
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Xuebo Zhang,
Northwest Normal University, China

REVIEWED BY

Keyu Chen,
Xiamen University, China
Zhichao Lv,
Shandong University of Science and
Technology, China

*CORRESPONDENCE

Wenhua Song

songwenhua@ouc.edu.cn

RECEIVED 14 November 2024
ACCEPTED 10 January 2025

PUBLISHED 30 January 2025

CITATION

Peng D, Xu X, Song W and Gao D (2025)
Preprocessing LOFARgram through
U-Net++ neural network.
Front. Mar. Sci. 12:1528111.
doi: 10.3389/fmars.2025.1528111

COPYRIGHT

© 2025 Peng, Xu, Song and Gao. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 30 January 2025

DOI 10.3389/fmars.2025.1528111
Preprocessing LOFARgram
through U-Net++ neural network
Dan Peng1, Xichen Xu1, Wenhua Song1* and Dazhi Gao2

1College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, China,
2College of Marine Technology, Ocean University of China, Qingdao, China
The study of the low-frequency analysis and recording spectrum (LOFARgram) of

ship-radiated noise is essential for extracting critical information, such as target

motion trajectories. However, the quality of LOFARgrams often degrades due to

the inherent stochasticity of ship noise and the interference of environmental

noise. We significantly enhance the clarity and quality of LOFARgrams by

employing the U-Net++ neural network model for preprocessing. Effective

training of neural network models usually requires large datasets, but the

available actual LOFARgrams are often limited and costly to collect. To ensure

an adequate dataset for neural network training, this paper introduces an

innovative forward model that simulates LOFARgrams from stochastic noise

sources. This model uses explosive decaying cosine pulses as basic units to

simulate ship noise sources and employs the KRAKEN normal mode model to

simulate the underwater acoustic channel’s transfer function, thereby efficiently

creating high-fidelity ship noise LOFARgrams. The forward model supplies

sufficient data to train the U-Net++ neural network, enabling it to demonstrate

effective recovery of LOFARgrams. Additionally, we introduce a new algorithm

that utilizes data prior to the Closest Point of Approach (CPA) to predict the CPA

parameters, applied to both the original LOFARgrams and those processed with

U-Net++. Results indicate that predictions based on U-Net++ enhanced

LOFARgrams are more accurate. Our work demonstrate the effectiveness of

the forward model and U-Net++ enhanced LOFARgrams for ship-radiated noise

analysis and precise prediction of target motion.
KEYWORDS

ship noise model, simulate ship LOFARgram, U-Net++ neural network, LOFARgram
preprocess, target motion analysis
1 Introduction

During the propagation of sound waves in shallow sea areas, interference phenomena

occur among various normal modes. When the received signal from the target sound

source is converted to the time-frequency domain, a stable and observable interference

structure with geometric distribution is formed, typically represented by a LOFARgram.

Numerous scholars have conducted theoretical and experimental studies on sound field

interference structures. S.D. Chuprov proposed the theory of waveguide invariant b
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(Chuprov and Brekhovskikh, 1982), highlighting the relationship

between the slope of the interference structure and the waveguide

invariant. D. Rouseff extracted the slopes of interference fringes in

LOFARgrams using different methods (Rouseff and Leigh, 2002).

Song et al. used the adiabatic approximation to explain the reasons

for the different slopes of interference fringes before and after CPA

of a target in a sloping seabed scenario (Song et al., 2022).

LOFARgrams have been widely studied and applied due to its

significant source information. T. C. Yang indicated that the

interference structure of the sound field also has good

applications in anti-interference (Yang, 2003). Target motion

parameters can be estimated based on sound field interference

structures (Li et al., 2016). The presence of a target can be

determined and tracked by observing line spectra in

LOFARgrams (Chen et al., 2021). And differences in the structure

of LOFARgrams can be used to distinguish between incoming and

outgoing ships (Guo et al., 2023).

Despite the significant value of LOFARgrams in research and

application, the quality of the collected data is often poor, as shown

in Figure 1A. The signals received by hydrophones are subject to

interference from environmental noise, leading to discontinuities in

the LOFARgrams. And the slowly time-varying characteristics of

the oceanic channel can affect both the amplitude and phase of the

signals. Additionally, factors such as low source levels of target

radiated noise and variations in radiated noise intensity can cause

the interference fringes in LOFARgrams to become blurred,
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resulting in a low signal-to-noise ratio (SNR) and making them

difficult to utilize effectively. To overcome these issues and further

improve the performance of LOFARgrams, preprocessing is

generally required. Common signal processing methods include

Principal Component Analysis (PCA), Empirical Mode

Decomposition (EMD), 2-Dimensional Fast Fourier Transform

(2DFFT), and low-pass filtering. These methods may prove

effective in preprocessing LOFARgrams.

Many studies employ deep learning methods to address

underwater acoustics challenges, such as detecting, identifying, and

classifying underwater targets using deep learning networks (Chen

et al., 2021). Additionally, research has utilized convolutional neural

networks to recover latent line spectrum structures in LOFARgrams

from background interference (Han et al., 2020). The recovery effect

far surpasses the perceptual range of human vision in traditional line

spectrum detection, enabling the detection and recovery of line

spectra with lower signal-to-noise ratios. This paper aims to use U-

Net++ neural network to preprocess LOFARgrams.

Neural network models require sufficient training data to ensure

their reliability and stability. However, due to the discrete

distribution of actual ship-radiated noise, collecting LOFARgrams

is both costly and time-consuming. Therefore, relying solely on

measured data is often insufficient for training the neural network

model. To address the issue of insufficient data, this paper proposes

a forward model for simulating LOFARgrams of stochastic acoustic

sources. This forward model is composed of the ship noise source
FIGURE 1

Simulation of LOFARgrams. (A) The measured LOFARgram of the Qingdao Sea Area. (B) Time-frequency diagram of waveguide transfer function. (C)
Time-frequency diagram of the received signal. (D) Time-frequency diagram of the received signal with Added Gaussian White Noise, the SNR is set
at −20dB.
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model and the underwater acoustic channel model, with the

Gaussian white noise. For the sound source model, this paper

combines the physical process of ship-generated radiated noise

sources and uses an exponentially decaying cosine pulse as the basic

unit. The time-domain signals of radiated noise from different parts

of the ship are represented as a superposition of a series of pulse

sequences. By adjusting the pulse shape, timing, duration, intensity,

and period, the difference between the simulated power spectrum

and the measured ship noise power spectrum can be minimized,

achieving a simulation of the ship-radiated noise. This method is

well-suited for simulating mechanical noise and propeller noise of

ships (Jun-Ping et al., 2016). For the channel model, the KRAKEN

normal mode acoustic field model is employed to simulate the

underwater channel transfer function. Finally, Gaussian white noise

is added to the two models to simulate ship noise LOFARgrams,

enabling efficient dataset construction.

We choose the U-Net++ neural network for the preprocessing

of LOFARgrams. U-Net++ is a architecture based on nested and

dense skip connections (Zhou et al., 2018), capable of effectively

capturing features at different scales and efficiently separating noise

from true image characteristics. This architecture aids in detail

preservation during image restoration tasks, resulting in clear

images and reduced boundary blur. Furthermore, U-Net++ can

be flexibly adjusted for various image restoration tasks,

demonstrating strong generalization capabilities. In this paper, we

constructed a dataset using a forward model and trained the U-Net

++ model. By fitting the training data, U-Net++ can significantly

enhance the quality of the LOFARgrams, achieving excellent

restoration results.

This study employs the Closest Point of Approach (CPA)

parameter estimation algorithm to analyze the effectiveness of U-

Net++ in restoring LOFARgrams. The interference fringes in the

LOFARgrams contain information about the target’s closest point

of approach, with the lowest point of the fringes corresponding to

the target’s time of closest approach. By applying the CPA

parameter estimation algorithm to the LOFARgrams prior to the

CPA point, it is possible to predict information such as the target’s

closest approach time. The results indicate that the LOFARgrams

processed by U-Net++ exhibit more accurate predictions compared

to the unprocessed versions, demonstrating the superior

performance of U-Net++ in the recovery of LOFARgrams.

The structure of this paper is as follows: Section 2 introduces the

fundamental theory of LOFARgrams. Section 3 elaborates on the

forward model for simulating ship LOFARgrams, which serves as

the basis for constructing the dataset for the neural network. Section

4 demonstrates the preprocessing effectiveness of the U-Net++

neural network on LOFARgrams, achieving satisfactory recovery

results. Section 5 evaluates the preprocessing performance of U-Net

++ on LOFARgrams by applying the CPA parameter estimation

algorithm to both the original and preprocessed LOFARgrams. This

algorithm utilizes the LOFARgram to predict target motion

parameters before reaching the CPA, revealing that U-Net++

preprocessing enhances the predictive accuracy of the estimation

algorithm. Section 6 summarizes the conclusions.
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2 Basic theory of LOFARgram

Russian scientist S.D. Chuprov first introduced the concept of

the waveguide invariant b while studying the interference structure

of the acoustic field in ocean waveguides within the space-frequency

r − w domain. The expression of the waveguide invariant is as

follows

b =
r
w

∂w
∂ r

, (1)

where w is the signal frequency, r is the horizontal distance

between the sound source and the receiving hydrophone, and ∂w/∂r
is the slope of the internal interference fringes in the (r −w) domain.

As shown in Figure 2, assume the target is moving in a straight

line at a constant speed v. The hydrophone is located at point O.

The closest point of approach (CPA) distance relative to the

hydrophone is rCPA, and the time of the closest point of approach

is tCPA.

Based on the geometric relationship shown in the figure, at time

t, the distance between the target and the hydrophone O is r(t)

r(t) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2(t − tCPA)

2 + r2CPA

q
: (2)

Differentiate Equation 2

dr
dt

=
v2(t − tCPA)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2(t − tCPA)
2  +  r2CPA

p : (3)

The definition of Equation 1 is in the r − w domain, but in the

LOFARgram, we are more interested in the results in the t − f

domain (w = 2pf). Therefore, we convert the Equation 1 to

b =
r
f
∂ f
∂ r

: (4)

The slope of the interference fringes df/dt can be expressed as

df
dt

=
df
dr

dr
dt

: (5)

In the t − f domain intensity plot, the slope of the interference

fringes is

df
dt

=
df
dr

dr
dt

= b
f
r
vd , (6)

where vd = dr=dt is the rate of change of distance between the

moving target and the hydrophone, representing the radial velocity

of the target relative to the hydrophone.

The Equation 6 can be equivalently written as

df
f

=
bv2(t − tCPA)

v2(t − tCPA)
2 + r2CPA

dt : (7)

By integrating both sides of Equation 7 and rearranging, we

obtain

ln f = bln 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2(t − tCPA)

2 + r2CPA

q� �
+ C0 : (8)
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Given f0 as the vertex frequency of the interference fringes, then

f = f (t), f0 = f (t), taking the logarithm of the above equation yields

f = f0 1 +
v

rCPA

� �2

(t − tCPA)
2

� �b=2
: (9)

In shallow water, considering the general case b = 1, Equation 9

can be simplified to

f 2

f 20
−
(t − tCPA)

2

(rCPA=v)
2 = 1: (10)

From Equation 10, it can be understood that the interference

pattern when the target passes closest to the hydrophone is a cluster

of generalized hyperbolas. Their common parameters are t and

rCPA=v.

Equation 10 represents a hyperbolic equation, indicating that the

ideal LOFARgram of ship noise should exhibit a clear hyperbolic

structure in the interference fringe pattern, as shown in Figure 1B.

However, the stochasticity of ship noise and environmental interference

can lead to discontinuities and blurriness in the measured LOFARgram,

as depicted in Figure 1A. Therefore, simulating the LOFARgram must

account for not only the target scenario but also the stochasticity of noise

and environmental factors. This paper develops a forward model to

simulate the measured LOFARgram, providing a sufficient dataset for

the U-Net++ neural network.
3 Forward model for
simulated LOFARgram

The formula for the received signal of ship-radiated noise is as

follows
Frontiers in Marine Science 04
y(w) = s(w)h(w) + n(w), (11)

s(w) represents the radiated noise signal produced by the ship,

consisting of sounds generated by mechanical equipment, engines,

propellers, etc. h(w) represents the underwater acoustic channel

transfer function, indicating the influence of the transmission path

from the ship to the receiver. It describes characteristics such as

attenuation, propagation delay, and phase changes during

underwater sound wave propagation. n(w) is Gaussian white

noise, with various stochastic noise sources in the underwater

environment, such as waves, wind, and underwater creatures,

superimposed on the received signal, affecting its clarity and

identifiability. The formula for SNR is as follows

SNR = 20lg 
s1

s2
, (12)

where s1, s2 is the variance of s(w) h(w), n(w), respectively.
According to Equation 11, this paper proposes a forward model

to simulate the hydrophone received signal y(w). Figure 3 shows the
specific structure of the forward model, which includes three

components: the ship radiated noise model, which simulates the

measured ship noise s(w); the acoustic field model, which uses the

sound propagation calculation model KRAKEN to obtain the

channel transfer function h(w); and the random noise model,

which adds Gaussian white noise to simulate random noise in the

ocean environment after superimposing h(w) and s(w).
3.1 Ship noise model

Ships generate both periodic and stochastic noise signals during

navigation. Periodic signals typically are generated by the cyclic

rotations of mechanical components such as motors, internal
FIGURE 2

Schematic diagram of target motion geometry.
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combustion engines, and propellers. In contrast, stochastic noise

signals arise from ships’ intrinsic characteristics (e.g., speed, depth,

tonnage, and propeller parameters). Ship-radiated underwater noise

signals can be simulated by various methods (Zhengyao and

Yipeng, 2005; Zheng et al., 2020; Zhao et al., 2022). The most

common model is traditional sinusoidal wave model (Liu et al.,

2019; Guo et al., 2023). This model stimulates periodic noise with

superimposed sinusoidal waves and simulates stochastic noise with

filtered Gaussian white noise. However, it has notable limitations.

The line spectrum obtained by sinusoidal superposition often fail to

fully represent the periodic noise characteristics of ship-generated

signals. Moreover, stochastic noise signals derived from filtered

Gaussian white noise do not sufficiently capture the stochastic

variations induced by the marine environment and acoustic

channels. Additionally, spectrum with different power require

different filters, which limits the practicability and flexibility.

Consequently, although the traditional sinusoidal wave model can

approximate ship noise to some extent, it falls short in describing

complex stochastic processes, particularly instantaneous features

and stochastic components.

Considering both the generation process and the stochasticity of

ship-radiated noise, this work uses exponentially decaying cosine

pulses with a quasi-periodic distribution to simulate ship-radiated

noise (Peng et al., 2019; Jun-Ping et al., 2016). The introduction of a

quasi-periodic stochastic sequence distribution enhances the

representation of the instantaneous characteristics and

stochasticity of ship-radiated noise. Moreover, the power

spectrum peak of the exponentially decaying cosine pulses can

vary with the ship’s speed, enabling more flexible modeling of the

dynamic and stochastic changes in the spectral characteristics of

ship-radiated noise. In conclusion, the simulation method proposed

in this work effectively models the noise induced by both the ship’s
Frontiers in Marine Science 05
mechanical motion and the marine environment, which better

capture the variation patterns of ship-radiated noise power

spec t rum. The formula forhan ica l mot ion and the

marine environment.

This study adopts exponentially cosine pulses as the basic units

of the noise signal, which can be expressed as

P =
e−gtcos (w0t), t ≥ 0

−egt , t < 0
    (g > 0),

(
(13)

where g is the pulse decay coefficient, and w0 is the

angular frequency.

Furthermore, the pulse sequence is subjected to a quasi-periodic

stochastic distribution. Generate N × M explosive decaying cosine

pulses, withM pulses superimposed in each column to formN pulse

clusters with a period of T. Within a pulse cluster, the generation

times of different pulses exhibit a stochastic fluctuation following a

Rayleigh distribution. Between different pulse clusters, the standard

deviation sD of the stochastic fluctuation follows a normal

distribution with a mean of 0. The N pulse clusters are arranged

in chronological order to generate a quasi-periodic stochastic pulse

sequence of ship-radiated noise signals, and their power spectrum is

obtained. At this stage, the simulated power spectrum roughly

matches the general shape of the measured ship noise. Finally, by

adjusting the pulse cluster period T, the standard deviation sD of the

pulse cluster period fluctuation, and the unit pulse amplitude xa,
decay coefficient g, and cosine frequency w0, the power spectral

characteristics of the ship-radiated noise can be modulated to

gradually reduce the differences between the simulated and

measured spectra. The specific steps are shown in Figure 4.

We simulated the measured noise of a ship using a quasi-

periodic random distribution of explosive cosine pulses. Figure 5
FIGURE 3

Forward model flow chart.
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presents a comparison between the measured and simulated ship-

radiated noise power spectrum. The blue curve represents the

power spectrum of the measured ship noise (Jun-Ping et al.,

2016), while the red curve corresponds to the simulated ship-

radiated noise power spectrum. It is evident that the simulated

power spectrum aligns well with the measured ship-radiated noise

characteristics, with a similarity coefficient of 0.85188. This

demonstrates that the simulation method employed in this study

is both feasible and effective for modeling ship-radiated noise.
3.2 Transfer function simulation

In this section, the underwater acoustic propagation software

KRAKEN (Porter, 1992) is used to simulate the transfer function

h(w) of the channel.
For low-frequency underwater acoustic channels, the channel

transfer function can be given by the normal mode model

h(r,w) ≈
i

r(zs)
ffiffiffiffiffiffiffiffi
8pr

p e−jp=4o
∞

m=1
Ym(zs)Ym(zr)

ejkm(w)rffiffiffiffiffiffiffiffiffiffiffiffiffi
km(w)

p , (14)

where r is the distance between the source and the receiver, w is

the angular frequency of the sound wave, and r(zs) is the density at
the source depth zs, zr represents the receiver depth, km represents

the horizontal wavenumber, and Ym represents the eigenfunction.
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The main environment and parameters for the simulation are as

follows. A surface ship travels at a constant speed v, with a single

hydrophone placed underwater to receive broadband signals. The

seabed topography is a typical horizontal seabed. The sound speed

in the seabed is set to 1550m/s, the seabed density is 1.76 g/cm3, and

the seabed attenuation is 0.1 dB/l. The sound speed profile is

chosen to be that of the Yellow Sea region. According to the source

model, the unit pulse angular frequency w0 of the sound source is

10  ·  2p , and the attenuation coefficient g = 100. The source depth zs
= 5m; the receiver depth zr = 20m; tCPA = 650s; rCPA = 2000m; and

the speed v = 8m/s. The two-dimensional structure diagram is

shown in the figure. To calculate the spectrum of the received

hydrophone signal and generate a time-frequency diagram in

MATLAB, the signal can be divided into segments of 2 seconds

each, the spectrum of each segment can be calculated, and all the

spectrum data can be concatenated, as shown in Figure 1B. It

contains information about the location of the sound source and

can be used to estimate the CPA. This noise-free sound

transmission image will serve as the learning target and label for

the neural network in the following sections. By varying parameters

such as zs, v, and rCPA, the channel transfer function h(w) under
different conditions can be obtained.

Multiply the ship-radiated noise spectrum by the transfer

function spectrum, and concatenate them to obtain the

LOFARgram as shown in Figure 1C. Use the randn function to
FIGURE 4

Flow diagram of simulated ship-radiated noise.
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generate the corresponding Gaussian white noise, and finally add

the generated noise to the original signal, as shown in Figure 1D.
4 U-Net++ for
LOFARgram preprocessing

4.1 Traditional preprocessing methods

Empirical Mode Decomposition (EMD) (Huang et al., 1998) is a

traditional signal processing method. EMD is an adaptive signal

processing method that decomposes complex signals into a set of

intrinsic mode functions. EMD decomposes signals based on the

intrinsic time-scale features of the data, without the need for pre-

defined basis functions. This allows EMD to be applied theoretically

to decompose any types of signal, providing significant advantages

in analyzing non-stationary and nonlinear data. We use EMD to

preprocess low-quality LOFARgrams, and the results are shown in

Figure 6 “EMD Recovered”.
4.2 U-Net++ network architecture

The U-Net neural network is widely utilized in the field of image

processing (Wang et al., 2019) and has been proven effective for

image preprocessing (Reymann et al., 2019; Zhang et al., 2022).

Previous research has demonstrated that by training U-Net models,

it is possible to successfully recover images that have been affected

by acoustic interference striations (Li et al., 2020). Compared to the

traditional U-Net, U-Net++ introduces significant upgrades and

improvements. U-Net++ employs a nested U-shaped architecture

and dense connectivity design to optimally capture image

information, enhancing feature extraction capabilities (Ajwad and

Rafid, 2023). This facilitates the effective propagation and

integration of features across various levels, enabling the

restoration of cleaner and clearer images. Additionally, U-Net++
Frontiers in Marine Science 07
calculates the loss function at multiple positions, demonstrating

superior efficacy in practical applications.

Figure 7 presents the preprocessing process of LOFARgrams

using U-Net++, trained based on the forward model. The forward

model generates the dataset for training the neural network, with a

4:1 split between the training and testing sets. In this model, the

acoustic field component h(w), represented by the channel

transmission function, simulates ideal, noise-free LOFARgrams,

which serve as labels for the neural network. Distorted

LOFARgrams are used as input, and the neural network recovers

low-quality LOFARgrams based on the learned labels. The output is

high-quality LOFARgrams, which are noise-reduced channel

transmission function images. Similarly, measured ship noise

LOFARgrams can be input into the trained U-Net++ model. This

still improves the LOFARgrams’ quality and restores the channel

transmission function images.
4.3 Dataset for U-Net++

The parameter settings for the simulation dataset in this study

are primarily focused on shallow sea areas. Shallow seas are major

zones of human activity, holding significant ecological, economic,

and social value, and are also key regions for national defense.

When setting the ocean environment parameters for the dataset, it

is essential to consider that hydrographic parameters such as

temperature, salinity, density, and sound speed can change

significantly with the seasons. Additionally, the slope of the

seabed may affect sound wave propagation, and the depth and

speed of the target’s movement in real scenarios must be taken into

account. Therefore, to ensure the accuracy of simulation and

analysis , the ocean environment parameters need to

comprehensively consider hydrographic data, seabed topography,

and target movement parameters.

In this study, hydrographic data are selected from the Argo

dataset (Wong et al., 2020), specifically the sound speed profile data

of the Yellow Sea from January to December. For seabed

topography, both sloping and flat seabeds are considered. The

speed range of surface ships generally varies from 5 m/s to 25 m/

s. For surface ships, sonar and other acoustic equipment are usually

installed at the bottom or lower part of the hull. Conventional sonar

equipment is typically at depths between a fewmeters to several tens

of meters, while the depth for warships using towed sonar arrays

can be deeper, the selected source depth in this study is from 5m to

50m. The depth range of shallow sea areas is generally from 20m to

50m. Detailed parameters are shown in Table 1. According to the

parameters in Table 1, a total of 20,000 LOFARgrams

were simulated.
4.4 U-Net++ preprocessing results

4.4.1 Simulated LOFARgram
preprocessing results

We employ the forward model to generate a dataset for training

the U-Net++ model to recover low-quality LOFARgrams. In
FIGURE 5

Comparison of measured spectrum and simulated spectrum.
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Figure 6, lines A, B, and C represent LOFARgrams simulated by the

forward model using sound velocity profiles from January, March,

and May in the Yellow Sea, with SNR = -20, zs = 20m, zr = 20m, and

ship speeds of 20 m/s, 5 m/s, and 10 m/s, respectively. Line D shows

the LOFARgram generated using the traditional sine model

(Zhengyao and Yipeng, 2005) for ship noise simulation, with the

same parameters as C. The “Distorted” column represents low-

quality LOFARgrams, while the “Label” column represents clear

LOFARgrams without noise interference, which is the target for the

neural network recovery. “EMD Recovered” column shows the

LOFARgram after processing with the EMD method, and “U-Net

++ Recovered” column shows the LOFARgram after processing

with the U-Net++ method. The results indicate that the EMD

method provides some recovery, but U-Net++ demonstrates

significantly better recovery performance, including the ability to

recover LOFARgrams from traditional sine model ship noise,

showing excellent scalability.
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4.4.2 Measured LOFARgram
preprocessing results

To further evaluate the feasibility of U-Net++ trained based on

the forward model in practical applications, we performed a

restoration of the LOFARgrams based on the measured data.

On June 18, 2021, we conducted a boat noise propagation

experiment near Big Gong Island and Little Gong Island in

Qingdao, China. During the movement of the target vessel, the

Automatic Identification System (AIS) recorded the GPS positions

of both the boat and the buoy, as shown in the Figure 9. The blue

dots represent the boat’s trajectory, and the red star indicate the

locations of the buoy. We selected a portion of the data before the

CPA (orange squares) and applied Short-Time Fourier Transform

(STFT) to convert the raw signals recorded by the hydrophones into

LOFARgrams, as shown in the Figure 10 “Measured”. The “EMD

Recovered” and “U-Net++ Recovered” show the results of

preprocessing the measured LOFARgrams using the EMD and U-
FIGURE 6

Simulated LOFARgrams with normalized intensity and the recovery results. (A) tCPA = 610s, rCPA = 2km, v = 20m/s, zr = 20m zs = 20m, SNR =
−20dB, SSP is Yellow Sea’s January data; (B) tCPA = 755s, rCPA = 1.2km, v = 10m/s, zr = 20m zs = 20m, SNR = −20dB, SSP is Yellow Sea’s March data;
(C) tCPA = 870s, rCPA = 1.5km, v = 5m/s, zr = 20m zs = 20m, SNR = −20dB, SSP is Yellow Sea’s June data; (D) The ship noise model uses the
traditional sinusoidal model, with other parameters consistent with (C).
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Net++ methods, respectively. It can be seen that the EMD method

does not provide good restoration, while U-Net++ still shows

promising results, further confirming the reliability of the

forward model.

The results in Figures 6 and 10 suggest that U-Net++ performs

well in restoring LOFARgrams. To quantitatively assess the

restoration performance of both the EMD and U-Net++ methods,

we introduced the CPA parameter estimation algorithm for

further analysis.
5 CPA parameter estimation

U-Net++, as an advanced deep learning model, has

demonstrated its excellent performance in image restoration
Frontiers in Marine Science 09
tasks. However, for the restoration of LOFARgrams, relying solely

on visual inspection to judge the quality of restoration is

insufficient. Therefore, we need more scientific and quantitative

evaluation methods.
5.1 CPA parameter estimation algorithm

This section employs the CPA parameter estimation algorithm

to analyze the restoration performance of the U-Net++ model. The

evaluation algorithm primarily extracts the CPA parameters of the

target trajectory, denoted as ti = tCPA and bi = rCPA=v, through

LOFARgrams, as illustrated in Figure 11.

Firstly, determine the search range for CPA parameters ti and
bi.

f = f0 1 +
t − ti
bi

� �2� �b
2

, (15)

where f0 is the frequency value at the time of CPA, selected

according to the frequency axis in the LOFARgram, b is the

waveguide invariant (b = 1).

Estimate the target CPA parameters using the following form of

cost function

H(ti,  bi) =o
f0

Z
L
 I(f , t)ds

� �2

Z
L
 I(f , t)ds

, (16)
TABLE 1 Simulation parameters.

Parameters Range

Speed of the ship 5 m/s ≤ n ≤ 25 m/s

CPA range 400m ≤ rCPA ≤ 2000m

CPA time 100s ≤ tCPA ≤ 1000s

Source depth 5m ≤ zs ≤ 50m

Receiving Depth 10m ≤ zr ≤ 50m

Water depth 20m ≤ H ≤ 50m

SNR −30dB ≤ SNR ≤ 10dB

SSP As shown in Figure 8
FIGURE 7

U-Net++ trained with the forward model for LOFARgrams preprocessing diagram.
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the curve L in the formula represents a family of curves

as expressed by Equa t ion 7 . The search va lue tha t

maximizes Equation 8 is the estimated value of the target

CPA parameters.

To facilitate the presentation of the processing effect of our

algorithm, we define the approximation ratio
Frontiers in Marine Science 10
R as

R = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − xt)

2   +   (y − yt)
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2   +   y2

p , (17)

where (x, y) represents the CPA coordinates and (xt , yt)

corresponds to the true CPA values.
FIGURE 8

Monthly sound speed profiles in the Yellow Sea for 2015.
FIGURE 9

The GPS trajectories of the target and buoys.
FIGURE 10

Measured LOFARgrams with normalized intensity. (Measured) LOFARgrams before preprocessing enhancement. (EMD Recovered) LOFARgrams
after EMD preprocessing enhancement. (U-Net++ Recovered) LOFARgrams after U-Net++ preprocessing enhancement.
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FIGURE 11

CPA parameter estimation algorithm.
FIGURE 12

Results of applying the CPA parameter estimation algorithm to the LOFARgrams before and after preprocessing in Figure 6.
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5.2 CPA parameter estimation results

Figure 12 presents the predicted results of the CPA parameter

estimation algorithm for the simulated LOFARgram in Figure 6.

Triangles represent the true values of the target CPA points, while

circles indicate the predicted values. It can be observed that the

predictions for the low-quality LOFARgrams in the “distorted”

column exhibit a significant deviation from the true values. The

EMDmethod do not result in a significant improvement in the CPA

prediction accuracy of LOFARgrams. However, the accuracy of

CPA prediction shows a notable improvement after preprocessing

LOFARgrams using U-Net++. Similarly, we also applied the

algorithm to predict the CPA for the measured LOFARgram

corresponding to Figure 10, with the results shown in Figure 13.

The results indicate that U-Net++ preprocessing is equally effective

for measured LOFARgrams. The prediction range is narrowed, and

the predicted values are closer to the true CPA values,

demonstrating the strong generalization and effectiveness of U-

Net++ preprocessing.

To clearly demonstrate the performance of different processing

methods, we quantitatively present the true CPA values (CPAture) of

the A, B, C, D and measured LOFARgrams in Table 2, along with

the predicted results and approximation ratios (R) obtained using
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the CPA estimation algorithm for the label, distorted, EMD-

recovered and U-Net++-processed images . From the

approximation ratio (R), it is evident that the EMD processing

method both improves and disrupts the LOFARgram predictions,

though the effects are not significant. In contrast, the predicted

approximation ratio for the U-Net++-processed images closely

matches that of the label, which sufficiently demonstrates the

feasibility of using a neural network model trained on the

forward model to recover low-quality LOFARgrams.
6 Conclusion

We employs the U-Net++ neural network to preprocess low-

quality LOFARgrams, demonstrating effective recovery results. The

collection of measured data is costly and time-consuming, resulting

in insufficient data for training the neural network. To address this

limitation, we propose an innovative forward model to simulate

LOFARgrams. The forward model consists of three components:

ship noise, a sound field model, and Gaussian white noise. Ship

noise is simulated using quasi-periodic randomly distributed

explosive cosine pulses, while the sound field model is

constructed using the KRAKEN normal mode model, and then
FIGURE 13

Results of applying the CPA parameter estimation algorithm to the measured LOFARgrams before and after preprocessing in Figure 10. (Measured)
Measured LOFARgram prediction results. (EMD Recovered) The predicted results of the measured LOFARgram after EMD processing. (U-Net++
Recovered) The predicted results of the measured gram after U-Net++ processing.
TABLE 2 Prediction results and approximation ratio.

A B C D Measured

CPATure (610.00,100.00) (755.00,120.00) (870.00,300.00) (870.00,300.00) (140.00,24.80)

CPALabel (609.47,91.58) (755.26,109.47) (872.11,294.74) (872.11,294.74)

RLabel 0.9881 0.9880 0.9952 0.9952

CPADistorted (700.00,146.84) (660.53,107.26) (950.00,345.26) (900.00,315.79) (160.00,35.68)

RDistorted 0.8571 0.8911 0.9214 0.9710 0.8618

CPAEMD (700.00,135.79) (660.53,106.53) (950.00,360.00) (889.47,311.58) (160.00,38.21)

REMD 0.8636 0.8909 0.9145 0.9806 0.8539

CPAU-Net++ (609.47,91.58) (755.16,108.00) (870.00,290.53) (872.63,292.63) (138.95,23.47)

RU-Net++ 0.9981 0.9863 0.9919 0.9933 0.9897
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Gaussian white noise is added. By continuously adjusting the

parameters of the forward model, LOFARgrams that closely

resemble actual data can be generated, overcoming the limitation

of insufficient measured LOFARgrams. The U-Net++ neural

network, trained based on a forward model, demonstrates

superior recovery performance for both simulated and measured

LOFARgrams, significantly enhancing the quality and usability

of LOFARgrams.

Additionally, we introduce a CPA parameter estimation

algorithm to quantitatively assess the effectiveness of the U-Net++

network’s recovery performance. The results show that the

predicted CPA values of the U-Net++-processed LOFARgrams

closely match the true CPA values, with a correlation exceeding

0.99, significantly reducing the prediction range and enhancing the

accuracy of target motion parameter estimation.

This research provides a reliable method for simulating and

recovering LOFARgrams, offering promising prospects for marine

monitoring and analysis. Future work will focus on further

optimizing various strategies and exploring their potential

applications in different scenarios.
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