The FFMS is defined as follows.

Firstly, Q,K ,V are obtained by the following formula.

Q,K ,V = FFTq,k,v(DSCq,k,v(Conv(Finput))) (1)

where DSC(*) is Depthwise Separable Convolution (Howard

et al., 2017). FFT(*) is Fourier transform (FFT). Finput is inputted

feature. Subsequently, the frequency-domain-based convolution

attention is calculated.

S = ConvGelu(Q⊙K)⊙V (2)

where ⊙ is point-multiplication operations. The features are

converted into time domain features to maintain data consistency.

A = Conv(IFFT(S) + DSCv(Finput)) + Finput (3)

where IFFT(∗) is the Inverse Fourier transform (IFFT).

Image frequency domain components are usually closely related

to its global brightness, color deviation, and other characteristics.

Compared to traditional methods, FFMS directly manipulates the

frequency components of the image to effectively deal with the

spectral distortion in underwater images due to light absorption,

scattering, etc., and better adapt to the unique optical effects of the
Frontiers in Marine Science 05
underwater environment. By selectively enhancing or suppressing

different frequency components in the frequency domain, it

accurately handles high-frequency details and low-frequency light

and color distortion problems, improving the detail recovery and

color correction capabilities of the image.
3.2 MEP module

Relying solely on FFMS to extract frequency information from

the original features is potentially suboptimal due to the smooth

gradients in the original images. Basic image enhancement

methods, such as white balance, gamma transformation, and

high-frequency wavelet techniques, can enhance image quality

and prominent information, although dissatisfying complex

UIE tasks.

To provide helpful feature information for FFMS, We propose a

Multi-scale Enhancement Prior (MEP) to self-adaption enhance

images, supplying the network with rich prior knowledge.

Enhancing multi-scale images obtained down-sampled the

inputted image fed into the Encoder subnetwork. Images are

enhanced from various perspectives, including brightness,

contrast, saturation, gamma, and sharpness, to improve the

saliency of critical information while minimizing interference

factors. Therein, the enhancement formula is defined as follows.

Imagebrightness = FIN   *   C1 (4)

Imagegamma = G   *   (FIN )
C2 (5)

Imagecontrast = FIN   *   C3 + (1 − C3)   *  Meangray(FIN ) (6)

Imagesaturation = FIN   *   C4 + (1 − C4)   *   gray(FIN ) (7)

Imagesharpnes = FIN   *   C5 + (1 − C5)   *   Laplace(FIN ) (8)

where FIN is inputted feature. Meangray(*), gray(*), and Laplace

(*) are the average grayscale, grayscale conversion and Laplacian

high-pass filter. Ciji = 1, 2, 3, 4, 5f g are correlation coefficients

confined to a fixed range. The defined range of correlation

coefficients is in Table 1. The restriction function is defined as follows.
FIGURE 3

FFMS structure. The features pass through the DSC to obtain Q, K, and V, followed by Fourier variation for frequency domain feature extraction.
Finally, the residual block obtains the feature frequency domain information.
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R =
(Vmax − Vmin)

1 + e−x
+ Vmin (9)

where Vmax and Vmin are the maximum and minimum values of

the coefficients, respectively.

Notably, the aforementioned enhancement algorithms are

differentiable, allowing parameters to be optimized via gradient

descent. Therefore, we design an adaptively learnable enhancement

network to adjust dynamically augmentation parameters

confronting different underwater environments. The network

structure is shown in Figure 4. Initial image features are extracted

to obtain shallow features, which are then dynamically normalized

using Conditional Normalization (CN) to enhance the network’s

representation capabilities. Remarkably, the CN is widely employed

in generative models, which emerged with an exciting performance

in generation tasks, including style transfer and super-resolution.

Hence, we expect MEP with CN to modulate the relative spatial

distribution based on the current image state to obtain optimal

enhancement parameters.

Subsequently, the features are flattened by maximum and

average pooling to obtain multi-view information. Finally, Multi-

Head Self Attention (MHSA) captures long-range dependencies of

the flattened features, understanding complex dependencies and

patterns and enhancing the network’s representation capabilities.

The overall process of image enhancement is as follows.

Firstly, the two-dimensional features are processed.

F = CN(Conv(FIN )) (10)

where CN(*) is defined as follows.

CN(*) = BN(FIN )   *   (1 + a) + b (11)

where BN(*) is the Batch Normalization. a and b are scaling and

offset factors generated by the Convolution operation, respectively.
Frontiers in Marine Science 06
Subsequently, the two-dimensional features are flattened and

extracted.

P = Linear(MHSA2(Poolmax(F ) + Poolmean(F ))) (12)

where P = ½C1,C2,C3,C4,C5�. Poolmax and Poolmean are Max

Pooling and Average Pooling. Linear(*) is the Multi-layer

Perceptron (MLP).

Rather than directly transmitting prior enhanced images to the

backbone, we design a feature extractionmodule (FE), which integrates

DSW into a ResNet-based residual block to perform initial image

identification. As a transitional layer, the FE mitigatesthe excessive

information gap, which enhances feature utilization and reduces the

overfitting risk. The FE definition is as follows.

I = (Conv,DSC,Conv)(I ed) + Conv(I ed) (13)

where I ed is the enhanced image by MEP.

The MEP strategy performs adaptive image enhancement

through a joint dynamic enhancement algorithm, dynamically

selecting relevant coefficients to address different underwater

scenes for image enhancement. Transmitting the enhanced

features to FFMS for feature extraction facilitates frequency

information identification, improving the efficiency and accuracy

of information extraction.
3.3 IFI module

In Decoder, guaranteeing the complete usefulness of the

extracted frequency feature is severe, potentially obtaining

interference that misleads the feature restoration. Additionally,

the limitations of the convolution operator, such as static

arithmetic, translation invariance, and data dependency, hinder

FFMS from fully utilizing the frequency features, which lack in-

depth information digging.

Therefore, we design an asymmetric Encoder-Decoder

architecture, integrating the Information Flow Interaction (IFI)

module into the Decoder to further filter features and accelerate

the circulation and fusion of feature information. The IFI is shown

in Figure 5. A dual-pass modulator, similar to channel attention,
FIGURE 4

MEP structure. The image is flattened after Conditional Normalization, followed by feature mapping by MHSA, and adaptive generation of
enhancement parameters for the initial image enhancement.
TABLE 1 Correlation coefficients.

Coefficient C1 C2 C3 C4 C5

Max 1.3 1.5 2.0 1.5 5.0

Min 0.3 0.5 1.0 0.5 1.0
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adjusts the high-frequency and low-frequency feature weights,

filtering unhelpful information. Merging them yields rich and

refined feature information, which isolates noise, accelerating

information flow. Unlike traditional integration methods, such as

concatenation and addition, we perform element-wise addition of

the two features via channel crossing before channel concatenation,

thereby enhancing feature exploitation efficiency and gradient

propagation through intensive fusion. The specific process is as

follows.

F 1,2 = DSC3,4(DSC1,2(FIN ) * LinearS(FIN )) (14)

where LinearS(*) is defined as.

A = Linear(Poolmax(FIN ) + Poolmean(FIN ))Sigmoid (15)

Subsequently, the two features are fused.

F fuse = Conv&DSC(Concat(F h,F l)) (16)

where F h and F l are defined as, respectively.

F h =o
C

i=1
F i

1 + F i+1
2 (17)

F l =o
C

i=1
F i+1

1 + F i
2 (18)

where C is the number of channels for features. F i
1 denotes the

feature map for obtaining the ith channel.

IFI can favorably filter out interference and accelerate

information flow, ensuring immune noise in the upsampling

process and improving UIE efficiency and performance.
3.4 MJ-Loss loss function

Designing the loss function is the key to improving the network’s

stability and generalization. A welldesigned loss function can

encourage the network to explore the optimal path from various

perspectives, accelerating the network convergence rate.

Enabling the network to capture multi-scale features by Multi-

scale loss is pivotal for handling objects containing various sizes,
Frontiers in Marine Science 07
shapes, and complexity. The method has demonstrated its

superiority in image tasks, including image enhancement, object

detection, and image segmentation. We propose a Multi-scale Joint

Loss (MJ-Loss) to guide network training. Each subnetwork

generates the enhanced image, calculating and adding the loss to

obtain the final loss function. The overall loss is defined as follows.

Lloss =o
3

i=1
Li (19)

where Li is the loss of the subnetwork in ith layer. In Li, mean

absolute error (MAE) as the primary loss function is defined as

follows.

Lmae =
1
No

N

i=1
pi − p̂ ij j (20)

where N is the number of samples, pi and p̂ i are ground truth

and predicted values, respectively.

Furthermore, adding an auxiliary loss can further improve the

network optimization and performance, facilitating the gradient flow

and encouraging the network to learn more valuable information

from various stages of the UIE. Therefore, the article primarily utilizes

frequency domain feature extraction as the network core, and the

addition of frequency domain loss corresponds to the network,

enhancing the network’s performance and efficiency in frequency

domain extraction. The frequency domain loss is defined as follows.

Lft = Lmae(fft(pi) − fft(p̂ i)) (21)

where fft(*) is the Fourier transform (FFT). Subsequently, the

overall loss is denoted by.

Lloss =o
3

i=1
a  Li

mae + bLi
ft (22)

where a and b are correlation coefficients.Lmae, as the main loss

function, improves the image spatial domain recovery. Lft , as an

auxiliary constraint, ensures the network optimization for the image

frequency domain characteristics. We set a to 0.9 and b to 0.1 as the

optimal loss weights after extensive experiments.

In UIE tasks, the MJ-Loss can accelerate the network

convergence, accurately locating the prominent features of the
FIGURE 5

IFI structure. The features are passed through a multilayer perceptron to obtain the frequency domain weights, which are tuned to the low-
frequency and high-frequency information respectively, and finally cross-fusion to obtain the compact frequency domain features.
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underwater image. Moreover, with the model characteristics, the

loss function encourages the network to optimize issues from

multiple perspectives, reaching the optimal gradient direction.
4 Experiments

4.1 Experiment settings

4.1.1 Datasets
To comprehensively evaluate the effectiveness of MUFFNet in

UIE, we value its effectiveness on various datasets, including the

renowned UIEB and the refined LUSI. LUSI contains 4,279 images

selected elaborately from diverse public underwater datasets, which

exhibit high quality and generalization Peng et al. (2023). MUFFNet

is trained mainly using LSUI, divided into 2,996 images for training,

856 for testing, and 430 for validation. UIEB, divided into 624

images for training and 179 for validation, evaluates the robustness

and expression capabilities of MUFFNet, which possesses more

noise and low-quality images. In addition, 60 challenging no-

reference images and the RUIE dataset were further compared

with SOTA methods, validating the MUFFNet performance in

different underwater scenes.

4.1.2 Evaluation metrics
For reference data testing, we utilize various metrics to certify

the model performance from different perspectives. PSNR and

SSIM series, including SSIM, F-SIM, MS-SSIM, and CW-SSIM,

served as the primary metrics to evaluate the image enhancement

effect, reflecting the gap between the enhanced image and the

ground truth. A higher PSNR denotes closer image contents,

while a higher SSIM series indicates closer structural and textural

similarity. Remarkably, the SSIM series metrics from multiple

perspectives assess the gap between images. SSIM focuses on

brightness, contrast, and structural similarity. F-SIM emphasizes

texture features and is used to evaluate image texture richness. MS-

SSIM better captures image structural information at different

resolutions through multi-scale computation and is used to

evaluate high-resolution images. CW-SSIM enhances the

processing of high-frequency textures and details through wavelet

transform and is used to evaluate images with complex details. In

addition, Learned Perceptual Image Patch Similarity (SPIPS) and

Visual Information Fidelity (VIF), as extra metrics, are used to

measure the perceptual similarity and fidelity between images,

providing criteria based on human visual perception.

For non-reference data testing, we employ PI, UIQA, Entropy,

CEF, UCIQE, UICM, and URanker (Guo et al., 2023). Higher

Entropy and UIQA donate more information and higher actual

quality of underwater images. UCIQE, UICM, and URanker serve

as metrics for evaluating underwater images. Higher values

generally indicate better image quality, aligning more closely with

human perception of high-quality underwater images. PI combines

various evaluation methods, integrating low-level visual features

and high-level perceptual features to gain full-quality assessment, in

which lower PI denotes a smaller negative impact factor of the
Frontiers in Marine Science 08
image. Moreover, CEF evaluates the image contrast, with better

values indicating stronger pixel contrast and color gap. However,

the above no-reference image metrics cannot completely represent

the image quality, as models with high values in metrics tend to

produce worse image quality in subsequent experiments.

4.1.3 Implementation details
The experiment environments for training and testing include

Window-10, 256G RAM, Inter Xeon Gold 5318Y CPU (2.10GHz),

and NVIDIA A10 GPU. The compilation environment consists of

Python 3.9.19 and Pytorch 2.1.1+cu121. During training the

network, the training images are resized to a fixed size of

256×256 and normalized to [0,1], followed by augmentation

through random flipping and rotation. Using the Cosine

Annealing strategy for learning rate decay, the learning rate was

initially 0.0025. Using the AdmaW gradient optimization strategy

to update the gradient, the trained epochs are 500, including 20

epochs for warm-up training.
4.2 Performance comparison

4.2.1 Performance comparison on the
LSUI dataset

Using the LSUI dataset trains MUFFNet, comparing SOTA

networks in identical experimental environments to verify the

MUFFNet superiority. The comparison of performance metrics

for the networks is presented in Table 2, where MUFFNet

demonstrates superior performance across all indicators, reducing

resource consumption while achieving outstanding image quality.

Although GAN-based networks exhibit acceptable inference speeds,

they incur higher resource consumption and show no substantial

improvements in image quality. This is because GANs are

constrained by the need for sufficient and high-quality training

data, which hinders stable training, leading to insufficient

generalization ability and the potential generation of fake

information when encountering unfamiliar underwater scenes.

Due to the dynamically complex characteristics of underwater

scenes, physical model-based UIE methods fail to achieve an

optimal trade-off between image quality and inference speed in

various underwater environments. Although the EncoderDecoder

network U-Shape achieves PSNR and SSIM scores of 24.514 and

0.912, respectively, falling short of MUFFNet by 4.177 and 0.044, it

consumes excessive resources, making it less suitable for optimal

deployment in UIE. The enhanced effect on LUSI is shown in

Figure 6A. The underwater images generated by MUFFNet are the

closest to real-world scenes, effectively eliminating the color gap and

aligning with human perception. Physical model-based methods,

lacking universality, suffer from severe color deviations and

unrealistic hues when confronted with challenging underwater

scenes. It causes severe interference with downstream tasks such

as object detection, trajectory planning, and operator observation.

In comparison, images enhanced by GANs are closer to real-world

scenes and achieve higher PSNR. However, the image details

contain numerous artifacts, as shown in Figure 6B, which cause
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significant interference with downstream tasks. For example, the

network performance may be affected by potentially extracted noise

information in underwater object detection.

Experimental results on LSUI show that MUFFNet can generate

images that closely resemble realworld underwater scenes,

effectively suppressing color deviation. By leveraging the

frequency domain information from the image, MUFFNet

separates and weights different frequency components, which

avoids noise interference in the spatial domain, effectively

handling optical degradation and the impact of underwater

impurit ies on the image. Remarkably, MUFFNet, the

prerequirement of downstream tasks, provides high-quality

images that reduce the influence of image noise and enhance the

performance of downstream tasks.

4.2.2 Performance comparison on the
UIEB dataset

We conduct training and comparison on the UIEB dataset to

further verify the model robustness, in which the dataset includes
Frontiers in Marine Science 09
underwater images with different depths, quality, and illumination,

which present challenges for model performance. As shown in

Table 2, although the PSNR dwarfs LSUI, MUFFNet achieves

superior PSNR, SSIM, and PI scores compared to other

algorithms, demonstrating its robustness in complex underwater

environments. The enhancement effect is compared in Figure 7A,

where MUFFNet produces images that align with real-world

perception when handling underwater scenes involving

multimotion and noise. Conversely, GAN-based models generate

noticeable artifacts, and physics-based models exhibit significant

color casts and particles, as detailed in Figure 7B. Due to the small

dataset size and the diverse underwater environments in UIEB,

regular artifacts from GANs negatively affect downstream task

performance. In contrast, physics-based methods show varying

degrees of sharpening and color shifts, creating noticeable gaps

between the enhanced and real-world images. MUFFNet strikes an

optimal trade-off in overall image quality, suppressing noise and

enhancing edge detail quality through targeted inspection and

screening of frequency domain information.
TABLE 2 Performance comparison on the LSUI and UIEB datasets.

LSUI

Model MMLE RGHS U-Shape FUnIE UGAN-P CycleGAN CUT MUFFNet

PSNR↑ 20.964 12.399 24.514 21.489 18.265 23.832 22.468 28.691

SSIM↑ 0.906 0.857 0.912 0.855 0.890 0.899 0.874 0.956

FSIM↑ 0.928 0.863 0.929 0.891 0.870 0.917 0.900 0.961

MS-SSIM↑ 0.959 0.882 0.969 0.927 0.937 0.962 0.948 0.984

CW-SSIM↑ 0.973 0.891 0.979 0.942 0.937 0.972 0.955 0.990

VIF↑ 0.467 0.572 0.549 0.549 0.532 0.500 0.516 0.728

LPIPS↓ 0.411 0.579 0.220 0.308 0.361 0.249 0.299 0.146

#Params(M)↓ ✘ ✘ 31.590 3.591 54.404 22.756 11.383 2.208

FLOPs(G)↓ ✘ ✘ 26.096 26.096 6.370 99.364 49.714 14.350

Time(s)↓ 0.07 2.25 0.05 0.06 0.03 0.03 0.07 0.02

UIEB

Model MMLE RGHS U-Shape FUnIE UGAN-P CycleGAN CUT MUFFNet

PSNR↑ 16.597 11.076 20.262 18.837 21.585 19.328 19.695 22.446

SSIM↑ 0.767 0.854 0.829 0.890 0.885 0.799 0.815 0.948

FSIM↑ 0.806 0.853 0.929 0.898 0.956 0.857 0.872 0.944

MS-SSIM↑ 0.879 0.846 0.876 0.913 0.949 0.837 0.926 0.964

CW-SSIM↑ 0.891 0.842 0.912 0.921 0.958 0.868 0.939 0.965

VIF↑ 0.579 0.565 0.406 0.523 0.544 0.451 0.472 0.749

LPIPS↓ 0.308 0.532 0.241 0.241 0.267 0.311 0.326 0.157

#Params(M)↓ ✘ ✘ 31.590 3.591 54.404 22.756 11.383 2.208

FLOPs(G)↓ ✘ ✘ 26.096 26.096 6.370 99.364 49.714 14.350

Time(s)↓ 0.07 2.25 0.05 0.06 0.03 0.03 0.07 0.02
↑ indicates that the higher the value, the better the model. ↓ indicates the lower the value, the better the model.
MMLE [Zhang et al. (2022b)], RGHS [Huang et al. (2018)], U-Shape [Peng et al. (2023)], FUnIE [Islam et al. (2020)], UGAN-P [Fabbri et al. (2018)], CycleGAN [Zhu et al. (2017)], CUT [Park
et al. (2020)].
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For more severely degraded images, MUFFNet demonstrates

superior enhancement capabilities. The initial enhancement of

underwater images effectively mitigates degradation issues and

provides the network with rich feature information. By

integrating frequency domain feature extraction, the model

improves the digging of potentially valuable information within

the image, thereby improving the robustness of the network.

4.2.3 Performance comparison on the
Challenage-60 dataset

The above experiments are in reference images, which cannot

fully reflect the effectiveness in real-world applications. Therefore,

we evaluate MUFFNet using non-reference images from the UIEB

dataset to obtain a more objective and credible assessment, which
Frontiers in Marine Science 10
presents challenges for model performance in practical applications.

The non-reference metric comparison, shown in Table 3, reveals

that MUFFNet performs comparably to baseline methods and even

surpasses them on certain metrics. Notably, non-reference metrics

focus narrowly on specific aspects of images, such as contrast, color,

and brightness, while neglecting overall quality. The single non-

reference metric possesses a large gap with human eye perception,

which cannot objectively reflect real-world enhanced image quality.

As illustrated in Figure 8A, although some methods outperform

MUFFNet in quantitative metrics, they produce inferior results in

actual image rendering quality. Figure 8B demonstrates that MMLE

and RGHS, which are physical model-based algorithms, achieve

decent PI values but result in real-world image effects that are

significantly worse, with severe color deviations and noise.
B

A

FIGURE 6

Comparison results on the LSUI dataset. (A) Comparison effects on the LSUI dataset. The value in the upper right corner of the image is PSNR.
(B) Detailed comparison on the LSUI dataset.
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B

A

FIGURE 7

Comparison results on the UIEB dataset. (A) Comparison effects on the UIEB dataset. The value in the upper right corner of the image is PSNR.
(B) Detailed comparison on the UIEB dataset.
TABLE 3 Performance comparison on the Challenage-60.

Model PI↓ UIQA↑ Entropy↑ CEF↑ URanker↑ UCIQE↑ UICM↑

MMLE 4.201 1.198 7.329 32.883 0.914 1.192 11.365

RGHS 5.008 0.130 7.144 17.984 0.005 1.127 9.757

U-Shape 4.716 0.955 6.995 29.966 0.404 0.925 10.867

FUnIE 4.248 1.648 7.145 39.063 1.003 1.136 11.627

UGAN-P 4.029 1.658 7.390 38.963 1.051 1.106 11.742

CycleGAN 4.024 1.551 7.380 43.169 1.042 1.160 12.609

CUT 4.562 1.590 7.397 42.454 1.078 1.186 12.259

MUFFNet 4.014 1.655 7.400 32.159 1.122 1.232 12.599
F
rontiers in Marine Sc
ience
 11
The top two results in each column are highlighted in red and blue, respectively.
MMLE [Zhang et al. (2022b)], RGHS [Huang et al. (2018)], U-Shape [Peng et al. (2023)], FUnIE [Islam et al. (2020)], UGAN-P [Fabbri et al. (2018)], CycleGAN [Zhu et al. (2017)], CUT [Park
et al. (2020)].
↑ indicates that the higher the value, the better the model. ↓ indicates the lower the value, the better the model.
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Similarly, GANs and U-Shape also exhibit artifacts and blurring,

even when their PI metrics are higher than those of MUFFNet.

While MUFFNet performs less effectively on CEF, its enhanced

images display sharper details and more regular structures, better

aligning with human visual perception.

The experimental results demonstrate that MUFFNet has

robust performance and strong generalization capabilities. By

extracting features from the underwater frequency domain,

MUFFNet enhances edge details while effectively suppressing

noise, producing sharper and more realistic underwater images.

Leveraging frequency-domain-based convolution attention and

Multi-level Joint Loss, MUFFNet simultaneously focuses on local
Frontiers in Marine Science 12
details and the global context, striking an optimal trade-off between

structural integrity and detailed enhancement.

4.2.4 Performance analysis
As shown in Figure 8, while most enhanced underwater images

exhibit improved detail clarity and overall visualization, challenges

remain in extreme environments with high water turbidity or poor

lighting. In such scenarios, the high-frequency noise in the

background water body may be overly extracted, obscuring key

details within the image. This over-extraction can introduce slight

noise and blur in the background, reducing image clarity and

negatively affecting human visual perception.
B

A

FIGURE 8

Comparison results on the challenage-60. (A) Comparison effects on the challenage-60. The value in the upper right corner of the image is PI.
(B) Detailed comparison on the challenge-60.
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Additionally, in underwater scenes with extreme color bias, the

network may struggle to exploit the potential information within

the image fully. As a result, the enhanced images may exhibit slight

color distortions. Although contrast and detail are improved, the

overall color tone may deviate from the real-world scene, leading to

an unnatural visual effect. This issue primarily arises from the

model’s limitations in managing global color balance during the

frequency domain information extraction process, making it less

effective in handling extreme underwater color biases.

In the future, we plan to integrate additional environmental

features, such as depth information and prior knowledge of water

bodies, to enable targeted optimizations. Furthermore, we will

explore the combined processing of multi-domain information to

enhance the network’s ability to deliver superior enhancement

effects, especially in extreme underwater environments.
4.3 Ablation experiments

4.3.1 Generalization
Using UIQS and UCCS subsets of the RUIE dataset further

validates the network robustness in complex underwater scenes. The

UIQS subset is divided into five groups of data [A,B,C,D,E], in which
Frontiers in Marine Science 13
the underwater complexity and depth level increase progressively

from group A to D. Based on underwater color deviation, the UCCS

subset is divided into three groups, blue, green, and blue-green, to

evaluate the model’s performance under varying color deviations.

The enhancement results are shown in Figure 9, where MUFFNet

demonstrates superior performance in diverse and complex

underwater environments. As underwater conditions become

increasingly challenging, baseline networks produce augmented

images that gradually exhibit blurring and artifacts. Moreover,

baseline networks struggle to achieve a balanced state, resulting in a

commonplace performance across different tones. Conversely,

MUFFNet effectively mitigates these issues, delivering a superior

enhancement effect across varying tones.

4.3.2 Multi-scale Enhancement Prior
To validate the beneficial effect of Multi-scale Enhancement Prior

in MUFFNet, gradually removing MEP submodules was trained and

compared in a unified environment. The comparison results,

presented in Table 4, reveal no significant fluctuations in evaluation

metrics. However, the visual effect comparison in Figure 10A

underscores the critical role of MEP in image refinement. Without

the Enhancement Prior, MUFFNet lacks abundant representation

information and detail fidelity, resulting in insufficient insight into
FIGURE 9

Comparison effects on the UIQS and UCCS subsets of the RUIE dataset. The UIQS subset is divided into five groups of data (A-E), in which the
underwater complexity and depth level increase progressively from group A to D. The UCCS subset is divided into three groups, blue, green, and
blue-green.
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crucial location information and generating incongruous image

edges. Similarly, removing the Multi-scale Prior causes the network

to lose multi-scale information, accelerating information forgetting

and narrowing the receptive field. Consequently, enhanced images

exhibit severe detail deviation and imbalances in overall tone. The

MEP-equipped MUFFNet, on the other hand, receives prior

knowledge containing prominent information in advance, enabling

it to extract multi-scale highlights and prolong information retention.

Figure 10B demonstrates the impact of MEP, which enhances image

edge details and global smoothness, effectively highlighting pivotal

features essential for image restoration.

4.3.3 Multi-scale Joint Loss
We employed various loss functions to train the network and

conducted comparisons to validate the superiority of the Multi-scale

Joint Loss. Table 4 illustrates model performance significantly

decreased when removing the FFT loss and multi-scale loss

functions. Incorporating FFT loss into the training process improves

the model’s performance, demonstrating its beneficial impact. Building

on this, adding the multi-scale loss strategy further enhances the

network, delivering notably improved results. The image

enhancement comparisons in Figure 11 highlight the advantages of

our proposed optimization strategy. Networks trained without these
Frontiers in Marine Science 14
components fail to dynamically capture critical features, making them

unable to identify an optimal mapping space. It is prone to falling into

local optima along a fixed path in complex environments in complex

environments, resulting in suboptimal enhancement effects. In

contrast, our proposed MJ-Loss accounts for both frequency and

spatial domains, enabling the model to determine the optimal

scheme and achieve superior imaging results.
4.4 Downstream task evaluation

To evaluate the effectiveness of MUFFNet on downstream tasks,

we utilized the Scale-Invariant Feature Transform (SIFT) algorithm

to detect feature points on enhanced images. We assessed the

feature-matching accuracy to quantify the network’s capability to

preserve image details. Additionally, the Canny edge detection

operator was employed to identify edges in the images processed

by MUFFNet. The edge pixel percentage and the edge continuity

scores are analyzed to validate the enhancement performance of

MUFFNet in edge clarity and consistency.

As shown in Figure 12 and Table 5, MUFFNet generates

informative images that facilitate feature point extraction and

edge detection while effectively reducing artifacts and noise in the
TABLE 4 Metrics comparison of model effects using different modules (Enhancement Prior and Multi-scale) and loss (L1, FFT and Multi-scale).

LSUI

Multi-scale FFT PSNR↑ SSIM↑ VIF↑ LPIPS↓

✗ ✗ 23.261 0.906 0.534 0.261

✗ ✓ 24.720 0.941 0.670 0.208

✓ ✗ 25.520 0.925 0.551 0.231

✓ ✓ 28.691 0.956 0.728 0.146

Enhancement
Prior

Multi-scale PSNR↑ SSIM↑ VIF↑ LPIPS↓

✗ ✗ 27.740 0.951 0.698 0.167

✗ ✓ 27.742 0.951 0.705 0.169

✓ ✓ 28.691 0.956 0.728 0.146

UIEB

Multi-scale FFT PSNR↑ SSIM↑ VIF↑ LPIPS↓

✗ ✗ 19.459 0.867 0.568 0.212

✗ ✓ 20.167 0.931 0.724 0.190

✓ ✗ 20.884 0.898 0.533 0.235

✓ ✓ 22.446 0.948 0.749 0.157

Enhancement
Prior

Multi-scale PSNR↑ SSIM↑ VIF↑ LPIPS↓

✗ ✗ 22.221 0.945 0.749 0.167

✗ ✓ 22.371 0.947 0.744 0.158

✓ ✓ 22.446 0.948 0.749 0.157
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original images. This improvement enhances the performance of

downstream tasks. Although MMLE achieves the highest number of

extracted feature points, its feature-matching accuracy is

unsatisfactory. It is because MMLE amplifies the irrelevant

interference within the image, leading to significant noise in the

extracted features. Similarly, images processed by MMLE exhibit

substantial interference after edge detection, which diminishes the

clarity and continuity of edge details. For GAN series networks,

missing feature points and blurred edges are observed. These

limitations arise from their inability to sufficiently enhance the

original image, resulting in a loss of critical feature information. The

U-Shape network potentially amplifies some noise in the image,

which is suboptimal in both feature point and edge detection. In

contrast, MUFFNet demonstrates superior performance by

extracting abundant features while achieving higher feature-

matching accuracy. It indicates that MUFFNet effectively
Frontiers in Marine Science 15
suppresses most of the noise and focuses on extracting more

meaningful information from the images.

Overall, MUFFNet produces high-quality images that enhance

the performance of downstream tasks, thereby demonstrating the

practical benefits of its enhancement capabilities. Images enhanced

by MUFFNet align with the naturalness of human visual perception

and optimize the quality of input data for critical tasks such as

underwater object detection and recognition, improving the

accuracy and robustness of the model.
5 Conclusion

This article proposes a dynamic underwater enhancement

network based on multi-scale frequency, MUFFNet, to offer high-

resolution underwater images for U-HRI. Recognizing the critical
B

A

FIGURE 10

Results of ablation experiments with Multi-scale Enhancement Prior. (A) Detailed comparison using different modules (Enhancement Prior and Multi-
scale). (B) MEP enhancement process.
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FIGURE 11

Detailed comparison using different loss (L1, FFT and Multi-scale).
FIGURE 12

Downstream task effect comparison, including SIFT feature extraction and Canny edge detection.
TABLE 5 Performance comparison on the SIFT feature extraction and Canny edge detection task.

Model SIFT Points SIFT Accuracy Canny Edge Ratio Canny Edge Continuity

Original 753 79.7% 10.0% 0.49

MMLE 2725 70.9% 28.4% 0.77

RGHS 1080 82.6% 15.8% 0.57

U-Shape 1147 88.3% 14.3% 0.54

FUnIE 1554 80.7% 18.3% 0.62

UGAN-P 845 90.7% 10.3% 0,47

(Continued)
F
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role of high-frequency and low-frequency information in UIE, a

frequency-domain-based convolution attention mechanism is

proposed to extract deep frequency domain features. Introducing

a Multi-scale Enhancement Prior algorithm boosts frequency

domain information extraction, generating unique enhancement

parameters tailored to different underwater scenes and enriching

the network with abundant frequency domain information via a

multi-scale approach. An Information Flow Interaction module and

Multiscale Joint Loss are employed to accelerate information flow

and fusion while optimizing the network’s convergence trajectory.

Experiments demonstrated that MUFFNet outperforms SOTA

models in various underwater scenarios while consuming fewer

computational resources. The enhanced images generated by

MUFFNet align more closely with human visual perception,

providing downstream tasks with clear and reliable images and

significantly reducing the risk of misinterpretation. In the future, we

aim to integrate MUFFNet with downstream tasks, such as

underwater object detection, further advancing research in

underwater tasks.
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