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Benthic algal community
dynamics on Palmyra Atoll
throughout a decade with two
thermal anomalies
Adi Khen1*, Maggie D. Johnson2, Michael D. Fox2

and Jennifer E. Smith1

1Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of
California, San Diego, La Jolla, CA, United States, 2Biological and Environmental Sciences and
Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Coral reef algae serve many important ecological functions, from primary

production to nutrient uptake and reef stabilization, but our knowledge of

longer-term effects of thermal stress on algae in situ is limited. While ocean

warming can facilitate proliferation of algae and potential phase shifts from coral to

macroalgal-dominated states, algal responses may vary by species, genus,

functional group, or type (e.g., calcareous vs. fleshy). We used 11 years of annual

monitoring data (2009-2019) that spans two El Niño-associated heatwaves to

examine benthic algal community dynamics on Palmyra Atoll in the central Pacific

Ocean. We quantified the percent cover of algal taxa via image analysis of

permanent benthic photoquadrats from two habitats on Palmyra: the deeper,

wave-exposed fore reef (10 m depth) and the shallower, wave-sheltered reef

terrace (5 m depth). Each habitat was characterized by distinct algal communities:

predominantly calcareous taxa on the fore reef and predominantly fleshy taxa on

the reef terrace. Patterns in abundance fluctuated over time and/or in response to

thermal anomalies in 2009 and 2015. Fleshy algae generally increased in cover

post-warming, which coincided with large declines of the calcified macroalgae,

Halimeda spp. Long-term monitoring of coral reef algal communities is critical for

understanding their differential responses to thermal stress and can improve

projections of ecosystem functioning in the context of global change.
KEYWORDS

long-term monitoring, seaweed, macroalgae, Halimeda, community composition,
thermal stress, coral reefs, climate change
1 Introduction

Benthic algae are key components of coral reef ecosystems, where they contribute to

primary production and reef building as well as sand, sediment, and carbonate production.

The dominance of one functional group or taxon over another has implications for coral

reef functioning and the ecological services they provide (Woodhead et al., 2019). Although
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1539865/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1539865/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1539865/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1539865/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1539865&domain=pdf&date_stamp=2025-01-28
mailto:akhen@ucsd.edu
https://doi.org/10.3389/fmars.2025.1539865
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1539865
https://www.frontiersin.org/journals/marine-science


Khen et al. 10.3389/fmars.2025.1539865
many coral reefs across the globe are shifting from coral to algal

dominance (Pandolfi et al., 2003; McManus and Polsenberg, 2004;

Hughes et al., 2010, 2017), algae are inherently a natural component

of healthy coral reefs. Despite their functional, morphological, and

taxonomic diversity (Fong and Paul, 2011), reef algae remain

understudied relative to other reef taxa. Aside from some short-

term laboratory studies, little is known about how individual algal

taxa or functional groups respond to a combination of stressors in

nature (Wernberg et al., 2012). Thus, in situ studies integrating

natural environmental conditions with longer-term benthic algal

community dynamics are essential for revealing possible reef

community trajectories in the coming decades.

Algae on coral reefs are often classified into functional groups

(e.g., turf, crustose coralline algae, and macroalgae), based on the

underlying assumption that shared traits correspond to similar

ecological roles, functions, or processes. Algal functional groups

have previously been defined by their susceptibility to herbivory

(Steneck and Watling, 1982), their nutrient uptake, productivity, and

turnover rates (Littler and Littler, 1980; Littler et al., 1983), or their

morphology, internal anatomy (e.g., cortication), thallus structure,

and branching pattern (Steneck and Dethier, 1994; Balata et al.,

2011). However, there is still a potential for variable responses to

environmental conditions within functional groups, particularly

following disturbance events (Phillips et al., 1997). Moreover,

calcareous algal taxa (in which photosynthesis is coupled with the

deposition of calcium carbonate) and non-calcareous (i.e., fleshy)

taxa are differentially affected by environmental stressors (Johnson

et al., 2014). While the functional group approach (when based on

morphological traits) can sometimes predict community assemblage

(Stelling-Wood et al., 2020), these traits may not accurately represent

functional identity (Mauffrey et al., 2020) and individual genus and/

or species variability must be considered (Fong and Fong, 2014;

Ryznar et al., 2021).

Two algal functional groups that are sometimes pooled in reef

benthic studies, yet have distinct ecological roles, are the crustose

coralline algae (CCA) and the algal turfs. CCA are encrusting,

calcifying red algae that stabilize the reef framework and support

structural complexity (Teichert et al., 2020; Littler and Littler, 2013;

Steneck, 1986). They also contribute to carbonate production,

possibly more so than reef-building corals (Cornwall et al., 2023).

By releasing chemical cues that induce settlement in coral larvae

(Harrington et al., 2004), CCA further promote reef growth and

resilience. The ecological contributions of CCA on coral reefs are

threatened by environmental change, as they are sensitive to

thermal stress in both experimental and field settings (Martin and

Gattuso, 2009; Short et al., 2015). “Turf algae” (algal turfs) refers to a

mixed assemblage of largely fleshy filamentous algae, juvenile

macroalgae, and/or cyanobacteria less than 2 cm tall (Adey and

Steneck, 1985). Algal turfs are opportunistic and rapid colonizers of

open space after coral bleaching or disease outbreaks (Diaz-Pulido

and McCook, 2002). They are a main food source for herbivorous

grazers (Carpenter, 1986), but can have negative effects on reefs by

inhibiting coral recruitment (Birrell et al., 2008) or harboring

pathogenic microbes that compromise coral health (Pratte et al.,

2018). Despite occupying much of the benthos on today’s reefs

(Wismer et al., 2009), they are often miscategorized as “bare space”
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and, thus, grossly underestimated in surveys of benthic community

coverage. Turfs thrive under conditions that threaten corals,

including nutrient pollution (Smith et al., 2010), warming

(Johnson et al., 2017), ocean acidification (Falkenberg et al.,

2013), and sedimentation (Birrell et al., 2005), which suggests that

their abundance on reefs will continue to increase with the

progression of climate change (Harris et al., 2015; Tebbett and

Bellwood, 2019).

Another distinction lost with the typical categorization of algae

is the presence or absence of a calcium carbonate skeleton (i.e.,

calcification). The relative balance of fleshy to calcareous or reef-

building taxa may be indicative of more degraded vs. “healthier”

coral reefs (Smith et al., 2016), and thus tracking the abundance of

calcareous and fleshy algal taxa is useful for assessing ecosystem

status. Moreover, fleshy and calcareous taxa have different

ecological functions, whether beneficial or detrimental. Fleshy

macroalgae typically grow faster than calcareous macroalgae and

are generally more edible to herbivores. However, fleshy macroalgae

can harm corals directly through abrasion, or indirectly by releasing

toxic allelochemicals (Rasher and Hay, 2010), causing hypoxia and

physiological stress (Barott et al., 2012) by limiting photosynthetic

activity and depleting the corals of energy (Titlyanov et al., 2007).

Calcareous algae are generally more benign competitors with corals

than fleshy algae (Barott et al., 2012; but see: Keats et al., 1997a and

Longo and Hay, 2015, where corals frequently experienced damage

from contact with calcareous algae), although their competitive

ability may be influenced by seasonality (Brown et al., 2020).

Therefore, to holistically evaluate the ecological implications of

stressors such as warming, it is informative to look not only at

variability across individual algal taxa or functional groups, but also

between fleshy and calcareous algae.

For algae and other primary producers, temperature is expected to

increase metabolic and photosynthetic rates until a thermal tolerance

limit is exceeded (Davison, 1991). Calcification in calcareous algae may

initially benefit from warmer temperatures until prolonged exposure

leads to mortality or reduction in productivity, as seen in experimental

studies (Martin and Gattuso, 2009; Page et al., 2021; but see: Krieger

et al., 2023). In contrast, fleshy algae have been found to respond

positively to thermal stress in field studies (McClanahan et al., 2001;

Burt et al., 2013; Graham et al., 2015). The combined effects of

temperature and other stressors can be synergistic (Ellis et al., 2019)

or antagonistic (Darling et al., 2010). For example, ocean acidification

has been found to cause net negative or species-specific effects on

tropical calcareous algae while stimulating growth in some fleshy algae

(Johnson et al., 2014), but when combined with warming, effects can be

more complex or interactive (Diaz-Pulido et al., 2012; Kram et al., 2016;

Johnson et al., 2017).

The calcareous macroalgal genus Halimeda is a group of

siphonous green algae that contribute significantly to productivity

and calcification on coral reefs (Hillis-Colinvaux, 1980), and can

cover up to 20% of the benthos (Perry et al., 2020). Halimeda is one

of the most ubiquitous tropical algal genera with representative

species occurring on reefs around the world. Indeed, Halimeda spp.

may contribute more to tropical carbonate budgets than corals

(Rees et al., 2007) due to their fast growth and high turnover rates

(Vroom et al., 2003; Smith et al., 2004). Most species of Halimeda
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are holocarpic and as such, when they reproduce they die and their

calcified segments break down into sand (Harney and Fletcher,

2003). Halimeda spp. are synchronous spawners that release all of

their gametes simultaneously, leading to complete adult mortality

(Hay, 1997), although the exact mechanisms that trigger their

reproduction are unknown (Clifton and Clifton, 1999; Clifton,

2013). Considering the high abundance, cosmopolitan

distribution, and ecological significance of Halimeda spp., it is

important to monitor their cover on a consistent basis as well as

before, during, and after thermal anomalies. Few studies have

examined the long-term changes in cover of Halimeda spp. in

situ (but see: Lambo and Ormond, 2006, where Halimeda cover

decreased in Kenya at the time of the 1998 coral bleaching event but

increased drastically by 2004).

Here, we measured benthic algal cover over an 11-year time

series of permanent benthic photoquadrats from two reef habitats

on Palmyra Atoll. Thermal anomalies occurred in both 2009 and

2015 (Williams et al., 2010; Fox et al., 2019), which allowed us to

explore how temperature may influence algal community dynamics.

Our objectives were to (i) describe benthic algal community

composition on the fore reef and reef terrace habitats, (ii)

quantify the abundance of individual algal taxa or functional

groups, (iii) compare fleshy (turf and fleshy macroalgae) vs.

calcareous (CCA and calcareous macroalgae) cover, and (iv)

determine whether benthic algal cover varied over time, with

temperature, and/or by habitat. Additionally, for the major

calcareous macroalgal genus, Halimeda, we measured yearly

changes in benthic cover by habitat and site to validate our

hypothesis that Halimeda spp. may be temperature-sensitive and

negatively affected by warm-water events.
2 Methods

2.1 Study site

Palmyra Atoll (5.89 °N, 162.08 °W), U.S.Minor Outlying Islands, is

located in the Northern Line Islands, central Pacific. Palmyra was

designated as a National Wildlife Refuge in 2001 and this protection

was further expanded in 2009 as part of the Pacific Remote Islands

Marine National Monument. The Atoll was temporarily occupied by

the U.S. military during World War II but is currently uninhabited

aside from a small field research station. Thus, its reefs are considered

quasi-pristine (Sandin et al., 2008) and relatively undisturbed from

localized human impacts such as fishing or pollution, yet are still

susceptible to global climate change. Palmyra’s benthic communities

are dominated by reef-builders such as hard corals and CCA, with

remaining surfaces covered by turf algae, macroalgae, soft corals, and

other invertebrates (Braun et al., 2009; Williams et al., 2013; Khen

et al., 2022).
2.2 Data collection

In September 2009, permanent monitoring plots were

established in the two major reef habitats on Palmyra: the wave-
Frontiers in Marine Science 03
exposed fore reef (FR) at 10 m depth and the wave-sheltered reef

terrace (RT) at 5 m depth, with four sites per habitat and ten

replicate plots (90 cm x 60 cm) per site (Supplementary Figure 1),

for a total surveyed area of 21.6 m2 at each habitat. Replicate plots

were 5 m apart along a 50 m transect perpendicular to shore,

marked by stainless steel eye bolts in opposing corners that were

secured to the benthos with marine epoxy. At least once a year from

2009 to 2019, usually in the late summer or early fall, plots were

photographed by SCUBA divers with a Canon G-series camera

attached to a PVC frame that maintained a fixed distance from the

substrate. All images were digitized (i.e., manually traced) in Adobe

Photoshop (Creative Cloud) to quantify abundance of algal taxa in

terms of planar areas or percent cover at the functional group level

for CCA and turf, family-level for peyssonnelioids, and genus or

species-level for other macroalgae. Algae were identified visually by

morphology, and taxa were grouped as either calcareous (CCA,

Halimeda spp., Galaxaura rugosa, and Peyssonneliaceae sp.) or

fleshy (Avrainvillea sp., Lobophora sp., Dictyosphaeria spp.,

Caulerpa serrulata, and turf) based on the presence or absence of

biogenic calcium carbonate structures. Palmyra’s thermal history

was obtained from a revised percentile-based method of estimating

Degree Heating Weeks (DHW; Liu et al., 2006) developed by

Mollica et al. (2019), which more accurately captures the degree

of accumulated thermal stress experienced by central equatorial

Pacific reefs than traditional DHW (Fox et al., 2021).
2.3 Statistical analyses

All analyses were conducted in R software version 3.6.3 (R Core

Team, 2018). First, using only annual time points taken during the

late summer or fall (excluding irregular time points to minimize the

effect of seasonal variation), we constructed a non-metric

multidimensional scaling (nMDS, via metaMDS in vegan for R;

Oksanen et al., 2019) ordination plot visualizing the trajectory of

algal community composition through time at each habitat. This

nMDS was based on Bray-Curtis dissimilarity measures for square-

root-transformed algal percent cover data (Anderson, 2001). We

applied a square-root transformation to balance the effect of

disproportionately-abundant taxa. We tested the effects of habitat,

year, and/or their interaction by conducting a three-way

permutational multivariate analysis of variance (PERMANOVA

with 9999 permutations via adonis in vegan; Anderson, 2001;

Oksanen et al., 2019) on the same Bray-Curtis distance matrix.

We did not include site as a nested factor because not all algal taxa

were present at each site within a habitat. To identify which algal

taxa were the main contributors to differences among habitats, we

ran a SIMPER or “similarity percentages” analysis (via simper in

vegan; Clarke, 1993; Oksanen et al., 2019).

To test whether percent cover of fleshy or calcareous algae

varied by habitat and/or over time (only for consistent annual time

points), we ran two-way analyses of variance (ANOVAs) with

Type-II sum of squares. Assumptions of normality and

homogeneity of variance were checked through visual inspection

of the residuals. We did not incorporate repeated measures and

instead treated years independently because different algal
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populations were sampled each year rather than the same

individuals. Post-hoc letter groupings were assigned via Tukey’s

multiple comparisons using multcomp (Hothorn et al., 2008).

Next we explored possible effects of temperature on a single

taxon of interest, Halimeda, through an analysis of covariance

(ANCOVA) with Type-II sum of squares. Habitat was considered

a fixed factor and temperature (in terms of percentile-based DHW

values during the week of sampling) was considered a continuous

factor. We also examined the relationship between accumulated

thermal stress and Halimeda cover using Pearson’s correlation. To

further investigate patterns in abundance for this genus, we plotted

its percent cover within each quadrat, by site, over time. Lines were

smoothed by locally-weighted regression (i.e., LOESS in ggplot2;

Wickham, 2016). Finally, we calculated the difference in mean

percent cover of Halimeda by site (with quadrats as replicates)

between consecutive years. Two-tailed t-tests were used to

determine which sites experienced significant changes not

overlapping zero (e.g., an increase or decrease in percent cover

one year later).
3 Results

3.1 Algal community composition in each
habitat over time

The benthic algal community on Palmyra’s fore reef was calcifier-

dominated compared to the fleshy-dominated reef terrace (Figure 1;

Supplementary Figure 1). Certain taxa were only present in either

habitat: G. rugosa on the reef terrace and Avrainvillea sp. on the fore

reef. Across both habitats, the most abundant algal taxa or groups on

Palmyra included CCA (exhibiting a percent cover range of 0 to

87.6% of the benthos within a single quadrat, average = 20.2 ± 17.4%

SD), turf (percent cover = 0 to 88.3%, average = 16.7 ± 17.6%),
Frontiers in Marine Science 04
and Halimeda (percent cover = 0 to 92.3%, average = 8.4 ± 12.4%).

The least abundant algal genera were Avrainvillea (percent cover = 0

to 1.7%, average = 0 ± 0.1%), Dictyosphaeria (percent cover = 0

to 27.1%, average = 0.4 ± 1.7%), and Caulerpa (percent cover = 0 to

46.6%, average = 0.6 ± 3.3%). Distinct yearly trajectories of algal

community composition were seen in each habitat (Figure 2).

Benthic algal community composition on Palmyra varied

significantly by habitat (p <0.001) and year (p <0.001), with an

interaction indicating that habitats changed differently across years

(p <0.001; Supplementary Table 1). There was more year-to-year

variation in algal community composition on the fore reef

compared to the reef terrace, particularly after the second thermal

anomaly in 2015. However, habitat was a better predictor for algal

community composition than year, explaining 11.6% of the

variation (R2 = 0.116; Supplementary Table 1) compared to 4.3%.

A SIMPER analysis revealed that the taxa contributing most to

habitat differences were CCA, turf algae, and Halimeda

(Supplementary Table 2). Calcareous algae (particularly CCA,

Halimeda spp., and Peyssonneliaceae sp.) were more abundant on

the fore reef whereas fleshy algae (turf, Lobophora sp., C. serrulata,

and Dictyosphaeria spp.) were more abundant on the reef terrace.
3.2 Cover of individual algal taxa by habitat
and year

Overall, CCA were more abundant on the fore reef than the reef

terrace, covering 25.3 ± 0.8% (mean ± SE) and 15.4 ± 0.8% of the

total benthos, respectively (Figure 3B). In contrast, turf algae were

more abundant on the reef terrace than the fore reef at 21.3 ± 1.0%

and 11.5 ± 0.5% cover, respectively (Figure 3H). Between fall 2014

and fall 2015 on the reef terrace, there was a decline in CCA from

20.0 ± 3.2% to 12.7 ± 2.9% and a concomitant rise in turf algae from

19.6 ± 3.5% to 28.6 ± 3.7%; the increase in turf at the time of the
FIGURE 1

Benthic algal community composition over time on Palmyra from 2009 to 2019 at the (A) Fore Reef and (B) Reef Terrace habitats in terms of relative
proportions of each taxon or functional group.
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second thermal anomaly was seen to a lesser extent on the fore reef.

However, by fall 2017, turf and CCA cover were restored to pre-

disturbance levels in both habitats. Other algal groups were far less

abundant than turf and CCA. Benthic cover of C. serrulata, found

almost exclusively on the reef terrace, was highest in the fall of 2010

and 2019 at 3.6 ± 1.5%, but dropped to undetectable levels in fall

2012, 2014, and 2018 (Figure 3A). Similarly, also on the reef terrace,

Dictyosphaeria spp. (D. cavernosa and D. versluysii) comprised up

to 1.5% total cover but were nearly negligible in the fall of 2014,

2015, 2018, and 2019 (Figure 3C). The reef terrace had 4.3 ± 0.6%

cover of G. rugosa in fall 2019 but was typically around 2.5%

(Figure 3D). There was consistently higher cover of Lobophora sp.

on the reef terrace (5.0 ± 0.5%) compared to the fore reef (1.9 ±

0.2%; Figure 3F). Cover of Peyssonneliaceae sp., found mainly at the

fore reef, was lowest in the fall of 2017 at 1.2 ± 0.3% yet reached up

to 10-15% of the benthos every fall between 2011 and 2014

(Figure 3G). Avrainvillea sp. was not plotted because it occupied

less than 0.01% of the benthos.Halimeda spp. (primarilyH. opuntia

with minor coverage by H. taenicola and H. fragilis) were more

abundant on the fore reef, at 14.2 ± 0.8% cover throughout the time

series compared to 4.4 ± 0.3% on the reef terrace (Figure 3E).
3.3 Calcareous vs. fleshy algal trajectories
by habitat

Throughout the time series, the fore reef had higher cover of

calcareous algae than fleshy algae, at 46.5 ± 0.8% (mean ± SE) and

13.4 ± 0.5%, respectively (Figure 4A), whereas the reef terrace had

similar cover of calcareous and fleshy algae, at 22.1 ± 0.8% and 28.0
Frontiers in Marine Science 05
± 0.9%, respectively (Figure 4B). Percent cover of fleshy algae varied

by habitat (p <0.001) and year (p <0.001) with no significant

interaction (Supplementary Table 3). Percent cover of calcareous

algae also varied by habitat (p <0.001) and year (p = 0.004), with

habitats changing differently over time (p = 0.011). On the reef

terrace, the cover of calcareous algae remained consistent through

time whereas on the fore reef, calcareous algae were replaced by

fleshy algae at the time of the second thermal anomaly in 2015 but

re-stabilized by fall 2017. A similar yet less pronounced response

was observed on the reef terrace.
3.4 Abundance of Halimeda spp. with
respect to temperature

Several months after the first thermal anomaly, Halimeda cover

dropped from 18.8 ± 3.2% (mean ± SE) in fall 2009 to 5.8 ± 0.8% in

spring 2010 on the fore reef and 5.4 ± 1.0% to 2.2 ± 0.4% on the reef

terrace (Figure 3E). By late summer 2010, Halimeda cover had

decreased significantly at four out of eight sites (Supplementary

Table 5) but increased in subsequent years. Between fall 2014 and

fall 2015, Halimeda cover decreased again at all sites; its cover during

the second thermal anomaly was among its lowest throughout the

time series, at 4.5 ± 0.9% on the fore reef and 0.7 ± 0.2% on the reef

terrace. Regardless of the amount ofHalimedawithin each quadrat or

site, its abundance followed a similar trajectory with sharp declines by

2015, and growth or no change thereafter (Supplementary Figure 2).

Between fall 2016 and fall 2017, Halimeda cover increased

significantly at six out of eight sites by up to 20% (Supplementary

Table 5). Thus, in all cases where significant differences were detected,
FIGURE 2

Non-metric multidimensional scaling (nMDS) based on Bray-Curtis dissimilarity measures of benthic algal community composition by taxon (in terms
of square-root-transformed percent cover data). Lines terminating in an arrowhead represent the yearly trajectory of each habitat (Fore Reef in
orange, Reef Terrace in red) from 2009 to 2019. Asterisks denote thermal anomalies in 2009 and 2015.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1539865
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Khen et al. 10.3389/fmars.2025.1539865
the sites that changed did so in the same direction. There were

significant effects of percentile-based DHW (p = 0.023) and habitat (p

<0.001) on Halimeda cover (Supplementary Table 4). A negative

relationship between Halimeda cover and accumulated thermal

stress was seen (Figure 5), with a linear correlation on the reef

terrace (Pearson’s r = -0.65, p = 0.03) but not on the fore reef

(Pearson’s r = -0.03, p = 0.92).
4 Discussion

As corals suffer widespread declines due to climate change,

there has been a corresponding rise in the abundance of algae on

reefs worldwide (Pandolfi et al., 2003; Hughes et al., 2017; Reverter

et al., 2021). However, “algae” encompass a heterogenous group of

functionally, phylogenetically, morphologically, and taxonomically

distinct taxa (Fong and Paul, 2011). While short-term changes in

macroalgal abundance on coral reefs, including seasonality, have

been well-documented (Aguila Ramıŕez et al., 2003; Ateweberhan
Frontiers in Marine Science 06
et al., 2006; Lefèvre and Bellwood, 2010), longer-term dynamics of

benthic algae at the community, functional group, or species level

remain poorly characterized. Here, we present results of an 11-year

time series from Palmyra Atoll in the central Pacific Ocean. From

2009 to 2019, the cover of fleshy and calcareous algae was more

stable at the reef terrace but fluctuated at the fore reef. At the time of

the second, more-severe thermal anomaly in 2015, there was a

general decrease in calcareous algae at both habitats accompanied

by an increase in fleshy algae which was restored within two years.

Given Palmyra’s remote location and high level of federal

protection, such data sets can provide baseline information on

coral reef algal communities in the context of global stressors.

Long-term ecological monitoring is necessary for detecting

trends in species abundance and distribution through time. Prior

to this study, the latest comprehensive analysis of Palmyra’s benthic

algal community composition was based on summary data from

surveys conducted sporadically between 2004 to 2008 (Braun et al.,

2009). Before that, knowledge of algal diversity on Palmyra was

limited to early explorers’ species lists (Rock, 1916; Dawson et al.,
FIGURE 3

Percent cover (mean ± SE) of (A) Caulerpa serrulata, (B) Crustose Coralline Algae, (C) Dictyosphaeria spp., (D) Galaxaura rugosa, (E) Halimeda spp.,
(F) Lobophora sp., (G) Peyssonneliaceae sp., and (H) Turf Algae, by habitat (Fore Reef in orange, Reef Terrace in red). Dashed vertical lines indicate
thermal anomalies in 2009 and 2015.
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1955; Dawson, 1959). In 2008, the most abundant macroalgal

genera on Palmyra were Halimeda, Lobophora, Galaxaura, and

Dictyosphaeria (Braun et al., 2009). This remained consistent

through 2019, although we also identified C. serrulata as a

common macroalgal taxon on the reef terrace (Supplementary

Table 2). Additionally, Braun et al. (2009) mentioned high cover

of the red alga Dichotomaria marginata near a shipwrecked

longliner vessel which was removed in 2013. Dichotomaria was

absent from our analyses, although not all of the same reef habitats

or sites were represented here, and our study involved small-scale
Frontiers in Marine Science 07
photoquadrats as opposed to large spatial scale surveys. Braun et al.

(2009) found algal communities to be relatively similar across sites

from the reef terrace and fore reef habitats across the atoll, whereas

in the present study, algal communities showed significant

differences by habitat and time, with more overall stability at the

reef terrace. Calcareous algal cover was consistently higher at the

fore reef, although it is worthwhile to note that Palmyra’s reef

terrace is largely occupied (up to 50%) by hard corals (Fox et al.,

2019; Khen et al., 2022, 2024). Overall, fleshy algal abundance on

Palmyra (average percent cover = 20.8%) was low in comparison to
FIGURE 5

Percent cover of Halimeda spp. (mean ± SE) by habitat (Fore Reef in orange, Reef Terrace in red) corresponding to the percentile-based Degree
Heating Weeks (DHW) at each observation time point, labeled by year.
FIGURE 4

Percent cover (mean ± SE) of calcareous (in purple) and fleshy algae (in green) on Palmyra at the (A) Fore Reef and (B) Reef Terrace habitats, along
with post-hoc letter groupings for significant (a = 0.01) differences among years. Dashed vertical lines indicate thermal anomalies in 2009 and 2015.
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reefs with local human populations (average percent cover = 59.3%

according to Smith et al., 2016) whereas calcareous algal abundance

(average percent cover = 34.4%) was much higher than that of

inhabited islands (average percent cover = 16.9%; Smith

et al., 2016).
4.1 Environmental drivers of algal
community structure

Ecological succession and community structure can be shaped

by physical forces such as light and sediment transport (Glynn,

1976), irradiance and water motion (Done, 1982), and wave energy

(Dollar, 1982). On Palmyra, local environmental factors likely

contributed to the spatial variability in benthic algal communities

by habitat. The shallower, wave-sheltered reef terrace, which

receives more light, solar irradiance (Hamilton et al., 2014), and

an influx of nutrients and sediments from the nearby lagoon

(Rogers et al., 2017), had a higher relative abundance of turf and

other fleshy algae throughout the study (Figure 1; Supplementary

Figure 1). The fore reef, which is subject to more wave action and

water motion (Williams et al., 2013; Hamilton et al., 2014; Gove

et al., 2015), had a higher relative abundance of calcareous algae.

Calcified crusts such as CCA and peyssonnelioid taxa are resistant

to high wave energy, which may explain their dominance at this

habitat, as has been seen elsewhere in the tropical Pacific (Page-

Albins et al., 2012). Coralline algae can also shed their epithallial

cells to prevent fouling by fleshy organisms and reinforce their

foundation in wave-exposed habitats (Keats et al., 1997b).

Articulated algal morphologies such as Halimeda are more

vulnerable to dislodgement by waves (Steneck and Dethier, 1994),

but nutrients supplied from upwelling and internal tides on the fore

reef (Williams et al., 2018) may have promoted their growth (Smith

et al., 2004). While temperature could be expected to differ by

habitat, our observations were limited to 10 m depth and upwelling-

induced cooling on Palmyra has only been found to occur below 15

m (Fox et al., 2023).
4.2 Role of herbivory in benthic
algal communities

Although we did not quantify herbivore abundance in this

study, given that Palmyra has very high fish biomass (Williams

et al., 2011; Edwards et al., 2014) and that grazing pressure drives

algal succession (Carpenter, 1986; Hixon and Brostoff, 1996),

biological factors such as grazing may have further contributed to

differences in algal community structure. In our photoquadrat time

series, algal turfs often appeared cropped (pers. obs.), indicative of

grazing. Herbivores can help control fleshy algal cover (Littler et al.,

2006; Burkepile and Hay, 2009) and their presence is associated

with higher cover of corals and CCA (Smith et al., 2010). With

herbivores now being used as a restoration tool to reverse coral-

algal phase shifts on degraded reefs (Mumby, 2014; Ladd and

Shantz, 2020), Palmyra exemplifies the role of herbivory in

maintaining a “healthy” calcifier-dominated reef. Palmyra’s reef
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system is dominated by top predators and larger-bodied grazers

(e.g., parrotfish and surgeonfish) as opposed to small planktivores

or echinoids (Sandin et al., 2008). Hamilton et al. (2014) found that

Palmyra’s reef terrace had a higher density of herbivorous fish and

higher grazing intensity (in terms of bite rates) than the fore reef.

Most herbivorous fish on Palmyra feed preferentially on algal turfs

(Hamilton et al., 2014), which are more abundant on the reef terrace

(although parrotfish bite scars are also seen frequently on CCA on

the fore reef; see Charendoff et al., 2023), suggesting that habitat-

specific differences in algal and herbivore assemblages

are interrelated.
4.3 Evidence of thermal sensitivity in
Halimeda spp.

Our study also provides observational evidence that the

calcareous macroalgal genus, Halimeda, may be sensitive to

warming. At both habitats on Palmyra, benthic cover of

Halimeda was among its lowest in 2015 (Figure 5), when

percentile-based DHWs reached a value of 7.76 (or a monthly

mean sea surface temperature of 29.8 °C; National Oceanic and

Atmospheric Administration’s Coral Reef Watch). Perhaps if

temperatures on Palmyra had reached a more extreme upper

limit, this would have had a more measurable impact on

Halimeda cover across the atoll. It has previously been proposed

that Halimeda growth and calcification could benefit from seawater

temperatures ranging from 24 to 32 °C, but that temperatures above

34 °C will have consequences that may become lethal at 36 °C (Wei

et al., 2020). Other experimental studies have shown that exposure

to elevated temperatures can either inhibit (Sinutok et al., 2011) or

enhance (Campbell et al., 2016) photosynthetic efficiency,

calcification, and growth in Halimeda spp., indicating that results

may be context-dependent or species-specific (Schubert et al.,

2023). Given their role in both primary and calcium carbonate

production on reefs (Rees et al., 2007), and as a preferred food

source to many reef fishes (Mantyka and Bellwood, 2007; Hamilton

et al., 2014), refining the thermal sensitivity limits of Halimeda by

species (while also taking into account accumulated thermal stress)

and identifying the mechanisms behind this observed phenomenon

will be ecologically relevant in the face of global climate change.
5 Conclusion

In conclusion, more species-specific studies on the thermal

tolerance of benthic algae are needed in order to better

understand current and potential impacts of climate change on

coral reefs. Additionally, comparing calcareous vs. fleshy responses

of benthic algae in situ will be useful for assessing ecosystem status

in the context of rising seawater temperatures. Long-term

monitoring in relatively unimpacted locations, such as Palmyra

Atoll, allows us to track baseline algal community dynamics over

time. To strengthen the value and resolution of these ecological data

sets, future efforts should consider larger-scale surveys with higher

sampling frequency. Although Palmyra’s reefs have remained
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calcifier-dominated as of 2019, successional trajectories from

Palmyra could inform mitigation strategies at more degraded

reefs shifting toward fleshy algal dominance.
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