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Source analysis of nitrogen
pollution in basin by export
coefficient modeling and
microbial source tracking with
mutual verification
Qian-hang Sun1†, Jiang-nan Li1†, Chun-he Zhou2, Kun Lei1*

and Wei-jun Jiang2*

1College of Environmental Science and Engineering, Ocean University of China, Qingdao, China,
2Lishui Ecological and Environmental Monitoring Center of Zhejiang Province, Lishui, China
Nitrogen pollution in rivers has long been a significant ecological and

environmental concern, and research on nitrogen pollution source tracking

serves as the foundation for pollution control, playing a crucial role in

quantifying different pollution sources and formulating effective mitigation

strategies. This study proposes a technical framework for pollution source

resolution based on the export coefficient model and microbial source

tracking model. Initially, key environmental factors and their spatiotemporal

characteristics were analyzed to preliminarily identify potential nitrogen

pollution sources, including wastewater treatment plants, stainless steel plants,

electroplating factories, chemical plants, pig farms, poultry farms, rice fields,

vegetable farms, and tea plantations. Subsequently, hydrochemical andmicrobial

metagenomic analyses were conducted to further refine the identification of

nitrogen pollution sources. NMDS analysis revealed significant differences in

microbial community structures among different pollution sources, facilitating

effective discrimination. Additionally, co-occurrence network analysis was

employed to construct microbial fingerprint maps specific to each pollution

source. Finally, a Bayesian community-wide non-culture microbial source

tracking method (SourceTracker) was used for quantitative pollution source

apportionment. The export coefficient model estimated that point-source

nitrogen loads were primarily derived from domestic wastewater, whereas

non-point source nitrogen loads predominantly originated from rural domestic

wastewater and agricultural cultivation. By integrating the microbial source

tracking model, the primary sources of nitrogen pollution were accurately

identified. During the dry season, domestic wastewater (47.3%) was the

dominant contributor, including wastewater treatment plants, rural domestic

sewage, stainless steel plants, and electroplating factories, with fecal and

agricultural sources mainly stemming from pig farms and rice fields. In

contrast, during the wet season, agricultural cultivation (20.5%) and natural soil
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(27.8%) were the predominant contributors, encompassing rice fields, vegetable

farms, and tea plantations. This source-tracking approach provides a valuable

tool for guiding precise regional pollution control and is particularly applicable in

complex pollution environments.
KEYWORDS

nitrogen pollution, export coefficient models, microbial source tracking, nitrogen
source analysis, source tracker model
1 Introduction

Despite ongoing efforts bymanagers to control nitrogen pollution

in aquatic environments and some notable improvements, nitrogen

pollution remains a significant environmental challenge in river

basins worldwide (Basu et al., 2022). While climate change

continues to impact water resource availability, urbanization and

agricultural activities are driving increased water demand and

pollution. As a result, nitrogen pollution in rivers is projected to

remain a serious challenge well into the 2050s (Bodirsky et al., 2014).

Inputs from point sources are relatively easier to control; however,

arable land remains a significant and challenging contributor to

global nitrogen pollution (Gu et al., 2023). In addition, nitrogen

leaching is a complex process that governs nitrogen exchange

between soil and aquatic ecosystems. During periods of intense

runoff, high runoff rates become a major driver of nitrogen

leaching, contributing significantly to surface water pollution (Liu

et al., 2023). In summary, excessive nitrogen input leads to water

quality deterioration, posing serious threats to ecological integrity,

sustainable development, and human health (Liu et al., 2023).

Therefore, more precise and scientific traceability techniques must

be adopted to develop effective pollution control strategies (Downing

et al., 2021).

Traceability tools for pollutants in the aquatic environment

include stable isotopes, fluorescence spectrum, microbial

fingerprinting and other models (Wang et al., 2024; Gu et al.,

2020; Huan et al., 2024; Li et al., 2023). Some researchers have

systematically tracked nitrogen sources in complex river basins

using machine learning methods based on microbial metagenomics

(Zhu et al., 2024). For nitrogen pollution traceability, the most

direct method is nitrogen and oxygen isotope traceability, which is

mainly used for the distribution of nitrogen and oxygen isotope

signature ranges to determine the source of pollution (Sun et al.,

2024). Also, the contribution of each type of source was obtained by

combining IsoSource (Kang et al., 2016), SIAR (Yue et al., 2015),

and MixSIAR (Shu et al., 2024) models. However, the isotopic

signals of different pollution sources often overlap, which poses a

challenge to the accurate determination of pollutant sources in areas

with complex pollution sources (Zhao et al., 2019). In addition, the

fluorescence spectral index combined with the parallel factor
02
analysis model is widely used in the traceability of organic matter

in the aquatic environment, and it has a strong identification of

point source pollution such as industrial and domestic wastewater,

however, its sensitivity to agricultural surface source pollution is

weak (Mladenov et al).

Export coefficient modeling (ECM) is a well-developed and

widely used method for estimating pollution loads from nonpoint

and point sources. The ECM is a well-developed and widely used

method for estimating non-point and point source pollutant loads,

and it can be used to more accurately assess the contribution of

various sources of pollution to TN and TP loads, such as

agricultural cultivation, livestock and poultry farming,

aquaculture, municipal wastewater, industrial effluent, and rural

wastewater, at the watershed scale (Yang and Yang, 2024). It is able

to indicate the distribution and discharge of all potential sources of

nitrogen pollution in the watershed, but it is not possible to

accurately trace nitrogen pollution in the river, which is a

“source-sink” analysis process. In recent years, microbial tracking

technology has become a more efficient and accurate means of

tracking pollution sources, based on the barcoding of 16S ribosomal

DNA metabarcodes from different fecal, wastewater, and

agricultural cultivation types, combined with a Bayesian

population-wide non-culture-dependent microbial source tracking

model (SourceTracker), to differentiate and quantify the

contribution of these sources to watershed water bodies (Carson

et al., 2024; Kelly et al., 2024; Ooi et al., 2024). Using this method to

realize “sink-source” reverse traceability of nitrogen pollution in

watersheds, with the potential for mutual validation with the ECM.

As a result, there is a higher demand for accurate traceability

techniques to help develop pollution prevention and control

measures. Based on two years of environmental statistics, land use

types and microbial community monitoring datasets, a technical

framework for source resolution based on ECM and microbial

traceability modeling was established. This study includes the

following aspects: 1) identification of priority sources of nitrogen

pollution in the watershed based on the ECM model; 2)

identification of microbial characteristics of nitrogen pollution

sources based on the 16S amplicon and differential analysis; and

3) identification of nitrogen pollution sources and seasonal regional

pollution status based on the MST and SourceTracker.
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2 Materials and methods

2.1 Study area

The Oujiang River is located in the south of Zhejiang Province,

China. The basin ranges from 118°45′E - 121°00′E and 27°28′N -

28°48′N in China with drainage area of 18,100 km2, mainly

including the Lishui City and Wenzhou City. The main river has

a length 388 km and an elevation drop of 1.3 km. The average

annual flow at the estuary is approximately 612 m3/s. The main

tributaries of the Oujiang River are distributed in the form of

dendrites. The area is dominated by in industrial and agricultural

land, and urban settlements. In addition, as an important water

source and sewage discharge channel in the area, it plays a pivotal

role in economic development and people’s lives. In recent years,

the continuous development of the economy and the acceleration of

industrialization have brought more and more serious water

pollution to the Oujiang River.
2.2 Sample collection

Water samples were collected from free-flowing reaches (FFRs)

between January 13-20, 2021 and June 10-17, 2021. A total of 26

surface water samples were collected in the whole basin of the

Oujiang River, including 18 from the main stream and 8 from the

main tributaries (Supplementary Figure S1). In addition, water

samples, manure, and soil samples from pollution sources were

collected. A total of 50 enterprise factory samples, including paper

mills (Pr), chemical plants (Cl), stainless steel plant (SS),

electroplating factories (Plating), leather factories (Fc),

Slaughterhouse (Sr), detergent factories (Dt) and breweries (Br).

Additionally, a total of 50 manure samples were collected from

farming production activities, including chicken (C), pig (PigM),

duck (D), and goat farms (G), and additional tail water samples

were collected from piggeries (PigW). Meanwhile, the tail water

generated by human life was collected through the pipe network to

the sewage treatment setup kind, and a total of 30 samples of tail

water from sewage treatment plants (WWTPs) and 6 samples of

rural domestic sewage treatment terminals (RSTT) were collected.

In addition, agricultural cultivation is an important source of

nitrogen pollution, and a total of six rice samples (RP), six JiaoBai

samples (JBW) and six vegetable samples (V) were collected, as well

as 12 natural soil samples (Soil). And 6 tea soil samples were

collected in both farmland(TeaF) and hilly areas (TeaU).

Meanwhile, 6 tailwater samples were collected from aquaculture

plants (Ac).
2.3 Sample Analysis and
hydrogeochemical parameters

The pH, water temperature (T, ˚C), electrical conductivity (EC),

dissolved oxygen (DO), and oxidation-reduction potential (ORP/Eh,

mV) were measured in situ using a multiparameter portable meter
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(HACH40d, USA) supplied by Hach Company (Loveland, CO,

USA). All water samples were collected at 0.5 m below the water

surface using two polyethylene bottles and preserved at 4˚C. They

were then taken back to the laboratory and analyzed within 24 hours.

Concentrations of chloride (Cl−), nitrate (NO3
−), nitrite (NO2

−), and

ammonium (NH4
+) were analyzed using ionchromatography

(Dionex ICS-600). The d15N-NO3
− and d18O-NO3

− values were

obtained using the denitrifier method, by which NO3
− was converted

into nitrous oxide by Pseudomonas aureofaciens, and then detected

using an isotope ratio mass spectrometer (IRMS,Isoprime100,

Cheadle, UK) after concentration and purification by the trace gas

system (Liu et al., 2018).
2.4 The coefficient of pollution source
entering river in study area was determined

The total nitrogen point sources within the study area included

industrial wastewater, urban domestic sewage, and effluent from

large-scale livestock and poultry farms, totaling 593 sites

((Supplementary Figure S2). Point source pollution refers to

pollutants that originate from fixed discharge locations and are

distributed in a point-like fashion. Generally, this includes

industrial wastewater, urban domestic sewage, and emissions from

large-scale livestock and poultry operations.This study calculated the

total nitrogen emissions from point sources using statistical methods

based on data from the 2022 Environmental Statistics, Statistical

Yearbook, and the Fixed Pollution Source Automatic Monitoring

Information Management Platform.Considering the loss due to

evaporation, sedimentation, and other transformation processes

that pollutants undergo after being discharged into water bodies,

the load that ultimately impacts the water bodies differs from the

initial emissions. The method of using river entry correction

coefficients is employed to quantify the amount of pollutants that

actually enter the river (Dumortier et al., 2019).

Using ArcGIS and BIGEMAP for point source latitude and

longitude measurement correction, and based on the distance to the

river combined with the National Water Environment Capacity

Determination Technical Guide, the river entry coefficients for this

study area were determined, as shown in Table 1.

Non-point source pollution originates from dispersed sources,

and its emission pathways are complex, often displaying
TABLE 1 Reference value of point source inflow coefficient of Oujiang
River Basin.

Distance from point source
to river D

The value of the inlet
coefficient L

D ≤ 1 km 1.0

1 km ≤ D ≤ 10 km 0.9

10 km ≤ D ≤ 20 km 0.8

20 km ≤ D ≤ 40 km 0.7

D ≥ 40 km 0.6
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randomness over time and uncertainty in space. Generally, this

includes sources such as rural domestic sewage, dispersed livestock

and poultry farming, agricultural runoff, and urban stormwater

runoff (Fan et al., 2024).

This study employed the modified Jones export coefficient

model to calculate the load of non-point source pollution

(Equation 1) (Johnes, 1996):

L =on
i=1wi � Ei � Ai + jj � Pj � EMCj � S (1)

L is the pollutant emission load in the study area, t/a;i is

the population, livestock population, and soil type in the study

area, i=1,2,3, ···, n; wi is the conversion coefficient, such as domestic

sewage or fertilizer application into the river coefficient/livestock

and poultry farming sheep, cattle, rabbits converted to pigs

conversion ratio, etc., dimensionless; Ei is the ith species of

livestock and poultry/soil type/unit population and other export

coefficients, the unit of the above three are kg/(head or only · a), t/

(km2·a), kg/(person · a), mainly refer to the National Technical

Guidelines on Approval of the Capacity of Water Environments,

Manual on Methods and Coefficients for Accounting for Emissions

from Agricultural Sources, Manual on Production and Emission

Coefficients for Domestic Pollution Sources, Emission Standards for

Pollutants from Livestock and Poultry Farming (DB 33/593-2005),

and related watershed background literature and field research to

match research results information acquisition. Ai is the number of

livestock and poultry of the ith species/area of land class/population
Frontiers in Marine Science 04
in heads or animals, km2, and people, respectively; The second term

of the equation is the rainfall runoff input pollution load calculation,

jj is the jth field precipitation correction coefficient; Pj is the field

rainfall of the jth precipitation event affecting surface runoff, mm;

EMCj is the average concentration of the jth precipitation event,

mg/L; S is the runoff catchment area, km2. The values of each export

coefficient are determined as shown in Table 2.

Event Mean Concentration EMC in the above equation means

the surface runoff pollution from precipitation at a site divided by

the total amount of runoff under that site, calculated by the formula

(Equation 2):

EMC = o
n
j=1cjvj

on
j=1vj

(2)

cj is the pollutant concentration in time period j, mg/L; vj is the

runoff volume in time period j, m3.

Surface runoff from precipitation processes, especially heavy

rainfall, impacts surface pollution systems by transporting

pollutants, such as sediment and litter, into them (Wang et al., 2018).
2.5 DNA extraction, PCR amplification, and
16S rRNA gene amplicon sequencing

The DNA from filter membrane was extracted with the Qiagen

DNeasy PowerWater Kit. DNA concentration and purity were
TABLE 2 Export coefficients of different non-point source pollutants of Oujiang River Basin.

Type of surface
source pollution

Export coefficient type
Unit
(of measure)

Pollutants

COD NH3-N TN TP

Rural life

Production intensity kg/(person·a) 14.6 0.91 1.49 0.13

Combined removal rate % 62 51 44 47

Lntake coefficient dimensionless 0.35

Livestock and poultry breeding

pig

kg/(pcs·a)

6.40 0.04 0.36 0.11

cow 33.42 0.87 6.63 0.98

goats 0.76 0.12 0.37 0.21

poultry kg/(pcs·a) 0.28 0.01 0.012 0.026

Intake coefficient dimensionless 0.2

Land use type

woodland

t/(km2·a)

1.25 0.06 0.62 0.01

paddy field 2.24 0.19 2.09 0.11

arid 2.09 0.22 0.98 0.03

town 1.74 0.14 0.61 0.02

Intake coefficient dimensionless 0.2

Rainfall washout
Precipitation correction
factor (dimensionless)

Pj ≤400 mm 0.8

400 mm< Pj
≤600 mm

1.0

Pj >600 mm 1.2
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monitored on 1% agarose gels. Based on Qubit quantification, DNA

was diluted to 10 ng/µL with sterile water. The V3-V4 region of the

microbial 16S rRNA gene was amplified using the universal primers

341F (5 ′-CCTAYGGGRBGCASCAG-3 ′) and 806R (5 ′-
GGACTACHVGGGTWTCTAAT-3′). An equal volume of 1X

loading buffer containing GelRed® was mixed with PCR

products, and electrophoresis was performed on a 2% agarose gel.

Target bands (~550 bp) were excised and purified using the Qiagen

Gel Extraction Kit (Qiagen, Germany). Purified amplicons were

pooled in equimolar ratios and sequencing libraries were

constructed using the NEBNext® Ultra™ II Q5® Master Mix

(M0544) following the manufacturer’s protocol. The library

quality was assessed using the Qubit® 2.0 Fluorometer and

Agilent Bioanalyzer 2100 system with High Sensitivity DNA chips

confirming a peak size of ~550 bp. Each PCR batch included

negative and positive controls. Finally, libraries were sequenced

on an Illumina NovaSeq platform, generating 250 bp paired-end

reads that were merged using FLASH v1.2.11.
2.6 Sequence analysis

The 16S rRNA gene sequence data were processed by using two

pipe-lines, LotuS (Hildebrand et al., 2014) and QIIME v1.9.1 as

described previously. In brief, the paired-end reads were quality

trimmed, merged, and clustered into operational taxonomic units

(OTUs) with a threshold of ≥ 97% similarity. The reads of each OTU

were classified using the Ribosomal Database Project classifier (80%

confidence) based on the SILVA database v132. Quantitative analysis

was performed using thespecies sequence abundance data from each

sampling site. In order to standardize the uneven sequencing effort,

all samples were randomly subsampled to the smallest library sizes

with 32000 reads for microeukaryotic, respectively.
2.7 Community-based MST and
statistical analysis

In the present study, bacteria from 24 fecal samples, 120

wastewater samples and 35 soil samples were defined as a

potential source library and the bacteria from 36 surface water

samples were defined as sink. The community-based MST analysis

was performed using SourceTracker v. 1.0.1 in RStudio v. 0.99.896

with default parameters. Briefly, SourceTracker was run with the

parameters of rarefaction depth 1000, burn-in 100, restart 10, alpha

0.001 and beta 0.01, which has been demonstrated to be high

sensitivity, specificity and accuracy (Henry et al., 2016; Li et al.,

2018). We calculated a diversity and b diversity using the ‘vegan’

package (v 2.6-4) in R. Non-metric multidimensional scaling

analysis (NMDS), similarity analysis, a diversity index

calculation, and mantel text analysis were performed using the R

platform to determine the significance of differences in microbial

community composition at different periods and the effects of

environmental factors on microbial communities. Within the
Frontiers in Marine Science 05
SPSS 22.0 platform, analyses were performed using the Kruskal-

Wallis test and Spearman correlation.
3 Results and discussion

3.1 Characterization of hydrochemistry in
dry and wet season

Based on the data and coefficient corrections, the results shown

in Figure 1. 7 indicate that in 2022, the point source emissions in the

study area were primarily from urban domestic sources, amounting

to 1.29×10^8 tons and accounting for 85.72% of the total. Industrial

wastewater emissions were the second largest, totaling 1.63×10^7

tons and accounting for 10.79%. Emissions from other sources such

as livestock and poultry farming were minimal.In the emissions of

wastewater pollutants, the highest point source emissions come

from domestic sources, followed by industrial sources. Among

these, COD (Chemical Oxygen Demand) emissions account for

the majority, totaling In the COD emissions, domestic sources

contribute 96.78%, industrial sources 3.16%, and livestock and

poultry farming sources 0.06%. The total NH3-N emissions

across the entire watershed amount to 12,100 tons, with domestic

sources accounting for 98.42%, industrial sources 1.48%, and

livestock and poultry farming sources 0.10%.

The total TN (Total Nitrogen) emissions across the entire

watershed amount to 2,870 tons, with domestic sources

contributing 2,730 tons, accounting for 95.46%, industrial sources

127 tons, accounting for 4.42%, and livestock and poultry farming

sources 3.3 tons, accounting for 0.12%. TP (Total Phosphorus)

emissions are relatively lower, with domestic sources emitting 161

tons, industrial sources 2.7 tons, and livestock and poultry farming

sources 0.04 tons.

According to statistics from the “Zhejiang Province Pollution

Source Automatic Monitoring Information Management

Platform,” the average concentrations and flow emissions data of

COD, NH3-N, TN, and TP from 2016 to 2022 were used to calculate

the pollution load emissions from significant industrial enterprises

in the study area. The results are displayed in Figure 2. Over time,

except for NH3-N, the trend of pollutant emissions has generally

increased and then decreased in recent years, reaching a peak in

2019 and 2020. In contrast, NH3-N emissions have shown an

overall declining trend. TN emissions peaked in 2019 and 2020 at

1834.9 and 1825.6 tons per year, respectively, with the lowest value

recorded in 2016 at 170.3 tons per year. The emissions have also

declined in recent years. Spatially, pollutant emissions are

concentrated in the upper and middle reaches of the watershed,

with tributaries primarily focused on the upper tributary, Songyin

Creek. Notably, TN load emissions at some points along Songyin

Creek exceed those in the main river, with the highest value

recorded at 256.5 tons per year (Figure 1).

To facilitate the identification of spatial distribution

characteristics of pollutants, the natural breaks method was used

to reclassify the non-point source pollution load within the study
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area. The resulting spatial distribution is shown in Figure 3. The

total annual loads of non-point source COD, NH3-N, TN, and TP

are 10,689.857 tons, 535.781 tons, 2,699.555 tons, and 131.197 tons,

respectively. High COD load areas are primarily located in the

upstream tributaries of Songyin Creek and the mid-lower reaches of

the main river, predominantly from rural domestic discharges,

accounting for 54.13% of the load. The distribution characteristics

of NH3-N loads are similar to those of COD, with rural domestic

sources accounting for 55.36% of the NH3-N load. TN emissions

are concentrated in the midstream tributaries, where, as previously

mentioned, various types of agricultural pollutants have significant
Frontiers in Marine Science 06
contributions. These midstream tributaries are covered with various

types of forests, such as forest lands, open woodlands, shrub lands,

and forests with varying degrees of cover. The load entering the

river from these sources accounts for 82.01% of the total, while rural

domestic sources contribute a smaller proportion, at 15.52%. This

indicates that the amount of TN entering the river is heavily

influenced by rainfall runoff, with TN wash-off amounting to

20.723 tons per year. This may be associated with relatively high

background concentrations of TN in the study area, as analyzed in

section 2.2.1, where TN concentrations have been high across

different years. This underscores the necessity of establishing
FIGURE 2

Proportion of point source pollution load emissions of Oujiang River Basin.
FIGURE 1

The spatiotemporal variation characteristics of critical point source pollution load emissions of Oujiang River Basin during 2016-2022.
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regulatory limits for TN loads in the study area. The TP load in the

study area ranges from 0.147 to 6.323 tons per year, with the main

type of pollution source being agricultural activities. The

proportions of the other two types of non-point source pollution

are relatively equal.

Based on the calculation results of the export coefficient model,

potential nitrogen pollution sources were screened out to provide

scientific basis for further MST of nitrogen pollution sources.
3.2 Characterization of hydrochemistry in
pollution sources

The results of total nitrogen, ammonia nitrogen and nitrate

nitrogen concentrations measured in the source wastewater are
Frontiers in Marine Science 07
shown in Figure 4. TN concentrations in theWWTP effluent ranged

from 6.25 to 12.3 mg/L, with an average concentration of 8.98 mg/L;

NO3-N concentrations ranged from 0.14 to 8.45 mg/L, with an

average concentration of 4.62 mg/L; NH3-N concentrations ranged

from 0.04 to 0.334 mg/L, with an average concentration of 0.03 mg/

L. TN concentrations in the RSTT effluent ranged from 10.3 to 20.5

mg/L, with an average concentration of 16.4 mg/L; NO3-N

concentrations ranged from 0.9 to 3.08 mg/L, with an average

concentration of 1.99 mg/L; NH3-N concentrations ranged from

8.92 to 18.78 mg/L, with an average concentration of 13.85 mg/L. In

addition, the average concentration of total nitrogen in the effluents

of enterprises in the sectoral industries is high. For example, the

stainless steel industry has a total nitrogen concentration of 12.4

mg/L, the electroplating industry has a total nitrogen concentration

of 28.4 mg/L, the brewery has a total nitrogen concentration of 11.5

mg/L, the slaughterhouse has a total nitrogen concentration of 30.2

mg/L, and the chemical industry has a total nitrogen concentration

of 55.05 mg/L. However, the total nitrogen concentration of the

tailwater from the washing industry (0.47 mg/L) is low. The total

nitrogen concentration of 7.990 mg/L in the tailwater of the

agricultural crop Zizania field is a significant source that cannot

be ignored. It is worth noting that livestock farming, which is an

important human economic activity, should be given priority

attention as the total nitrogen concentration in the tailwater of

pig farms reached 526 mg/L.
3.3 Microbial characteristics of nitrogen
pollution sources

3.1.1 Diversity and variability of microbial
communities in nitrogen pollution sources

The rarefaction curves tended to approach a saturation plateau,

indicating that the sequencing depths were adequate for subsequent
FIGURE 4

Nitrogen concentration of different forms in pollution sources.
FIGURE 3

Spatial distribution of pollutants inflow loads of Oujiang River Basin.
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analysis. Differences in microbial abundance and diversity were

found in end elements of different nitrogen pollution sources.

According to chao1 and Shannon’s index showed Figure 5 that

the species richness and diversity of agricultural cultivation sources

were significantly higher than that of corporate and fecal sources,

with rice cultivation having the highest richness and diversity index.

Tea cultivation has higher species richness and diversity of

microbial communities in hilly areas than in farmland areas. As a

heavily cultivated crop in the study area, Zizania latifolia, which

requires a large amount of water for irrigation, has a relatively low

microbial abundance compared to other cultivated crops. Notably,

among the corporate sources, the highest species richness and

diversity indices were found in rural domestic wastewater
Frontiers in Marine Science 08
treatment terminals and the lowest in slaughterhouses. Cluster

analysis showed that the differences in microbial community

structure were significant at the OTU level, which could clearly

distinguish different sources of nitrogen pollution and provide an

application basis for microbial fingerprinting traceability (Figure 6).

The two-dimensional distribution and clustering of the samples in

the MNDS space showed that there were significant differences in

the microbial community structure of feces, sewage, agricultural

cultivation, and natural soil. Manure sources, particularly, showed

greater dispersion and were able to clearly differentiate between

chicken, duck, pig, and goats manure. In addition, different types of

agricultural cultivation and natural soils have a significant degree of

separation, able to significantly mountain tea, farmland tea,
FIGURE 5

Pollution source richness index (a) and diversity index (b).
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watercress on wild rice, wild rice soil, rice, vegetables and natural

soils. The high degree of similarity in the microbial communities of

the effluent sources of the enterprises may be due to the fact that the

enterprises in the study area have well-established effluent

treatment terminals and use similar tailwater treatment processes.
3.4 Microbial community structure and
predominant taxa

Overall, 211558 OTUs were obtained from 180 samples by 16S

rRNA gene amplicon sequencing, respectively. As shown in

Figure 1a, Seven typical sources of pollution are included. At the
Frontiers in Marine Science 09
phylum level, all contaminants consisted mainly of Proteobacteria,

Firmicutes, Bacteroidota, Actinobacteriota and Acidobacteriota,

with relative abundances greater than 50% (Figure 7a). At the

genus level, there were significant differences in the composition

of the flora from different sources of contamination (Figure 7b).

Among the source categories of corporate plant pollution, the

dominant genera in stainless steel plants are Rhodobacter

(26.19%) and Brachymonas (17.8%). The advantageous bacterial

genera of the brewery is Aquicella (13.63%).The advantageous

microbial community of slaughterhouses is Leeia (26.20%). The

excellent microbial community of the synthetic leather factory is

unclassified_Anaerolineae (12.57%) and Nitrospira (5.61%). The

advantageous microbial communities of cleaning agents, soap,

and toothpaste factories are uncultured_soil_bacterium (7.49%).

The excellent microbial community of leather substrate factory is

Hydrogenophaga (5.77%). The advantageous microbial community

of the paper mill is unclassified_Saccharimon (16.34%). The

advantageous microbial community of electroplating enterprises

is unclassified_Gemmatimo (2.06%).

The dominant bacterial group in the wastewater of pig farms is

Comamonas (3.62%), and Acinetobacter (20.27%) is present in the

manure. The dominant microbial community in chicken manure is

Acinetobacter (19.73%). The dominant bacterial group in chicken

manure is Acinetobacter (18.30%), in sheep manure is Halomonas

(7.76%), and in duck manure is Brachybacterium (12.70%). The

dominant microbial community in aquaculture effluent is

hgcI_clade (8.45%) and Limnohabitans (11.49%). The

composition characteristics of fecal microbiota differ from the

dominant microbial community of chicken manure samples

collected in the Chaohu Lake Basin in other studies (chicken

manure, Escherichia-Shigella), while pig manure samples are
FIGURE 6

b-diversity of bacterial samples from all pollution sources.
FIGURE 7

Pollution source co-occurrence network (a) Manure; (b) Sewage; (c) Agriculture and (d) Soil.
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similar (pig manure, Acinetobacter) (Qi et al., 2023). Indicating

regional differences in microbial community characteristics.

The dominant microbial community in natural soil is unclassified_

Bacteria (11.38%~13.86%) and unclassified_Vicinamibacter (4.63%

~5.34%). The dominant microbial communities in tea, rice, and

vegetables are unclassified_Bacteria (5.52%~5.96%). The dominant

bacterial community in the tail water of Jiaobai field is hgcI_clade

(10.16%), and the dominant bacterial community in the sediment is

uncultured_soil_bacterium (4.40%). The dominant microbial

communities in sewage treatment plants are mainly Methylophilus,

Lachnospiraceae_NK4A13 Bacteroides, and Bacteroides.
3.5 Construction of microbial fingerprint
atlas for pollution sources

Pollution sources can be categorized into four major groups:

Manure, Sewage, Agricultural Planting, and Soil. Additionally, we

further distinguished specific pollution sources within these four

categories. Using contribution networks, we elucidated the direct

and indirect interactions among coexisting microbial taxa in

environmental samples, documenting the co-occurrence

patterns within complex and diverse communities. Based on this,
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we constructed a microbial fingerprinting map for each

pollution source.

3.5.1 Bacterial co-occurrence network in the four
microbial morphologies

The MENs of Manure, Sewage, Agricultural planting and Soil

were composed of 45 nodes with 100 edges, 36 nodes with 100

edges, 40 nodes with 105 edges, 40 nodes with 100 edges, and

64 nodes with 100 edges, respectively. Figure 8 provides a

comprehensive visualization of the interaction network between

genera, providing a deeper understanding of the complex

relationships between microorganisms and bacteria. Noteworthy

genera such as Acinetobacter, Flavobacterium and Halomonas

emerged as key nodes within the network, exhibiting prominence

in terms of their connectivity. Central nodes including Fluviicola,

Ignatzschineria and Terrisporobacter displayed extensive

interactions with numerous other nodes, underscoring their

pivotal roles and contributions to the microbial ecosystem. In the

sewage network, Lachnospiraceae NK4A136_group and Bacteroides

are key nodes with strong interaction relationships with other

nodes. Bacteroides, Aquicella, Lachnospiraceae_NK4A136_group,

was a key strain in Natural Soil and Agricultural Planting

networks, although there are similarities between the two
FIGURE 8

Microbial community composition of all sampling points in the pollution source, at phylum level (a) and genus level (b).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1527098
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2025.1527098
networks , cer ta in di fferences have st i l l been found.

Candidats_Hepatincola, a slow growing rhizobium, interacts with

more nodes in the natural soil network to form complex

relationships. Compared with agricultural planting, it has more

nodes, and agricultural planting activities reduce the number of

nodes involved in microbial community interactions in natural soil.

Phenylobacterium, Nordella, Roseiarcus interacts with more nodes

in agricultural planting networks. We constructed fingerprint

profiles of microbial taxa based on co-occurrence networks. The

fecal source contained 65 genera, the wastewater source included 36

genera, the agricultural cultivation source comprised 40 genera, and

the soil source contained 64 genera. Different pollution sources

exhibited distinct microbial profiles, providing essential data

support for subsequent source tracking.

3.5.2 Microbial fingerprint profiles of all
pollution sources

We have calculated the co-occurrence networks for all pollution

sources (Supplementary Figures S3-S23) and generated microbial

fingerprint profiles for different pollution sources, revealing distinct

variations among them (Figure 9). The number of bacterial genera

varied across different pollution sources, with wastewater sources

containing relatively fewer genera (36–63) compared to soil sources

(63–75) and fecal sources (70–75). Specifically, wastewater treatment

plant (WWTP) sources harbored 50 genera, primarily including

Akkermansia and Sulfurimonas. Rural sewage treatment terminal

(RSTT) sources contained 60 genera, with dominant taxa such as

Dechloromonas andHaemophilus. Chemical industry (Cl) sources had
Frontiers in Marine Science 11
63 genera, includingNitrospira and Thauera, while stainless steel plant

(SS) sources featured 54 genera, with Brachymonas and Xanthobacter

as the main taxa. Similarly, paper mill (Pr) sources contained 59

genera (Alistipes, Kaistia), electroplating industry (Plating) sources

had 57 genera (Dokdonella,Mesorhizobium), and leather industry (Fc)

sources exhibited 46 genera (Aquicella, Polynucleobacter). The

detergent industry (Dt) sources had 57 genera (Paucibacter,

Blautia), while the brewery (Br) sources harbored only 35 genera,

including Legionella and Enterococcus. The slaughterhouse (Sr)

sources contained 50 genera (Romboutsia, Leeia), aquaculture (Ar)

sources had 66 genera (Limnohabitans, Leifsonia), pig farm

wastewater (PigW) sources had 58 genera (Turicibacter, Bacillus),

and pig manure (PigM) sources exhibited 70 genera (Arcobacter,

Comamonas). Among fecal sources, chicken manure (C) sources

contained 71 genera (Acinetobacter, Shigella), while goat manure

(G) sources had the highest diversity with 75 genera (Halomonas,

Sphingobacterium). Tea plantation soil in hilly areas (TU) sources also

contained 75 genera (RB41, Bryobacter), while tea plantation farmland

(TeaF) sources had 63 genera (Occallatibacter, Puia). In agricultural

sources, rice paddy (RP) sources exhibited 75 genera (Vibrio,MND1),

water bamboo sediment (JBsed) sources had 65 genera

(Dechloromonas, Methylobacter), and water bamboo wastewater

(JBW) sources contained 58 genera (Flavobacterium, Rhodoluna).

The vegetable farmland (V) sources had 74 genera (Pedobacter,

Nitrosospira). These unique microbial fingerprint profiles provide an

effective means of distinguishing different pollution sources, offering a

robust tool for microbial source tracking of nitrogen pollution in

river systems.
FIGURE 9

Genus abundance in microbial fingerprint profiles of pollution sources.
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3.6 Nitrogen sources determined by using
SourceTracker analyses

The machine learning classification program SourceTracker

v1.0.1 was used to identify potential major input sources of

bacterial communities associated with Nitrogen sources present in

surface water. During the dry season, the proportion of nitrogen-

contaminated surface water from Sewage sources is 47.3%

(Figures 10a, b), from Manure sources 16.6%, from Agricultural

sources is 8.5% and from natural Soil sources is 15.3%. However,

there is a marked variation in the wet season, with a significantly

higher proportion of contributions from agricultural (20.5%) and

natural soil sources (27.8%). The percentage of Sewage sources is

22.6%, despite relatively high water use in the summer months.

SourceTracker might underestimate the impact of unidentified

sources, particularly for receivers with additional unknown

sources. Environmental features that were not considered in the

source tracing process, such as the effects of amoebae in sediments

and the hydraulic relationship between streams and sediments, are

designated as “unknown” (Chen et al., 2023). Previous studies

found that SourceTracker could effectively predict manure

sources in lakes when considering native taxa, and a higher level

of false positive predictions occurred when not considering native

taxa (Brown et al., 2019). Moreover, SourceTracker shows good

pollution identification and distribution capabilities for different

types of industrial pollution sources (Peng et al., 2024). Some
Frontiers in Marine Science 12
studies have shown that agricultural areas can also experience

fecal contamination, making it a major source of nitrogen

pollution (Zimmer-Faust et al., 2025). In addition, long-term

fertilizer application will change soil properties, and transport and

leaching during rainfall will contribute agricultural sources that can

be well calculated by the sourcetracker model (Zhang et al., 2024).

Thus, microbial traceability is able to quantify the contribution of

pollution sources well in watersheds with multiple complex

nitrogen pollution sources. The inability of nitrogen and oxygen

isotopes to differentiate between sewage and fecal sources was

solved to improve the efficiency and accuracy of traceability.

Overall, microbial tracing models have better potential for

identifying nitrogen pollution sources, and can identify more

pollution sources compared to nitrogen oxygen isotope tracing

methods. The microbiological tracing results indicate that

industrial wastewater from aquaculture, machinery, chemical,

textile and other industries is the main source of surface water

pollution in the region. These results indicate that the export

coefficient model (ECM) can serve as a screening process before

microbial traceability, eliminating irrelevant sources and improving

traceability efficiency. In addition, Huang et al. (2024) proposed a

novel microbial source tracking tool, SourceID-NMF, which uses

algorithms to identify microbial sources contributing to target

samples. In future research, it can be compared with the

SourceTracker model to optimize a more precise source-

tracking method.
FIGURE 10

Sourcetracker calculates the contribution rate of each pollution source. (a, c) dry season and (b, d) wet season.
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4 Conclusions

The Export Coefficient Model (ECM) provides qualitative

information on potential nitrogen pollution sources; however, it

does not account for the processes by which nitrogen pollutants

enter river systems and is therefore unable to achieve reverse

tracking of nitrogen pollution within water bodies. The microbial

source tracking (MST) model, based on the biological characteristics of

pollution sources, can complement and validate ECM results, thereby

enhancing the accuracy of pollution source identification. In this study,

ECMwas employed to estimate the total nitrogen point sources within

the Oujiang River Basin, including industrial wastewater, urban

domestic sewage, and effluents from large-scale livestock and poultry

farms, identifying a total of 593 potential pollution sources.

Additionally, the total non-point source nitrogen contribution was

estimated at 2699.555 tons per year. Through hydrochemical analysis

combined with co-occurrence network modeling, microbial

fingerprint profiles of 22 nitrogen pollution sources were

constructed. Non-metric multidimensional scaling (NMDS) analysis

demonstrated significant differences in microbial community

structures among different pollution sources. Furthermore, during

both the dry and wet seasons, water samples were collected from 26

sites, spanning from upstream to the estuary, as well as key tributaries

within the basin. The SourceTracker Bayesian model was utilized to

quantify the contribution of specific pollution sources and to compare

pollution source variations across hydrological periods. This

traceability framework provides a more efficient and accurate

method for precisely identifying surface water nitrogen pollution

sources and managing water quality under the influence of multiple

pollution inputs. It can be applied to monitor anthropogenic nitrogen

inputs and assess the effectiveness of management strategies.
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