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Effective fisheries management is crucial for the sustainable use of fishery

resources, increasing relying on stock assessments. The Megalaspis cordyla an

economically important fish species in Pakistan, require an accurate assessment

of its current biomass to take effective management strategies. This study utilized

stock assessment techniques, including the Catch-Based Monte Carlo Maximum

Sustainable Yield (CMSY), length-based Bayesian Biomass (LBB), Just Another

Bayesian Biomass Assessment (JABBA), and ARIMA models. While CMSY, BSM,

JABBA, ARIMA rely on annual catch-effort data, while LBB analyzes length-

frequency data along with resilience inputs. An analysis of 15 years of catch

data (2007-2021), and 1,442 length-frequency data from Pakistani waters

revealed that the fishery is overfished both in terms of exploitation and

biomass (LBB at F/M = 1.6, B/BMSY = 0.76 and B/B0 = 0.27). The CMSY method

estimated biological reference points as r = 0.53, k = 231, and a maximum

sustainable yield (MSY) of 3.06. In comparison, the BSM provide values of r =0.03,

k =271, MSY = 2.56. The JABBA model estimated MSY of 3.637, with a biomass to

MSY2021 (B2021/BMSY) of 0.68 and F2021/FMSY of 1.56, indicating excessive

exploitation. The projected biomass ratio (B2021/BMSY) of 0.798, is<1, confirms

overexploitation. Additionally, the ARIMA (2, 0, 1) model, demonstrated the

lowest mean square error, predicts a significant upward trend in fish catches in

the near future. The findings across all models consistently indicate that the M.

cordyla fishery is overfished, with current catches exceeding sustainable limits.

Biological reference points from CMSY, JABBA, and LBB models, all below 1.0,

underscore the unsustainable of the fishery. If current trend continues, the

fishery faces a substantial risk of collapse. To mitigate this, immediate

management measures should be implemented to promote the sustainable

utilization of this critical fishery resource in Pakistan.
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1 Introduction

Fisheries resources play a vital role in achieving sustainable

development goals, supporting global food and security, and

maintaining the health of marine ecosystems. These resources are

not only essential for national economies but also for the livelihoods

and cultural heritage of coastal communities (FAO, 2023). In

Pakistan, the marine fisheries sector significantly contributes to

the national economy by providing employment, ensuring food

security, and boosting exports. This sector encompasses a diverse

range of species and relies on both artisanal and industrial fishing

practices. Pakistan coast spans 1,001 km, stretching from the Indian

to the Iranian borders, with a continental shelf up to 350 nautical

miles (UN, 2015; Pakistan Navy, 2016). The coastline is divided into

two distinct regions: the Sindh and Pakistan coasts. The Sindh coast

features sandy and muddy seabed enriched by freshwater inflows

from the Indus River, which fosters fertile mangrove ecosystems

that serve as critical breeding and nursery grounds for various

fishery resources. In contrast, the Balochistan coast comprises a

rocky, uneven continental shelf (FAO, 2009). Pakistan marine

waters are rich in resources, including large and small pelagic

fish, demersal fish, shrimp, crabs, lobsters, and cephalopods

(FAO, 2009). The marine fisheries industry in Pakistan accounts

for approximately 57% of the country’s total fish and fishery

products, contributing about 160.9 million US dollars to the gross

domestic production (FAO, 2009). The sector supports the

livelihoods of approximately 400,000 fishermen and their

families. However, Pakistan’s fisheries have been severely

impacted by overfishing in recent decades. Numerous studies

highlight concerns about global fish stock depletion due to

overexploitation (Hilborn et al., 2020). Nevertheless, research

suggests that fish stocks can recover if fishing efforts are reduced

to sustainable levels via effective fishery management (Worm

et al., 2009).

In recent years, national and regional fisheries regulations have

increasingly shifted toward science-based management approaches

to ensure the sustainability of both commercial and non-

commercial fish stocks (MSA, 2007; CFP, 2013). Several factors

contribute to the depletion of fisheries resources, including climate

change, habitat destruction, water pollution, and disease outbreak.

However, overfishing remains the primary threat (Jackson et al.,

2001), exacerbated by the rise of industrial fishing since the last

century (McIntyre, 1991). Overfishing has significantly disrupted

species interactions within the marine ecosystems (Jackson et al.,

2001). Pakistan’s fisheries resources operate under open-access

conditions, and recent surveys reveal significant stock depletion

(Fanning et al., 2011). Achieving balance in natural ecosystems

requires accurately quantifying the status of fisheries, not only for

sustainable harvests but also for sustainability of marine

ecosystems. However, stock assessments are often hindered by

limited data availability. Traditional tools often fail to evaluate

sustainability goals for key fish stocks due to inadequate data

(Costello et al., 2012). Advanced stock evaluation models require
Frontiers in Marine Science 02
extensive datasets, including fishing effort, time-series catch data,

and species life history information (Costello et al., 2012; Methot

andWetzel, 2013). Such datasets are often unavailable in developing

countries like Pakistan. As a result, researchers frequently use catch-

and length-based models (Froese et al., 2017, 2018, 2019). Data

limitations in Pakistan are a significant challenge, with over 90% of

global fisheries facing similar constraints (Geromont and

Butterworth, 2015). While the fisheries department collects

annual data on catches and fishing vessels, this data is insufficient

for comprehensive stock assessments. To address this gap, more

tailored models that utilize limited datasets are needed to calculate

biological reference points (BRPs) for maintaining fish stocks.

Several methods have been developed to overcome data

deficiencies. The Catch-Based Maximum Sustainable Yield

(CMSY) and Bayesian Schaefer Model (BSM) offer promising

solutions by using time-series catch and efforts data to estimate

biomass, MSY, fishing rate (F/Fmsy) relative biomass size (B/Bmsy)

and other related fisheries reference points for given stock (Martell

and Froese, 2013; Froese et al., 2017). Just Another Bayesian

Biomass Assessment (JABBA) models also requires catch and

catch per unit effort (CPUE) data (Froese et al., 2017). These

models provide reliable insights into fisheries status using

incomplete abundance data, aligning analyses with specific

biomass conditions (Wang et al., 2020). Similarly, the LBB

technique relies on the ratio of natural mortality to somatic

growth (M/K) and fishing mortality to somatic growth (F/K) to

analyze the proportion of exploited to stable biomass (B/B0), stock

levels needed for maximum sustainable yield (MSY) (B/BMSY) (Yue

et al., 2021). This length-based approach is particularly effective for

estimating species growth throughout their lifespans (Froese et al.,

2019). By integrating these methods, fisheries management in data-

limited context can be significantly improved. Employing

innovative tools such as CMSY, BSM, JABBA, and LBB can

provide actionable insights to ensure the sustainability of Pakistan

marine fisheries.

In fisheries sciences, a wide range of mathematical and

statistical techniques are employed to analyze and interpret the

dynamics of commercially important fish populations (Haddon,

2011). Among these, autoregressive integrated moving average

(ARIMA) models, introduced by Box and Jenkins (1976), are

commonly used for time series analysis. ARIMA models assume a

linear relationship within the time series data, where each

observation is expressed as a linear function of preceding values,

with an added error term. This univariate approach, which focuses

on linear associations among variables, offers both strength and

limitations, depending on the complexity of the data. ARIMA

models share foundational principles with other time-series

models, such as moving-average (MA) and autoregressive (AR)

models, and are capable of capturing seasonal and cyclical patterns.

These features contribute to their broad application across scientific

and engineering fields, including fisheries science. Their utility in

fisheries sciences is particularly significant for analyzing datasets

that are constrained by limitations in size or complexity, such as
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those from the northern Arabian Sea (Sathianandan and Srinath,

1995; Czerwinski et al., 2007; Prista et al., 2011).

Torpedo scad (Megalaspis cordyla), a small pelagic fish from the

Perciformes order, inhabits reef-associated areas at depths of 20-100

m (Al-Sakaff and Esseen, 1999). This species is widely distributed

across the Indo-Pacific region, including Pakistan, and is commonly

found in schools (Kuiter and Tonozuka, 2001). While it can grow

up to 80 cm in length, individuals typically reach around 45 cm. The

maximum recorded weight of this species is 4.0 kg, and it has a

lifespan of 3-5 years. Sexual maturity is reached at approximately 22

cm, marking a crucial point in its life cycle (Smith-Vaniz, 1984;

Smith-Veniz, 2003; Hu et al., 2015; Qamar et al., 2018a). It is

commercially significant species, primarily exported in frozen form,

contributing substantially to Pakistan economy. Due to its high

commercial value, it is classified with the higher price category with

high price category (Sumaila et al., 2007). Additionally, it is also

highly vulnerable to climate change and fishing pressure (Jones and

Cheung, 2017; Qamar and Panhwar, 2018b). Along the coastal

regions, it is also widely consumed due to its convenient size.

Although the biological aspects and ecological importance of M.

cordyla have been well-documented (Zafar et al., 2000; Qamar et al.,

2016), there has been limited research on its stock assessment in

Pakistani waters (Qamar and Panhwar, 2018b; Razaaq et al., 2019).

Given its commercial importance, assessing the current biomass of

this fishery is essential. Various modeling approaches, including

CMSY, BSM, LBB, JABBA, and ARIMA used in this assessment.

CMSY is particularly beneficial in data-limited context, relying

solely on catch data to estimate stock status and sustainable yield.

BSM and JABBA require both catch and CPUE data, providing a

more comprehensive view of population dynamics through

Bayesian modeling techniques. LBB, using length-frequency data,

offers insights into stock status and growth parameters. ARIMA

models, on the other hand, use historical time-series data to forecast

future catch trends, making them invaluable for developing
Frontiers in Marine Science 03
predictive management strategies. In Pakistan, where detailed

data on fishing effort and biological parameters are often lacking,

these models provide complementary information on stock status

and future projections. For instance, CMSY can deliver preliminary

assessment using only catch data, while LBB offers additional

reliability by analyzing size-based data. Comparison across

models can strengthens confidence in results, particularly in data-

poor context. Understanding the current status ofM. cordyla stocks

through these methodologies is crucial for informed decision-

making and sustainable fisheries management in Pakistan. By

integrating these approaches, fisheries managers can develop

strategies to ensure the long-term viability of this economically

significant species, addressing challenges posed by limited

data availability.
2 Materials and methods

2.1 Data acquisition

Yearly catch data for M. cordyla were sourced from the FAO

(UN) global marine fish catch database (https://www.fao.org/

fishery/statistics-query/en/capture/capture_quantity) for the

period 2007-2021, a reputable and globally recognized fishery

database. While the data on fishing boats were obtained from

annual fisheries statistical book published by the Marine Fisheries

Department, Pakistan (MFD, 2017, 2021). Over the 15-year period,

total annual catches (in metric tons, MT) and fishing effort (number

of fishing boats) were analyzed. The highest recorded catch

occurred in 2008, with a total of 5,924 MT. However, catches

consistently declined in subsequent years, with the lowest recorded

catch of 3,321 MT in 2010. The average catch over the 15 years was

4,259 MT, with an average fishing effort of 17,509 boats. Despite the

declining catches, fishing efforts showed an increasing trend over
FIGURE 1

Annual catch (MT) and effort data (number of fishing boats) of Torpedo scad fishery from Pakistani waters during 2007-2021.
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the same time period (Figure 1). Length-frequency distribution data

were collected along the Pakistani coast in 2021. A total of 1,442

specimens were measured, with fork lengths ranging from 170 mm

to 450 mm (± 85.15 mm). These length-frequency data, along with

the catch and effort information (number of fishing boats) and

catch per unit effort (CPUE), were analyzed using R statistical

software with the LBB (version 33a.R), CMSY (version 2019f.R),

and JABBA (JABBAv1.1.R) models developed by Froese et al. (2018,

2019), and Winker et al. (2018).
2.2 LBB model

Froese et al. (2019) introduced the LBB model to analyze

length-based data, providing insights into the exploitation rate for

fishery resources. This method is particularly effective for species

with determinate growth throughout their lifespan and for

invertebrates. The model outputs key parameters such as the

asymptotic length (Linf), length at capture (Lc), natural mortality

(M), and fishing mortality (F) (Froese et al., 2018, 2019). Using

these parameters, standard fishery equations estimate the reduction

in stock biomass compared to its unexploited state (B/B0).

Additionally, the LBB model provides proxies for the biomass

required to achieve BMSY/B0 and Lc (length at capture), and Lc opt

(optimal length at capture), which helps optimize both stock

sustainability and catch efficiency.

The Von-Bertalanffy (1938) growth function is used in this

analysis and is expressed by following Equation 1:

Lt = L∞ = ½1 − e−K(t−t0)� (1)

t is age, L∞ is the asymptotic size, K denote growth coefficient (yr-

1), to is hypothetical age of fish when length is zero. the VBGF

incorporates factors such as growth, selectivity, and mortality

enabling an analysis of catch trends relative to stock status (Froese

et al., 2018). Mortality (F/M) was estimated as F/M = (F/K)/(M/K) in

LBB parameters. The determination of the optimum length (Lopt) for

maximum yield and optimum length at first catch (Lc_opt) is taken

from Equations 2 and 3 (Holt, 1958; Froese et al., 2017).

Lopt   =   L∞ 
3

3 + M
K

� �
(2)

Lcopt =  
L∞   (2 + 3F

M )

(1 + F
M )(3 + M

K )
(3)

The yield er recruit (Y’/R) (Beverton and Holt, 1966) was

estimated using (Equation 4)
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Y 0

R
=  

( F
M )

(1 + F
M )

  1 −
Lc
L∞

� �M
K

  (1 −
3(1 − Lc

L∞
)

1 + ( 1
(MK +

F
K)

+  
3(1 − Lc

L∞
)2

1 + ( 2
(MK +

F
K )

+  
(1 − Lc

L∞
)3

1 + ( 3
(MK+

F
K)

(4)

Index of catch per unit effort per recruit (CPUE’/R) estimated

by Beverton and Holt (1966) Equation 5:

CPUE
0

R
=  

( Y
0

R )

( F
M )

 
1
M

� �
1 −

Lc
L∞

� �M
K

  (1 −
3(1 − Lc

L∞
)

1 + ( 1
(MK +

F
K )

+  
3(1 − Lc

L∞
)2

1 + ( 2
(MK +

F
K)

+  
(1 − Lc

L∞
)3

1 + ( 3
(MK +

F
K )

(5)

The relative stock per recruit during population exploitation

phase, excluded catching activities (Froese et al., 2018) by Equation 6:

B 0
0 > Lc
R

= 1 −
Lc
L∞

� �M
K

  (1 −
3(1 − Lc

L∞
)

1 + ( 1
(MK +

F
K)

+  
3(1 − Lc

L∞
)2

1 + ( 2
(MK +

F
K )

+  
(1 − Lc

L∞
)3

1 + ( 3
(MK+

F
K )

(6)

This equation content, (B’0 >Lc/R) signifies an exploitation

proportion (>Lc) of stable biomass (B0). Relative biomass (B/B0)

is determined by the Equation 7, as specified for the exploitation

population (Beverton and Holt, 1966).

B
B0

=  
CPUE0

R
B 0

0
R

(7)

The capability of productionMSY (BMSY/B0, where B0 is expected

at 0.5) was estimated by re-running Equations 4–8 (Froese et al.,

2018), and it serves as replacement for the relative biomass.

B
BMSY

=  
B
B0

BMSY
B0

(8)

This study divided the fish species it looked at into three

categories: Strongly overfished (B/Bmsy<0.2-0.5), grossly

overfished (B/Bmsy<0.5), overfished (B/Bmsy 0.5 - 1), and healthy

(B/Bmsy >1) (Palomares et al., 2018).

The comprehensive stock evaluation, including a detailed

description and analysis, is provided in Froese et al. (2018, 2019).

For the LBB method, length-frequency data (1,442) were used, and

basis prior information was sources from FishBase (Table 1), which

includes essential parameters such as species resilience and growth

rates. This prior information is integral to the LBB method and

helps to inform the model assessment of the stock status.
TABLE 1 Prior and basic input information needed for the LBB model of Torpedo scad fishery in Pakistan.

Scientific
Name

Min
(cm)

Max
(cm)

Total
Numbers

Linf
Prior(cm)

Z/K
Prior

M/K
Prior

F/K
Prior

Lc
Prior

Alpha
prior

Megalaspis cordyla 17 45 1,442 45 1.8 1.5 0.253 25 17.7
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2.3 CMSY and BSM model

The CMSY method, which incorporates the BSM model, was

utilized used to evaluate the status offish stocks (Froese et al., 2017).

key statistics are in Table 1, while the relative priors are in Table 2.

Parameters such as B/BMSY, exploitation rate (F/FMSY), carrying

capacity (k), and intrinsic growth rate of the population (r) were

estimated using annual catch data, CPUE, and resilience parameters

(Froese et al., 2017). Biomass for the subsequent year was estimated

using the following Equations 9, 10.

Bt+1 = Bt + r 1 −
Bt
k

� �
Bt − Ct (9)

Bt+1 is harvested stock (t+1) year, Bt is the present stock, and Ct,

catch in year t., biomass falls 1
4k:

Bt+1 = Bt + 4
Bt
k

1 −
Bt
k

� �
Bt − Ct j

Bt
k
<0:25 (10)

The resilience of Torpedo scad is classified as “medium”

according to FishBase. Table 2 presents the prior ranges for the

CMSY parameters, with, r ranging from 0.3 to 0.8. Biomass priors

are also provided in Table 2 (Froese and Pauly, 2021). (q) is

catchability coefficient; calculated by following equation:

CPUEt = qBt (11)

CPUE in year t, Bt is annual stock and q is catch coefficient

(Equation 11). The CMSY and BSM parameters stock biomass is in

Table 2 (Froese and Pauly, 2015).
2.4 The JABBA model

The JABBA model is a Bayesian State-Space surplus production

model (SPM) designed to utilize CPUE time-series data. It employs

a generalized three-parameter SPM developed by Pella and

Tomlinson (1969) expressed as follows. These models do not

require any age-structure data (Winker et al., 2018).

SPt =
r

(m − 1)
 Bt 1 −

Bt

K

� �
m − 1

� �
  (12)

Where, k, r, B, are intrinsic population rate, carrying capacity

and biomass at time t, and m is the parameters of B/K ration of

surplus production
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BMSY

K
= m   −  

1
m − 1

� �
(13)

BMSY = Km   −  
1

m − 1

� �
(14)

FMSY =
r

(m − 1)
    1 −  

1
m

� �
(15)

Equations from 13, 14 and 15 BMSY and FMSY are fishing

mortality at MSY

F =
C
(B)

(16)

C=FB, fishing mortality, C is the annual catch, therefore MSY

can be calculated Equation 17.

MSY =   FMSY :BMSY (17)

Together Equations 14 and 16, it is possible to show r in

Equation 18 as

r =  
MSY
BMSY

:    
m − 1
1 − 1

m

(18)

From Equations 14 and 18 shows the possibility of converting

MSY/BMSY and BMSY/K estimates into r and m.

From Equations 12–18, where, BMSY and FMSY and fishing

mortality calculation, C= FB, fishing mortality, C is the annual

catch,

SPt =
r

(m − 1)
Bt

(PLim  K)
 Bt 1 −

Bt

K

� �
m − 1

� �
  if

Bt

K

< PLim   (19)

Equation 19, represents the recruitment potential, which specify

biomass levels ranging from 0.25-0.5, commonly used as

recruitment overfishing limits (Palomares et al., 2018). This

equation is a composite model for the Pella-Tomlinson model

Plim. Equation 19. This model helps in assessing the potential

overfishing limits based on recruitment dynamics, a crucial

component for evaluating sustainable fishing practices.
2.5 ARIMA model

The ARIMA model uses past observations and error terms to

predict future values in a time series (Brockwell and Davis, 2016).

An AR model of order p is denoted by AR(p), while MA model

clarifies Yt, as a role of an independent term and errors in the past

terms and in represented by MA(q). ARIMAmodel can be stated as:

Yt = f1Yt−1   + f2Yt−2   +… + fpYt−p   + q1ϵt−1 + q2ϵt−2 +… + qqϵt−q
+ ϵt

Yt = value of the time series at time t, f = AR coefficients, q =

MA coefficients, et = white noise error team, p = number of AR

terms, d = degree of differencing, q = number of MA terms.
TABLE 2 Suggested prior biomass ranges of the biomass under
assessment from supplementary input (Froese et al., 2017).

Species Bstart/k Bint/k Bend/k Prior
r ranges

M. cordyla 0.2 - 0.6 0.2 - 0.6 0.2 - 0.6 0.3-0.85
Default biomass by Froese et al. [14], Low = 0.01- 0.4, Medium = 0.2 – 0.6, High = 0.5 – 0.9
respectively; Resilience prior to r (Medium) Fish-Base (Froese et al., 2017, 2019).
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For, future predicted values, the forecast can be derived from:

Ŷ t+h = f̂ 1Yt+h−1   + f̂ 2Yt+h−2   +… + f̂ pYt+h−p   + q̂ 1ϵt+h−1 +…

+ q̂ qϵt+h−q

Where, h is forecast horizon.

A statistical method can be used to examine the presence of

stationarity, commonly referred to as the unit-root hypothesis test.

Widely used approach for this purpose is the Augmented Dicky-

Fuller (ADF) test, which assess stationarity (Dickey and Fuller,

1979). The Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) values for ARIMA model were

calculated using the following formulas, where T’ defines the

observations used for estimation of parameters.

AIC = T 0 log(s 2) + (p + q + 1)

BIC = T 0 log(s 2) + (p + q + 1)log(T 0 )

Estimation of accuracy metrics

Mean error (ME); ME =   1non
i=1(Fi − Ai)

Fi = forecasted values, Ai = actual values, n= number

of observations

Mean Absolute Error (MAE): MAE =   1non
i=1 Fi − Aij j

Root Mean Squared Error (RMSE): RMSE = 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Fi − Ai)
2

q
Mean Absolute Scaled Error (MASE): MSE = MAE

1
n−1on

i=2 Ai − Ai−1j j
The ARIMA model provides framework for forecasting time

series data by leveraging past observations and error terms. The

described metrics (ME, MAE, RMSE, and MASE) help assess the

accuracy of the forecasts, enabling better decision-making based on

model performance.
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3 Results

3.1 Length based biomass estimate

The length-frequency data (1,442) were used to estimate the

stock biomass using the LBB model. The calculated parameters,

including F/M = 1.6, B/BMSY = 0.76 and B/B0 = 0.27, indicate that

the stock is overexploited, and the biomass is severely depleted

(Table 3). Additionally, the size at first capture is below the optimal

length, indicating that smaller fish are being harvested, which

exacerbates the overfishing issue. The estimated asymptotic length

(L∞) for this species 46.6 FL-cm (Figure 2). This combination of

overfishing and the capture of juvenile fish is contributing

significantly to the depletion of the stock.
3.2 CMSY, BSM, and JABBA outputs

The annual catch was higher during the early years (2007-2009)

followed by a consistent decline over time (Figure 3A). Both the

CMSY and BSM models provided reliable evaluations for assessing

sustainability of the fishery. The CMSY model estimated biological

reference points with r = 0.53, k = 231, and MSY = 3.06 (Table 4A),

while the BSM model estimated r = 0.03, k = 271, and MSY = 2.56

for Pakistani waters (Table 4B). The estimated B2021/BMSY biomass

ratio was 0.798, which is below 1, indicating that the stock is

overexploited (Figures 3B–D; Table 4B). Additionally, the fishing

mortality (F2021/FMSY = 1.56) exceeded the sustainable catch limit of

1 (Figure 3E) and no values were recorded below the curve

(Figure 3F). The Kobe plot further highlights that F2021/FMSY is

greater than 1 and B2021/BMSY is less than 1, confirming the
TABLE 3 Stock estimated results of Torpedo scad fishery using LBB method.

Scientific
Name

Lmean/Lopt Lc/Lc_opt L95th/Linf B/B0 B/BMSY F/M F/K Z/K Status

Megalaspis
cordyla

1.1 1.1 0.94
0.27

(0.18-0.4)
0.76

(0.51-1.1)
1.6

(1.2-2.3)
2.8

(2.4-3.4)
4.5

(4.2-4.9)
Overfished
FIGURE 2

The aggregated length frequency (total of 1,442 specimens) and stock estimation using length-based biomass method for Torpedo scad fishery from
Pakistani waters during 2021. Lc defines the size of first capture (green line) and indicating the catch of small size of fish, Linf indicate species length
limit and Lopt shows the length at maximum sustainable catch.
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conclusion that the stock is overfished. The change in biomass over

time is shown as a black line, with initial years falling in the green

zone (square marker), but over time the biomass shifted into the red

zone (triangle marker), signifying that 95.5% of the depletion is

attributed to fishing activities (Figure 4). Fishing mortality and MSY

biomass exceeded sustainable catch limits (Figure 5), further

confirming overfishing in Pakistani waters. The JABBA model

contributed a more refined analysis, with key parameters

presented in Table 4B and Figures 6 and 7. The estimated MSY

was 3.637, with B2021/BMSY = 0.68 and FMSY = 1.56. The Kobe plot

(Figure 7A) illustrated catch levels over time, starting in the green

zone (square markers), but shifting to red zone (triangle markers),

indicating the high fishing mortality. The surplus production and

biomass model (Figure 7B) also shows that catches have exceeded

the surplus production, which further confirms stock

overexploitation. These findings are consistent with the BSM

model results, where BMSY and FMSY values have surpassed

sustainable catch limits. Collectively, the JABBA outputs further

emphasize that that the stock is under significant stress and in an

overexploited condition.
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3.3 ARIMA model outputs

Catch data from 2007 to 2021 was analyzed using an ARIMA

model to predict and forecast future trends and assess the statistical

characteristics of both historical and projected values. The

stationarity of the time series was confirmed using the ADF test,

which yielded a p-value of 7.21e-06, significantly below the 0.05

threshold, allowing us to reject the null hypothesis and conclude

that the data is stationary. Based on the Autocorrelation Function

(ACF) and Partial Autocorrelation Function (PACF) patterns

(Figure 8), ARIMA (1, 0, 0) was identified as the most suitable

starting model. To ensure the optimality of the selected model,
TABLE 4A Estimated outcomes for fisheries reference points of Torpedo
scad stocks derived from CMSY method.

Model R K MSY B2021/k

CMSY 0.053
(0.025 - 0.112)

231
(112 - 475)

3.06
(1.41 – 6.27)

0.399
(0.208 - 0.583)
FIGURE 3

Torpedo scad fish stock estimation of CMSY and BSM model. (A) Black line indicates changes in fish stock, while the blue line represents the
average, with red dots showing the catch. (B, C) These panels depict the r-k variables from the CMSY (blue) and BSM model (red) models, along with
95% confidence intervals. (D) Relative biomass during the study period. (E) F2021/FMSY values across the years, with good model performance
indicated by the proximity of the blue and red curves. Dotted values above the parabola in the phase plot suggest a declining stock, while those
below the parabola indicate potential stock recovery. (F) Catch/MSY in relation to relative biomass, with CMSY (blue) and BSM (red) curves. Points
above parabola suggest future biomass shrinkage, while points below the parabola indicate potential stock recovery.
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additional ARIMAmodels, such as ARIMA (2, 0, 1) and ARIMA (0,

0, 2), were tested and evaluated in Python based on the criterion of

minimum AIC and BIC values. Among these, ARIMA (2, 0, 1)

emerged as the best-fit model, with the lowest AIC (243.44) and BIC

(246.98) values. The slightly higher BIC reflects a stronger penalty

for model complexity, but both metrics suggest the ARIMA model

achieved a good balance. The model performance was evaluated

using statistical metrics to assess its accuracy and reliability. The ME

was calculated at -89.93, indicating a slight underestimation of

actual catch values. On average, the predicted catch is slightly lower

than the actual catch, though the deviation is minor. The RMSE,

which measures the standard deviation of residuals or predicted

errors, was of 674.44, reflecting moderate variability between

predicted and observed values. A lower RMSE would signify

better model precision, indicating room for improvement. The

MAE was recorded at 479.82, represents the average magnitude of

prediction errors, regardless to direction. This suggests that, on

average, the model predictions deviate from actual catch values by
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approximately 480 MT. The MASE was 1.12, indicating that the

ARIMAmodel performed comparably to simpler baseline forecasts.

Historical catch data shows significant year-to-year variability,

with notable fluctuations. For instance, the catch dropped

dramatically in 2010 to 3,321 MT, one of the lowest values in the

datasets (Figures 1, 9). While, the model attempts to replicate these

variations, some discrepancies are evident. In 2010, the model

overestimated the catch by approximately 54%, indicating

challenges in capturing the severity of the decline that year.

Conversely, in 2016, when the catch reached one of its highest

values (4,666 MT), the model underestimated the catch by around

17%, highlighting the need for further calibration to improve

predictions during extreme fluctuations. Forecasted values from

2022 to 2026 suggest a gradual and steady increase in catches

(Figure 9). In 2022, the model predicts a catch of 3,996 MT, rising to

4,300 MT by 2026. This projected trend aligns with the historical

patterns, which indicate slow recovery after periods of lower catch

rates in the early 2010s.
FIGURE 4

Kobe plot of Torpedo scad fishery during 2007-2021 from Pakistani waters. The change in F/FMSY and B/B/BMSY during the time. The black line
shows the stock variation with initial (2007), and last year (2021) status in (square and triangle). Most of the catch shows in red quadrate which clearly
defines the overfishing of the stock from Pakistani waters.
TABLE 4B Estimated outcomes for fisheries reference points of M.s cordyla fishery stocks derived from BSM, and JABBA method outputs.

Model R K MSY B2021/BMSY F2021/FMSY BMSY B2021 Condition

BSM 0.037
(0.45 - 0.849)

271
(154 - 475)

2.56
(1.29 – 5.07)

0.798
(0.416-5.07)

1.56
(1.06-2.98)

115
(56.1 - 237)

92.1
(48-135)

Overfished

JABBA 0.530
(0.23-0.90)

271
(175-523)

3.637
(2.75-4.35)

0.68
(0.47-1.03)

1.56
(0.95-2.2)

135
(87-261)

Overfished
Stock status definition based on Froese et al. (2018) and Palomares et al. (2018).
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FIGURE 6

The estimated outputs from the JABBA model for the Torpedo scad fishery in Pakistan include observed and expected indexes, as well as prior and
posterior distribution, along with the estimated biomass trajectories.
FIGURE 5

Management information of BSM of Torpedo scad fishery in Pakistani waters defines the annual catch, total biomass and exploitation rate in relation
with biomass, Stock size with exploitation rate defines in black line with indicate the stock variation and light grey, grey and dark grey indicating the
50%, 80% and 95% confidence interval respectively.
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4 Discussion

Fisheries managers rely on biological reference points, stock

assessments, and other key metrics, as essential tools for the

sustainable management and optimal utilization of fishery

resources. These tools, along with approaches like maximum

economic yield and ecosystem-based fisheries management, help

ensure ecological balance and socio-economic benefits while

reducing risks like overexploitation. However, in Pakistan, many
Frontiers in Marine Science 10
key fishery resources lack such estimates due to data limitations and

the absence of reliable methods. The country faces significant

challenges in acquiring complex datasets, such as research surveys

and time-series age structure data, which complicates the

establishment of sustainable fishing practices. Machine learning

techniques, including ARIMA, LBB, CMSY, and JABBA models,

offer reliable results even with limited datasets. Catch and effort data

are available for many fish stocks and can be effectively utilized for

sustainable fishery management.
FIGURE 7

The Kobe plot (A) and surplus production (B) illustrate the relationship between biomass and fishing efforts, as well as catches and surplus
trajectories during the study period (2007-2021).
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In this study, CMSY, BSM, JABBA, and LBB models were

applied to estimate the current status of Torpedo scad, while the

ARIMA (2, 0, 1) model was used to predict the future catch trends

and assess stock size in Pakistani waters. Biological reference points

(B/BMSY) derived from the LBB, CMSY, and JABBAmodels were all

below 1.0 (LBB 0.76, CMSY 0.798, JABBA 0.68), indicating

overfishing as suggested by Froese et al. (2018), and Palomares

et al. (2018). Additionally, the estimated values of F/FMSY were

higher than sustainable levels, further confirming overexploitation.

Stock evaluations based on frameworks of Froese et al. (2017);

Martell and Froese (2013), and Palomares et al. (2018), reinforce

these findings (Tables 3, 4a, b). The current fishing mortality (F >
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FMSY) exceeds standard thresholds by Froese et al. (2018), and the

catch of small-sized individuals, as indicated by Lmean/Lopt and Lc/

Lc_opt rations, further exacerbates the issue. The length recorded in

this study (17 cm) (Table 1; Figure 2) is smaller than the optical

length indicating the harvesting occurred before fish have reached

full maturity at the size of 22 cm (Smith-Veniz, 2003; Hu et al.,

2015). Similar findings have been reported for other fish species

from Pakistani waters indicating the use of smaller trawl mesh sizes

(Raza et al., 2022). This could be one of the factors contributing to

stock depletion in Pakistani waters. The LBB model also highlighted

that F/M values exceed 1, F/K values exceed 2, and Z/K values are

high, all indicative of overfishing (Table 3). Similarly, the LBB
FIGURE 8

Autocorrelation function (ACF) and partial autocorrelation function (PACF) of Torpedo scad fishery time series.
FIGURE 9

Time series catch analysis using ARIMA (2, 0, 1) model for actual, model fitted and five-year forecasted values.
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model offered detailed stock information, while CMSY and JABBA

models provided insights for setting sustainable total allowable

catch (TAC) limits. These surplus production models (SPMs),

such as CMSY and BSM, are widely recognized for their

simplicity and effectiveness in assessing biomass removal from

fish populations (Ren and Liu, 2020).

In present study, the ARIMA (2, 0, 1) model was identified as the

most appropriate model for forecasting catch data, demonstrating

superior predictive performance. These findings underscore the

importance of selecting optimal model parameters to enhance

forecasting accuracy. Previous studies have reported varying

ARIMA model configurations for fishery forecasting, reflecting

differences in data characteristics and regional trends. For instance,

Paul and Das (2010) applied the ARIMA (1, 2, 1) model for inland

fish production in India, while Yadav et al. (2020) found the ARIMA

(1, 1, 0) model to be most effective for predicting fish production in

Assam. Additionally, Pradeep et al. (2021) identified ARIMA (2, 2, 1)

and ARIMA (3, 2, 0) as optimal models for forecasting inland and

total fish production in India. The ARIMA (0, 2, 1) model has also

been successfully applied in fisheries research (Mahalingaraya et al.,

2018; Boruah et al., 2020; Rajani et al., 2024), while Selvaraja et al.

(2020) reported that ARIMA (5, 1, 5) was suitable for forecasting for

seer fish production and ARIMA (2, 2, 1) for mullet fish production.

Koutroumanidis et al. (2006) applied various models to different fish

species, using ARIMA (1, 1, 1) and (3, 1, 3) for anchovy, ARIMA (1,

0, 1) and (1, 1, 0) for hake, and ARIMA (1, 0, 0) and (0, 1, 1) for

Atlantic bonito landing. The identification of the ARIMA (2, 0, 1)

model in this study align with previous research that emphasizes the

importance of customizing model parameters based on dataset

characteristics. This result highlights the need for careful model

selection to improve forecasting prevision in fisheries research. The

ARIMA model, employed to forecast landing trends, demonstrated

low mean square errors, making it particularly useful for data-poor

fisheries characterized by limited datasets (Prista et al., 2011). This

model can predict future conditions, highlighting potential risks for

catch rates under current trajectories (Scandol, 2003; Mesnil and

Petitgas, 2009). However, these predictions suggest that the fisheries

may face increasing pressure, underscoring the urgent need for

effective management strategies. These analyses provide critical

insights into historical trends, projected changes, and the challenges

confronting fisheries, providing a solid foundation for data-driven

decision-making aimed at ensuring sustainable management.

Numerous studies have been conducted on the biological aspects

of Torpedo scad in Pakistani waters (Qamar et al., 2018a, b), stock

assessment utilizing traditional methods remain limited (e.g., Qamar

et al., 2016; Razzaq et al., 2019). Previous assessments often used

outdated catch data, but the present study provides an updated

evaluation using modern techniques. Studies on various fish stocks

in Pakistan have employed CMSY and LBB models to improve

fisheries management and conservation (e.g., Raza et al., 2023;

Kalhoro et al., 2024a, b). LBB models have been applied to several

species to assess their status and suggest management measures for

their conservation (Raza et al., 2022). Previously various surplus

production models were used to assess different fish species in
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Pakistani waters to suggest management measures for sustaining

the fish biomass (Afzaal et al., 2016, 2018; Kalhoro et al., 2013,

2014a, b, 2015a, b, 2017, 2018; Nadeem et al., 2017). These studies

were conducted using the catch and effort data analysis and a stock

production model incorporating covariates packages. Razaaq et al.

(2019) indicated overexploitation of the fishery using outdated catch

data and traditional methods. However, recent, advances have seen

the CMSY and LBB models becoming more prevalent in Asian

waters, including Pakistan, to suggest the stock status for better

fishery management (Zhu et al., 2020, 2021; Liang et al., 2020;

Zhang et al., 2022a, b, Al-Mamun et al., 2022; Raza et al., 2022;

Khatun et al., 2023; Barua et al., 2023). Multiple modeling approaches

were employed to cross-check and validate the results, ensuring

robustness and reliability in the stock assessment. By utilizing

various models, the study aims to account for different assumptions

and methodological variations, enhancing the consistency and

support for the findings. The results across the different models

reveal minimal discrepancies in the overall outcomes, particularly

with regard to the exploitation status of the stock. Despite the

variations in the modeling approaches, all models consistently

indicate that fishing mortality and exploitation rates exceed the

recommended reference points suggested by Froese et al. (2018),

and Palomares et al. (2018). This multi-model approach strengths the

credibility of the conclusions, providing a comprehensive

understanding of the fishery status and offering a solid basis for

making informedmanagement decisions to guide sustainable fisheries

practices. Global fisheries assessments indicate a decline in fishery

resources, driven by overexploitation and inadequate management

practices (FAO, 2018; Palomares et al., 2020). Results from multi-

model approach confirm that the stock is overfished, with confidence

intervals indicating depletion across various exploitation scenario

(Table 4). FAO fisheries data may introduce uncertainty due to

potential under-reporting, particularly in small-scale fisheries (Zeller

et al., 2016; Pauly and Zeller, 2016). However, CMSY, BSM, and

JABBA incorporate prior knowledge and Bayesian approaches, which

help adjust for incomplete data and maintain predictive reliability

(Froese et al., 2017, 2019; Winker et al., 2018). Comparative analysis

confirms their robustness, even in data-limited contexts. Despite

uncertainties in catch data, the consistency of results across models

strengthens confidence in these findings.

Depletion of inshore resources has forced fishing activities into

offshore waters. Major fish stocks, including mackerel, tuna,

croakers, and pomfrets, face severe threats (Razaaq et al., 2019;

Baloch et al., 2020; Raza et al., 2022, 2023). Similar patterns of

decline in fisheries resources is evident in the Indian Ocean and

adjacent waters including Pakistan using similar methodologies

(Nisar et al., 2021; Kalhoro et al., 2024a, b). Studies conducted in

Bangladesh waters using JABBA model also provide robust

information for better fishery management (Barua et al., 2023).

These declines significantly impacted marine ecosystems and local

economics, forcing many fishermen to seek alternative livelihood.

This study represents the first comprehensive assessment of

Torpedo scad stock and future catch predictions using machine

learning methods. All models indicate that the stock is currently
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overexploited. Future catch predictions indicated that without

immediate management intervention, the fishery may face

significant risk of collapse. It may be advised to reduce fishing

efforts in order to alleviate the fishing pressure on marine resources

and promote long-term sustainability. To ensure sustainability, it is

crucial to implement management measures such as catch limits,

regular monitoring, and the development of tools to monitor small-

scale fisheries that have limited data records. The ARIMA model, in

particular, offers reliable forecasting technique for limited time-

series data, aiding resource managers in effective planning.
5 Conclusion

Biological reference points are essential for achieving sustainable

fisheries management, especially in data-limited context. Techniques

like CMSY, LBB, JABBA, and ARIMA offer valuable tool for managing

such fisheries, though they are limited by not accounting for

environmental interactions between stocks. Integrating these

methods with ecosystem-based approaches could provide a more

comprehensive assessment. The results of this study showed that the

M. cordyla fishery is overexploited, with LBB, CMSY, BSM, and JABBA

models consistently indicating overfishing. The ARIMA (2, 0, 1) model

predicts that if current catch trends continue, this fishery may face

collapse. These findings highlight the effectiveness of using catch-only

data for management in the absence of more complex datasets.

Pakistani marine waters are open-access, which exacerbates the risk

of overexploitation. Multi-model approaches could effectively support

sustainable fisheries management to inform strategic decisions. To

ensure sustainability, measures such as implementing a fishing ban

during the breeding season, increasing trawl mesh sizes, and

establishing marine protected areas (MPAs) are essential.

Additionally, enforcing vessel monitoring and implementing stricter

regulations are necessary to combat the illegal fishing activities.

Scientific-based TAC limits should be established for each fishery.

The alternative approaches, including aquaculture, could be considered

to support recovery of wild stocks while ensuring food security.

Collaboration between fishery managers and the scientific

community is essential to ensure the sustainable utilization of

fisheries resources.
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