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Automatic deep learning-based
pipeline for Mediterranean
fish segmentation
Caterina Muntaner-Gonzalez *, Antonio Nadal-Martı́nez ,
Miguel Martin-Abadal and Yolanda Gonzalez-Cid

Department of Mathematics and Computer Science, University of the Balearic Islands, Palma, Spain
Climate change and human activities are altering the Mediterranean marine

biodiversity. Monitoring these alterations over time is crucial for assessing the

health of coastal environments and preserving local species. However, this

monitoring process is resource-intensive, requiring taxonomic experts and

significant amounts of time. To address this, we present an automated pipeline

that detects, classifies and segments 17 species of Mediterranean fish using

YOLOv8, integrated into an underwater stereo vision system capable of real-time

inference and selective data storage. The proposed model demonstrates strong

performance in detecting, classifying, and segmenting 17 Mediterranean fish

species, achieving an mAP50(B) of 0.886 and an mAP50(M) of 0.889.
KEYWORDS

deep learning, instance segmentation, fish classification, Mediterranean fish,
ecosystem monitoring
1 Introduction

Oceans are essential for human society, providing invaluable natural resources,

supporting diverse ecosystems, and maintaining biodiversity. In an era of significant

anthropogenic impact through activities such as fish stocking, shipping, aquaculture,

pollution, and habitat modification, which cause considerable ecological and economic

damage (Effrosynidis et al., 2020), monitoring changes in marine ecosystems is crucial. This

enables biodiversity protection and sustainable management of ocean resources, ensuring

their efficient and responsible use.

Underwater marine imagery is a widely used tool for monitoring these changes in

ecosystems of interest, as it allows for the study of various important parameters such as the

impact of environmental stressors over time, biodiversity assessment, changes in habitat

structure or the distribution of marine species and their behaviour at multiple spatial and

temporal scales (Aguzzi et al., 2015).

Regarding biodiversity assessment on fish species, recognition is essential for

identifying the abundance of species in a specific area, identifying endangered species,

and controlling production management, making it a critical aspect of ecosystem

management (Alaba et al., 2022).
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Traditionally, tasks such as detecting, classifying, segmenting, and

counting fish in underwater imagery have relied mainly on manual

analysis by expert biologists, a process that can often be resource-

intensive and costly. These tasks have been difficult to automate

because traditional computer vision techniques do not perform well

in underwater conditions, where the background is complex and the

shape and texture features of fish are subtle (Siddiqui et al., 2018).

Lower-cost approaches have also been developed, including

underwater photography competitions and citizen science

initiatives (Tiralongo et al., 2021; Roberts et al., 2022).

The integration of technological advances has significantly

enhanced the ability to collect larger and higher-quality datasets for

marine biodiversity monitoring. However, the accumulation of such

vast amounts of data also demands greater processing capabilities,

making the synergy between emerging technologies and traditional

ecological methods increasingly necessary (McClure et al., 2020). In

this context, the integration of new technologies and citizen science

may allow scientists to create and process larger volumes of data than

possible with conventional method and has the potential to maximise

outcomes in ecological monitoring by improving the efficiency of

large-scale data analysis (Garcia-Soto et al., 2021).

In recent years, deep learning has revolutionised the field of

computer vision, achieving remarkable success in visual recognition

and detection tasks. The application of these technologies to aquatic

fauna is still in its early stages due to the unique challenges of the

underwater environment and difficulties with data collection.

However, recent advances have made it possible to automate

these processes with fairly good results.

This work presents a deep learning model able to detect, classify

and segment seventeen species of Mediterranean fish and its

integration in an underwater Stereo Vision System (SVS) that can

monitor areas of interest and automatically select the relevant data,

avoiding unnecessary storage and the need for a human in the loop.

The remainder of this document is structured as follows. Section

2 reviews the related work on fish detection and segmentation and

highlights the main contributions of this work. Section 3 describes the

adopted methodology and materials, including the description of the

dataset, the neural network architecture used and the hyperparameter

study performed. Section 4 presents the experimental results. Section

5 explains the system implementation on an underwater SVS. Finally,

Section 6 summarises the main conclusions and presents possible

future research lines.
2 Related work and contributions

This section provides a summary of the current state of research on

deep learning in the field of aquatic animal recognition and detection, as

well as an overview of the most significant contributions of this work.
2.1 Related work

Monitoring fish populations is essential for environmental

conservation and the development of sustainable fisheries
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(Saleh et al., 2022). There is a growing interest in using non-

invasive monitoring techniques as biodiversity management tools,

as they do not interfere with the ecosystem. Underwater video and

digital still cameras are therefore rapidly being adopted by marine

scientists and managers as tools for non-destructively quantifying

and measuring the relative abundance, cover and size of marine

fauna (Salman et al., 2016).

A clear example of the significant potential of imagery as a

source of biological information for environmental monitoring is

the proliferation of underwater cabled observatories. Notable

examples include the Ocean Network Canada (ONC), the

European Multidisciplinary Seafloor and Water-Column

Observatories (EMSO) and the Expandable Seafloor Observatory

(OBSEA) in Catalonia, Spain. Moreover, the use of fixed or mobile

underwater cameras for detection purposes is widely spreading (Cui

et al., 2020; Lopez-vazquez et al., 2020; Szymak et al., 2020; Coro

and Bjerregaard Walsh, 2021). However, the processing of image

data within ecological applications is still partly manual, and cabled

observatory platforms and their networks currently lack software

tools for automated recognition and classification of biologically

relevant image content (Lopez-vazquez et al., 2020).

Manual processing of this data is very labour-intensive and

time-consuming, which has led to significant efforts to develop

automated methods for fish species detection and classification.

Traditionally, classical vision techniques such as Gabor filters or

Support Vector Machine (SVM) have been used for underwater fish

classification (Hu et al., 2012; Ogunlana et al., 2015; Rathi et al.,

2018; Alsmadi et al., 2019). However, advances in artificial

intelligence and deep learning over the last decade have enabled

the application of these powerful technologies to the field of fish

classification. Given the complexity of the underwater environment,

deep learning-based methods appear to offer superior generalisation

capacity and performance to address the challenges posed by these

scenarios (Li J. et al., 2023).

Hybrid methods have also been used, with Qin et al. (2016)

proposing a custom convolutional neural network (CNN) with an

SVM classifier at the top, which achieved an accuracy of 0.986.

Similarly, Deep and Dash (2019) proposed a hybrid CNN

framework that used CNN for feature extraction and SVM and

K-Nearest Neighbour for classification, achieving an accuracy of

0.988 on the same dataset.

All these approaches can be classified according to the problem

they are trying to solve: classification, object detection or instance

segmentation approaches.

The goal of the first group is to categorise underwater images based

on the specific underwater animal or object depicted. A distinction can

be made between works that encompass all fish species into a generic

fish class (Lopez-vazquez et al., 2020; Szymak et al., 2020) and those

that differentiate between various fish species. In the latter group,

Siddiqui et al. employed CNN and SVM to classify seventeen classes of

Australian reeffish, achieving a 0.89 accuracy on their own dataset and

a 0.967 accuracy on the LifeClef’15 dataset (Siddiqui et al., 2018).

Even though these methods obtained good results, classifying

fish from underwater images is only the first step towards an

automated ecosystem monitoring pipeline. Typically, in marine
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environments, many fish can be found in the same image, therefore,

an object detection approach becomes more tailored to the problem,

as it provides information about which fish species can be found in

an image and where they are located.

Consequently, a second group of studies has focussed on

applying object detection to fish classification. This computer

vision task combines object localisation, which determines the

precise locations of objects in an image, and object classification,

which assigns them to specific categories. This dual objective allows

object detection to provide a richer understanding of visual data

compared to simple image classification (Zhao et al., 2019). In the

context of fish classification it allows to classify multiple fish in a

single image and locate them within the image, typically enclosing

each detected specimen with a bounding box.

Initially, works within this group were based on the usage and

improvement of convolutional neural networks. A clear example is

the work of Dos Santos and Gonçalves (dos Santos and Gonçalves,

2019),, which introduced a CNN based approach to enhance the

recognition accuracy of Pantanal fish with similar characteristics. The

CNN, comprising three branches for classifying species, family, and

order, demonstrated an improvement in accuracy from 0.864 to 0.873

compared to traditional methods. In recent years, the continuous

optimisation of deep learning algorithms has led to the development

of more sophisticated and powerful network architectures.

At present, object detection algorithms are mainly divided into

two types of detectors: one-stage detectors and two-stage detectors,

with R-CNN and Faster R-CNN representing two-stage object

detectors, and different versions of YOLO representing one-stage

object detectors. These networks have become really popular and

have been widely adopted. Jalal et al. (2020) proposed a hybrid

solution by combining YOLOv3 deep neural network with optical

flow and Gaussian mixture models to detect and classify fish in

unconstrained underwater videos. Liu et al. (2020) proposed a

marine biometric recognition algorithm based on YOLOv3-GAN

network and demonstrated its improvement in performance with

respect to YOLOv3. Knausgård et al. (2022) presented a deep

learning-based approach using YOLOv3 for detection and CNN-

SENet for classification was implemented for temperate fish. They

obtained a 0.870mAP50 on the Fish4Knowledge dataset and a 0.837

for the temperate fish dataset, differentiating between four species.

Despite the considerable success of these algorithms, they

continue to face challenges, including those related to occlusions.

Some researchers have attempted to address this challenge by

employing semantic segmentation or instance segmentation

algorithms (Li J. et al., 2023).

Semantic segmentation assigns a label to each pixel in an image

based on the object or region it belongs to, allowing for detailed

analysis. Instance segmentation goes further by distinguishing

individual objects within the same category. In other words, it

assigns each pixel to a specific instance of an object, effectively

combining object detection and semantic segmentation (Hafiz, 2020).

Therefore, the results obtained from instance segmentation are

more informative and can serve as the basis for larger tasks, such as

biomass estimation. Consequently, numerous works have been

published in recent years focussing on the application of instance
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segmentation in the domain of fish classification (Álvarez-Ellacurıá

et al., 2020; Garcia et al., 2020; Abinaya et al., 2022; Muñoz-

Benavent et al., 2022; Ubina et al., 2022). However, none of these

works present a complete solution. Rather, they either work in a

constricted environment or present a solution tailored to a single

class of fish.

The Mediterranean Sea is an example of a scarcity of approaches

in the field of deep learning for fish detection and instance

segmentation (Catalán et al., 2023). Although considerable research

has been conducted on tropical fish, there are few published works or

models for Mediterranean fish classification. Catalán et al. (2023)

investigated the impact of diverse backgrounds, varying labelling

practices, image quantity, and selection methods on classification

outcomes. Additionally, they compared the performance of FASTER-

RCNN and YOLOv5 for Mediterranean fish classification, achieving

the most favourable results with YOLOv5, which reached an mAP50

of 0.84 for an object detection task with a generic fish class.

Additionally, an mAP50 of 0.42 was achieved for a study

distinguishing between sixteen classes, and an F1-score of 0.75 was

achieved when distinguishing between eight classes.

In this context, the primary objective of this study is to generate

a novel instance segmentation dataset for Mediterranean fish and

conduct a hyperparameter study to develop a robust model capable

of accurately detecting, localising and segmenting seventeen species

of Mediterranean fish in real-world scenarios. Furthermore, the

model is adapted and integrated into an underwater SVS, which is

deployed to perform real-world tests.
2.2 Main contributions

The main contributions of this work are composed of:
1. Generating an open instance segmentation dataset from

fish species of the Mediterranean Sea.

2. Obtaining an instance segmentation trained model to detect,

classify and segment seventeen species of Mediterranean Fish,

outperforming the current best publicly available model.

3. Implementing and integrating the system on an underwater

SVS that allows online inference, and testing it in a real-

world environment.
3 Materials and methods

This section explains the dataset formation, including its labelling

and organisation; and presents the neural network model used, its

training procedure, hyperparameter study, and validation metrics.
3.1 Dataset

This subsection explains the formation and management of the

dataset used to train and test the deep neural network.
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For this study, an instance segmentation dataset comprising

thirty-six Mediterranean fish species, containing a total of 4,635

images, has been assembled.

The dataset is composed of images from multiple sources. Firstly,

it contains images from two public datasets, already labelled in

bounding box form, found on the Roboflow platform (Dwyer et al.,

2024): (1) the IMEDEA dataset (Dataset, 2023), that provided images

of Mediterranean fish species from the coasts of Spain, as well as from

the Sub-Eye Observatory (IMEDEA, 2024); and (2) the OBSEA

dataset (2023), that contributes with images from the OBSEA

cabled observatory (Nogueras et al., 2010). Secondly, images from

the MINKA public database (Minka Observations, 2024) are also

incorporated. By gathering images from different cameras, locations

and sources a dataset with a variety of backgrounds, light conditions,

and resolutions is generated.

Although the dataset comprises thirty-six distinct fish species,

only seventeen have sufficient instances to be considered

representative and used in this work.

As previously stated, the objective is to create an instance

segmentation database. To achieve this, the labels have to be

transformed into masks, which is a time-consuming and laborious

task. To simplify and optimise this process, a semi-automated

approach is adopted, utilising the assistance of the segmentation

model, Segment Anything Model (SAM) (Kirillov et al., 2023).

The procedure for each image in the dataset is as follows: for

each observation, a bounding box is obtained and used as an input

for SAM. Subsequently, a manual review of the masks obtained with

SAM is conducted, and they are adapted to the required format of

the instance segmentation dataset.

It should be noted that, given the peculiarities of the underwater

environment and the anatomy of some fish, the manual review is an

important step that cannot be skipped. Some examples of cases

when the predictions of SAM need to be corrected are displayed

in Figure 1.

For each image, a list of the fish objects present in the image is

included, along with a class ID and the polygon describing the fish

mask. Some examples of images of the dataset along with their

corresponding labels are displayed in Figure 2.

The dataset is split into a trainval partition composed of 4,173

images (90% of the data) and a test partition composed of 462

images (10% of the data). The dataset distribution in trainval and

test is detailed in Table 1.
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3.2 Neural network

This section presents the selected neural network for classifying

and segmenting Mediterranean fish.

YOLO is an open-source, state-of-the-art family of deep

learning models widely used for object detection and instance

segmentation tasks. Originally introduced by Redmon et al. in

2016 (Redmon et al., 2016), YOLO revolutionised object detection

as a single-shot object detector, outperforming other networks like

FASTER-RCNN (Ren et al., 2017) in terms of speed, gaining

significant popularity in the field. Over time, numerous

improvements to the original network have been proposed,

resulting in the development of new YOLO versions such as

YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8,

YOLOv9 and YOLOv10 (Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020; Jocher, 2020; Wang et al., 2022; Jocher

et al., 2023; Li C. et al., 2023).

The v8 version, YOLOv8, has been selected. YOLOv8

incorporates several architectural improvements over previous

YOLO versions, including an anchor-free design and mosaic

augmentation, which enhance its generalisation capabilities.

Additionally, it offers a range of different-sized versions,

providing scalability and adaptability to meet the requirements of

specific tasks. Among these size options, the large version

(YOLOv8l) has been chosen for its balance between high

performance and manageable computational demands.

In addition to size scalability, YOLOv8 exhibits task

modularity, allowing for variants tailored to specific tasks such

as classification, object detection, and instance segmentation. For

this work, which focuses on fish segmentation, the segmentation

variant YOLOv8l-seg has been selected due to its state-of-the-art

performance, speed, and efficiency. The selected model generates

masks and confidence percentages for the detected objects as

depicted in Figure 3.
3.3 Training procedure

A hyperparameter study is conducted to optimise network

performance. This involves determining a set of parameters and

tuning them. However, not all possible combinations are

considered, as the study would require an unassimilable
FIGURE 1

Examples of masks inferred by SAM when a bounding box is passed to the model. These selected examples showcase some cases when the model
fails to generate correct masks and posterior manual correction is required.
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amount of time and resources. Consequently, an ablation study

is performed. With this approach, when a hyperparameter is

being tuned, all other hyperparameters are held constant.

The performance of the network for the different values of

the current hyperparameter is then compared, and the
Frontiers in Marine Science 05
best one is selected and fixed before moving on to the next

hyperparameter. This method allows for systematic and efficient

identification of the optimal hyperparameter settings within the

available resources.

The considered hyperparameters are:
TABLE 1 Number of instances per species of the dataset categorised into the trainval and test sets, including total counts.

Species Number of trainval Instances Number of test Instances Total number of Instances

Diplodus vulgaris 2415 241 2656

Diplodus sargus 2077 376 2453

Spondyliosoma cantharus 1887 202 2089

Seriola dumerili 1012 180 1192

Chromis chromis 1378 162 1540

Oblada melanura 903 123 1026

Coris julis 766 85 851

Mugilidae 523 78 601

Lithognathus mormyrus 507 23 530

Diplodus annularis 502 45 547

Sciaena umbra 238 26 264

Spicara maena 216 46 262

Serranus scriba 284 35 319

Dentex dentex 199 26 225

Serranus cabrilla 178 17 195

Pomatomus saltatrix 142 24 166

Epinephelus marginatus 98 11 109

Total 13325 1700 15025
FIGURE 2

Examples of images from the dataset and their corresponding labels. The selected examples showcase the diversity of locations and backgrounds
present in the dataset.
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• Input image size: defines the resolution of images fed into

the network. Adjusting the input image size can influence

the performance and inference speed. Higher-resolution

images can capture more detail but also require more

computation. This parameter is considered for tuning as

most of the images are larger than the default size and

contain small fish. A significant downscaling can convert

these small background fish into noise.

• Data augmentation: consists of applying transformations to

the input data (e.g., rotations, translations, or crops) to increase

the variety of the data and reduce overfitting. This helps the

model generalise unseen data better. While data augmentation

is a widely used technique with well-documented benefits, the

question of which specific types are most effective remains

unresolved. Three options for data augmentation are studied:

no data augmentation, the default data augmentation settings,

and a custom selection of augmentations, which will

henceforth be referred to as custom data augmentation. The

main difference between the default and the custom

augmentation is the incorporation of copy-paste

augmentation and a reduction in the mosaic probability. The

rationale for these modifications is that mosaic augmentation

can crop or resize a fish, potentially reducing its size, whereas

preserving the entire fish and its original size in some images is

a desired outcome. By preserving the entire fish and its original

size in certain images, and incorporating copy-paste

augmentation to address occlusions and enhance

background generalisation, the custom approach aims to

improve model performance.

• Learning rate: controls the pace at which the network

learns by modifying its training step. It influences the

convergence speed and stability of the training process. A

learning rate that is too high can cause the training to

diverge, while a learning rate that is too low can result in

slow convergence.

• Class loss weight: specifies the importance of the class

prediction loss in the total loss function. Adjusting the class

loss weight balances the contribution of classification errors

relative to other types of errors, such as localisation and

confidence errors. Proper tuning of this weight can improve

the ability of the model to accurately classify objects. Some

preliminary work suggests that increasing the class loss
tiers in Marine Science 06
weight can increase the performance of the model in cases

where classification is important (DS & AI Solutions, 2023),

as is the case of this work.

• Optimiser: adjusts the parameters of the model to minimise

the loss function during training. Common optimisers

include Stochastic Gradient Descent (SGD), Adam, and

AdamW. Each optimiser has its mechanism for updating

weights and can significantly impact the training efficiency

and model performance. For each optimiser, the

recommended learning rate for YOLOv8-seg is used.
The summary of the tested values for each hyperparameter is

shown in Table 2. Each training procedure is conducted with a

batch size of seven and the weights are initialised to the pre-trained

weights used for the COCO dataset (Lin et al., 2014). The training

procedures are carried out in a computer with the following

specifications — processor: Intel i9-129000k, RAM: 64 GB, GPU:

NVIDIA GeForce RTX 4090.
3.4 Validation and evaluation metrics

To validate and assess the robustness of the network

hyperparameter selection process, a 5-fold cross-validation is

conducted. This 5-fold cross-validation involves dividing the

trainval partition of the dataset into five distinct folds.

Subsequently, five distinct training procedures are conducted for

each hyperparameter combination, with a different fold serving as

the validation data and the remaining four folds serving as the

training data for each one. Finally, the hyperparameter combination
TABLE 2 Tested hyperparameter values.

Hyperparameter Tested values

Image size 640 1280

Data augmentation None Default custom

Optimiser Adam AdamW SGD

Learning rate 0.01 0.005 0.001 0.0005 0.0001

Class loss weight 0.2 0.5 0.75 2 8
fronti
Default values are marked in bold.
FIGURE 3

Description of the application of the network to the fish instance segmentation problem.
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that achieves the best average results is selected, and the best

combination of parameters is evaluated over the test partition to

test the robustness of the model. Figure 4 illustrates this process.

Typically, deep learning models are evaluated using Precision

and Recall metrics, which are calculated based on the number of

True Positives (TP), False Positives (FP), and False Negatives (FN),

as described in Equations 1 and 2.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
: (2)

To determine whether a prediction is a True Positive (TP) or a

False Positive (FP), a localisation metric known as Intersection Over

Union (IoU) is employed. When the IoU between a prediction and

the ground truth label exceeds a specified threshold (typically 0.5),

the prediction is classified as a TP; otherwise, it is classified as an FP.

The IoU is calculated using Equation 3:

IoU =
Area of Overlap
Area of Union

, (3)

where the Area of Overlap is the intersection area between the

predicted and ground truth boxes or masks, and the Area of Union

is the total area covered by the predicted and ground truth boxes

or masks.

However, neither Precision nor Recall alone provide a complete

picture of model performance. To offer a more comprehensive

metric for evaluation, mAP at 50% IoU (mAP50) is used. In the

context of YOLOv8-seg, the mAP50 metric is calculated for both

bounding boxes (mAP50(B)) and masks (mAP50(M)) to evaluate

detection and segmentation accuracy, respectively. This is described

by Equations 4 and 5, where AP represents the average precision,

which is calculated as the area under the precision-recall curve and

N is the number of classes.

mAP50(B) =
1
No

N

i=1
APbox,i (4)

mAP50(M) =
1
No

N

i=1
APmask,i (5)

The hyperparameter combination that obtains the best results

with the 5-fold cross-validation process is selected and set for all the

variants of the model presented in this work.
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To avoid the loss of valuable information and the inability to

classify fish that do not belong to the seventeen studied classes, an

experiment is carried out to assess the impact of introducing a

generic fish class. As stated in Section 3.1, the dataset contains

several labelled fish with insufficient instances to form new classes.

These instances have been excluded from the training of the 17-

class model and treated as background; however, for this

experiment, they are mapped into a generic fish class. The

objective of this experiment is to ascertain whether including a

generic fish class, in addition to the 17 species, can facilitate a more

comprehensive understanding and improve the ability of the system

to classify fish not belonging to the seventeen known classes.

Additionally, another experiment is conducted by training a

single-class fish segmentation model mapping all species in the

dataset into a single generic fish class. This approach enhances the

ability of the model to generalise across various habitats and species,

providing broader and more adaptable information. This model is

evaluated for its generalisation capability using the DeepFish

segmentation dataset (Saleh et al., 2020), which includes 310

images of tropical fish from Australia.
4 Results and discussion

This section presents the performance results obtained

from the hyperparameter study, examining the influence of

each hyperparameter on the results. Additionally, it details

the performance of a model trained with the optimised

hyperparameters when evaluated against the test set.

Following the selection of the YOLOv8l-seg architecture, a

hyperparameter study is conducted to efficiently identify optimal

hyperparameter settings given resource constraints using an

ablation study, as detailed in Section 3.3. Table 3 presents the

results of this hyperparameter study, obtained using 5-fold

cross-validation.

First, two different options for image size are studied. It can

be observed that increasing the input image size has a significant

impact on the model performance. This is not unexpected and

can be explained by the dataset containing numerous images with

small labelled fish in the background. If the reduction of the

images is too significant, as is observed when the input size is set

to the default value of 640, these instances are difficult to detect.

This introduces noise into the model, which may affect

its performance.
FIGURE 4

5-fold cross-validation process.
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Secondly, the impact of data augmentation techniques is

evaluated. As anticipated, data augmentation significantly

enhances the generalisation capacity of the model. Moreover, it

can be observed that the custom augmentation improves the

performance of the model by 1% compared to the default data

augmentation settings of YOLOv8l-seg.

Following, the SGD, Adam and AdamW optimisers are evaluated.

For each optimiser, the recommended learning rate by YOLOv8 is

selected. The best result is obtained using the SGD optimiser.

For the learning rate study, it is determined that for the SGD

optimiser, the default learning rate value of 0.01 yielded the best results.

Finally, the class loss weight is modified. While the

improvement is minor, results show that setting the class loss

value to 8 reached the best results.

The combination of hyperparameters that obtained the best

results in the hyperparameter study (image_size = 1280, lr = 0.01,

custom data augmentations, SGD optimiser, cls_loss = 8) yielded an

mAP50(B) of 0.886 and an mAP50(M) of 0.887. This configuration

was then evaluated on the test partition, obtaining an mAP50(B) of

0.886 and an mAP50(M) of 0.890, demonstrating its good

performance on unseen data.

As far as we are aware, the resulting models achieve superior

performance compared to the only publicly available model for
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Mediterranean fish species classification by Catalan et al (Catalán

et al., 2023), which reported an mAP(B) of 0.42 for sixteen classes

and an F1-score of 0.75 for eight classes. The trained model

presented in this work achieved an F1-score of 0.853 for

seventeen species. Despite the differences in the datasets and

classes, it is believed that this new model demonstrates enhanced

performance by offering a greater number of classes and providing

more informative outputs, as YOLOv8l-seg produces instance

masks. To the best of our knowledge, this model is the most

effective publicly available model for Mediterranean fish species

classification and segmentation.

The confusion matrix in Figure 5 illustrates that the model

effectively distinguishes between fish species. The most confusions

occur between fish with similar characteristics, particularly within

the Diplodus genus. The primary weakness of the model is its

occasional failure to detect some fish instances, which may be due to

the challenge of identifying small fish against complex backgrounds.

To address the issue of missed detections, a new training

process that introduces a generic fish class is considered. This

class includes individuals from species lacking sufficient

instances to be considered distinctive classes in previous

experiments. This approach provides insights for future

training procedures, specifically regarding whether to include
TABLE 3 YOLOv8l-seg network hyperparameter study.

imgsz data
augmentation

optimiser lr cls_loss mAP50(B) mAP50(M)

640 default auto default default 0.8512 0.844

1280 default auto default default 0.869 0.870

1280 no auto default default 0.744 0.746

1280 default auto default default 0.869 0.870

1280 own auto default default 0.880 0.879

1280 own SGD default default 0.883 0.884

1280 own Adam default default 0.8783 0.880

1280 own AdamW default default 0.8774 0.879

1280 own SGD 0.0100 default 0.883 0.884

1280 own SGD 0.0050 default 0.880 0.882

1280 own SGD 0.0010 default 0.875 0.877

1280 own SGD 0.0005 default 0.876 0.876

1280 own SGD 0.0001 default 0.864 0.864

1280 own SGD 0.01 0.20 0.875 0.876

1280 own SGD 0.01 0.50 0.880 0.879

1280 own SGD 0.01 0.75 0.883 0.884

1280 own SGD 0.01 2.00 0.885 0.886

1280 own SGD 0.01 8.00 0.886 0.887
An ablation procedure has been followed. Each collection of parameter values has been studied by performing a 5-fold cross-validation. Each value represents the average performance of the
models obtained for each of the 5-folds.
Bold values highlight the hyperparameter settings that achieved the best results at each step of the ablation study.
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species with a small number of instances as a generic fish class or

to exclude them from labelling, allowing the model to consider

them as background.

Table 4 illustrates that this approach enables the model to offer

additional information without sacrificing overall performance.

Although the generic fish class shows relatively low performance,

it does not affect the accuracy of the existing class detections and

even enhances the results for some of them. As displayed in

Figure 6, errors stem from missed or confused detections rather

than FPs. The primary confusion occurs with the Diplodus sargus

class, likely because many specimens in the generic class are tagged

as Diplodus sp., indicating an unclear genus. Consequently, some

misclassifications may actually be correct.

Furthermore, a single-class classification network is also trained

by remapping every species of the dataset into a generic fish class to

obtain a more general model. The best hyperparameter

combination is used to train this single-class model which

achieved an mAP50(B) of 0.915 and an mAP50(M) of 0.920.

Table 5 shows a comparison between the results obtained for a

generic fish species with our dataset and the Deepfish dataset. Even

though the fish in the latter dataset are tropical Australian fish,
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which may differ in morphology and features from those in the

Mediterranean, the model sustains its high performance. This

demonstrates its robustness and ability to function effectively

across different habitats and environments.
5 Real time implementation on a
Stereo Vision System

Once the best hyperparameters are selected, they are used to

train a model, which is then integrated into an SVS, as illustrated in

Figure 7. The SVS is equipped with two USB3 Chameleon3 cameras;

an Intel Nuc Pro12 running on Ubuntu 20.04 and Robot Operating

System (ROS); two LED lights, which are controlled by an Arduino

Nano; and powered directly by a high-capacity 14,8V 70 Ah Li-Ion

battery. Detailed descriptions of the system can be found in the

work of Alfaro-Dufour et al. (2024).

The SVS is subject to power consumption constraints,

necessitating the utilisation of a lightweight network. Thus,

reducing the model size is essential for enabling efficient

online processing.
FIGURE 5

Confusion matrix obtained when evaluating the model trained with the best hyperparameters on the test partition.
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Real-time operation is crucial, making inference time a key

factor. YOLOv8-seg offers a range of models with different sizes,

providing the necessary scalability and adaptability for specific

application requirements. Inference time for every YOLOv8-seg

model was measured on the SVS computer and are detailed in

Table 6. The YOLOv8-seg nano (YOLOv8n-seg) model was the

fastest, with a processing time of 1.348 seconds per image, allowing

for a frame rate of 0.74 frames per second. As a result, the

YOLOv8n-seg model is chosen for integration into the

underwater SVS.

A periodic process has been implemented to reduce power

consumption. This process activates the camera and the acquisition

and processing pipeline based on a predefined cycle that includes

both acquisition and idle periods. When initiated, the process starts

an image capture sequence. Each image captured is then inferred by

the trained model. If a fish is detected with a confidence level above

a predefined threshold, the image is stored. In addition, detection

data is logged, including the time stamp, number of detections, their

respective classes and confidence levels. This approach eliminates

the need to store large amounts of video and allows continuous,

autonomous monitoring of fish presence throughout the

deployment. Figure 8 summarises this process.
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Given that the SVS is designed to be integrated into a larger

monitoring system which may include other marine robots, the

network has been integrated into the Robot Operating System (ROS)

(Quigley et al., 2009). This framework is a standard in robotics due to

its versatility and comprehensive collection of tools and libraries that

facilitate the implementation of new code and functionalities. Firstly,

the images captured by the camera are retrieved, rectified, fed into the

processing unit, and processed by the neural network, which generates

predictions offish instances present in the images. The identified fishes

and their masks are published back into ROS for access by other robots,

sensors, or actuators.
5.1 Field tests

Field tests have been conducted to test the overall system in real-

world conditions. The SVS has been deployed in different locations

on the coast of Spain. Figure 9 shows the deployed SVS during field

tests. The SVS operated in automatic mode, capturing images at 2-

minute intervals, within 10-minute periods. The online inference

node identified fish species and published the results as ROS topics.

Figure 10 shows an example of the output resulting from the online
TABLE 4 Comparison of the mean results per class when including a fish generic class and when excluding it.

Class

Model trained without the
fish generic species

Model trained with the fish
generic species

Difference

mAP50(B) mAP50(M) mAP50(B) mAP50(M) diff mAP50(B) diff mAP50(M)

Chromis chromis 0.808 0.810 0.811 0.811 -0.003 -0.001

Coris julis 0.891 0.890 0.889 0.886 0.002 0.004

Dentex dentex 0.847 0.847 0.845 0.854 0.002 -0.007

Diplodus annularis 0.745 0.748 0.773 0.774 -0.028 -0.026

Diplodus sargus 0.820 0.820 0.820 0.820 -0.000 -0.000

Diplodus vulgaris 0.881 0.899 0.881 0.900 -0.000 -0.001

Epinephelus marginatus 0.972 0.972 0.960 0.961 0.012 0.011

Lithognathus mormyrus 0.958 0.958 0.964 0.964 -0.006 -0.006

Mugilidae prob Chelon 0.874 0.891 0.871 0.895 0.003 -0.004

Oblada melanura 0.868 0.872 0.862 0.864 0.006 0.008

Pomatomus saltatrix 0.862 0.862 0.860 0.860 0.002 0.002

Sciaena umbra 0.916 0.916 0.936 0.940 -0.020 -0.024

Seriola dumerili 0.893 0.900 0.897 0.905 -0.004 -0.005

Serranus cabrilla 0.955 0.955 0.949 0.949 0.006 0.006

Serranus scriba 0.945 0.964 0.949 0.970 -0.004 -0.006

Spicara maena 0.860 0.860 0.878 0.878 -0.018 -0.018

Spondyliosoma cantharus 0.957 0.953 0.961 0.957 -0.004 -0.004

Fish – – 0.347 0.343 – –

Mean of all classes excluding fish 0.886 0.889 0.888 0.893 -0.003 -0.004
Both models were trained with optimal hyperparameters and were evaluated over the test partition. Each value represents the average performance of the models obtained for each of the 5-folds.
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inference performed during the field tests. Additionally, illustrating

the results of online inference conducted both during day and night

are available in the Supplementary Material.

To evaluate the performance of the model when working with

images obtained by the SVS and assess its generalisation capability,

some of the images recorded during field tests have been manually

labelled to serve as an independent test set. During real-world

experiments, only four fish species from the studied species were

found in the recordings. The independent test comprises a total of

98 images including these four fish species. Table 7 describes the

detailed number of instances per class.

Table 8 presents the per-class metrics for the detected species.

Although a decrease in performance is observable, this is likely

attributable to the field test images comprising numerous tiny
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fishes, frequently obscured by the background, and featuring

classes with highly similar morphology and characteristics.

Additionally, it is important to acknowledge that, as previously

stated, the nano model is being employed due to due to constraints

imposed by online inference times. This model offers inferior

performance compared to the large model.
TABLE 5 Performance comparison of generic fish segmentation large
model evaluated on our dataset versus the DeepFish dataset.

Model size Dataset mAP50(B) mAP50(M)

Large Our Dataset 0.915 0.920

Deep Fish 0.917 0.919
FIGURE 7

The underwater Stereo Vision System.
FIGURE 6

Confusion matrix obtained when evaluating the model trained with the best hyperparameters on the test partition including the fish generic class.
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6 Conclusions and future work

This paper presents a new instance segmentation dataset for

Mediterranean fish and a deep learning model to automate the

process of detecting, classifying, and segmenting seventeen

Mediterranean fish species. As far as we are aware, the newly trained

model achieved superior performance concerning the best publicly
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available model, as evidenced by anmAP50(B) andmAP50(M) of 0.886

and 0.889, respectively. The trained model and the data used in this

study are available in this Zenodo repository (Muntaner et al., 2024).

A hyperparameter study for YOLOv8l-seg is presented, and

questions such as whether the inclusion of a generic fish class

benefits the system have been investigated. Although the generic

fish class exhibited relatively lower performance, it did not

introduce noise into the model and enhanced the performance

for some of the classes. The primary errors observed were associated

with missed or confused detections rather than FPs, indicating the

robustness of the classification system.

Furthermore, the training and integration of a lightweight

version of the network into an SVS have enabled real-time

processing, achieving inference times suitable for online

applications. This advancement facilitates autonomous and

continuous monitoring of fish presence, highlighting the utility of

the model in real-world underwater environments.

While the model demonstrates strong performance, its real-

world deployment also highlights certain limitations. Challenges

such as variations in species appearance due to changing lighting

and water conditions, as well as the detection of small or distant

specimens, require further investigation. Future work will focus on

increasing its robustness, reliability, and adaptability to diverse

underwater conditions. Nonetheless, the results demonstrate that,

despite these challenges, the system performs well in real-world

environments and can serve as a powerful tool for reducing the cost

of data acquisition and processing for researchers.

Additionally, semi-supervised learning techniques will be

utilised to augment the number of classes without the need for

extensive manual labelling. Expanding the taxonomy will facilitate a

more comprehensive understanding of the underwater ecosystem,

contributing to more detailed and accurate monitoring efforts.
FIGURE 9

The underwater Stereo Vision System operating during
a deployment.
TABLE 6 Mean inference time on the Stereo Vision System for each
YOLOv8-seg size.

Model size Mean inference time [s]

Nano 1.348

Small 1.673

Medium 2.333

Large 3.356

Extra-large 4.622
FIGURE 8

Recording and processing pipeline integrated into the Stereo
Vision System.
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Moreover, efforts will be made to reduce the computational load

of the system. The objective is to achieve a reduction in power

consumption and inference times by optimising the architecture of

the network. This will enhance the efficiency of the system, making

it more suitable for prolonged autonomous deployment in energy-

constrained environments.

Finally, it is planned to conduct more diverse and extended

field tests to gather comprehensive data that can be used to

evaluate and refine the performance of the model in real-

world scenarios.
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dos Santos, A. A., and Gonçalves, W. N. (2019). Improving pantanal fish species
recognition through taxonomic ranks in convolutional neural networks. Ecol. Inf. 53,
100977. doi: 10.1016/j.ecoinf.2019.100977

DS & AI Solutions (2023). Losses and their weights in yolov8 (Accessed August 6,
2024).

Dwyer, B., Nelson, J., Hansen, T., et al. (2024). Roboflow (version 1.0). Available
online at: https://roboflow.com.computervision (Accessed March 14, 2025).

Effrosynidis, D., Tsikliras, A., Arampatzis, A., and Sylaios, G. (2020). Species
distribution modelling via feature engineering and machine learning for pelagic
fishes in the mediterranean sea. Appl. Sci. 10, 8900. doi: 10.3390/app10248900

Garcia, R., Prados, R., Quintana, J., Tempelaar, A., Gracias, N., Rosen, S., et al. (2020).
Automatic segmentation of fish using deep learning with application to fish size
measurement. ICES J. Mar. Sci. 77, 1354–1366. doi: 10.1093/icesjms/fsz186
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2025.1525524/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2025.1525524/full#supplementary-material
https://doi.org/10.1016/j.compag.2022.106985
https://doi.org/10.1007/s11160-015-9387-9
https://doi.org/10.1007/s11160-015-9387-9
https://doi.org/10.3390/s22218268
https://doi.org/10.1109/ICIT58233.2024.10540725
https://doi.org/10.11591/ijece.v9i6.pp5192-5204
https://doi.org/10.1093/icesjms/fsz216
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.3389/fmars.2023.1151758
https://doi.org/10.1016/j.ecoinf.2021.101311
https://doi.org/10.1016/j.ecoinf.2021.101311
https://doi.org/10.1155/2020/3738108
https://universe.roboflow.com/fish-od-w8vfm/merged-filtered
https://universe.roboflow.com/fish-od-w8vfm/merged-filtered
https://universe.roboflow.com/fish-od-w8vfm/imedea
https://universe.roboflow.com/fish-od-w8vfm/imedea
https://doi.org/10.1109/SPIN.2019.8711657
https://doi.org/10.1109/SPIN.2019.8711657
https://doi.org/10.1016/j.ecoinf.2019.100977
https://roboflow.com.computervision
https://doi.org/10.3390/app10248900
https://doi.org/10.1093/icesjms/fsz186
https://doi.org/10.3389/fmars.2025.1525524
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Muntaner-Gonzalez et al. 10.3389/fmars.2025.1525524
Garcia-Soto, C., Seys, J. J., Zielinski, O., Busch, J. A., Luna, S., Baez, J. C., et al. (2021).
Marine citizen science: Current state in europe and new technological developments.
Front. Mar. Sci. 8, 621472. doi: 10.3389/fmars.2021.621472

Hafiz, A. M. (2020). Bhat GM. A survey on instance segmentation: state of the art.
Int. J. Multimedia Inf. Retrieval 9, 171–189. doi: 10.1007/s13735-020-00195-x

Hu, J., Li, D., Duan, Q., Han, Y., Chen, G., and Si, X. (2012). Fish species classification
by color, texture and multi-class support vector machine using computer vision.
Comput. Electron. Agric. 88, 133–140. doi: 10.1016/j.compag.2012.07.008

IMEDEA (2024). Sub-eye: Underwater observatory – port d’andratx underwater
cabled coastal observatory (Accessed August 6, 2024).

Jalal, A., Salman, A., Mian, A., Shortis, M., and Shafait, F. (2020). Fish detection and
species classification in underwater environments using deep learning with temporal
information. Ecol. Inf. 57, 101088. doi: 10.1016/j.ecoinf.2020.101088

Jocher, G. (2020). Ultralytics yolov5. doi: 10.5281/zenodo.3908559

Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics yolov8.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023).
Segment anything. In Proceedings of the IEEE/CVF international conference on
computer vision. pp. 4015–4026. doi: 10.48550/arXiv.2304.02643

Knausgård, K. M., Wiklund, A., Sørdalen, T. K., Halvorsen, K. T., Kleiven, A. R., Jiao,
L., et al. (2022). Temperate fish detection and classification: a deep learning based
approach. Appl. Intell. 52, 6988–7001. doi: 10.1007/s10489-020-02154-9

Li, C., Li, L., Geng, Y., Jiang, H., Cheng, M., Zhang, B., et al. (2023). Yolov6 v3.0: A
full-scale reloading. doi: 10.48550/arXiv.2301.05586

Li, J., Xu, W., Deng, L., Xiao, Y., Han, Z., and Zheng, H. (2023). Deep learning for
visual recognition and detection of aquatic animals: A review. Rev. Aquacult. 15, 409–
433. doi: 10.1111/raq.12726

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13
(Zurich, Switzerland: Springer), 740–755. doi: 10.1007/978-3-319-10602-1_48

Liu, P., Yang, H., and Fu, J. (2020). “Marine biometric recognition algorithm based
on yolov3-gan network,” in MultiMedia Modeling: 26th International Conference,
MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part I 26 (Daejeon,
South Korea: Springer), 581–592. doi: 10.1007/978-3-030-37731-1_47

Lopez-vazquez, V., Lopez-guede, J. M., Marini, S., Fanelli, E., Johnsen, E., and
Aguzzi, J. (2020). Video image enhancement and machine learning pipeline for
underwater animal detection and classification at cabled observatories. Sens.
(Switzerland) 20 (3), 726. doi: 10.3390/s20030726

McClure, E. C., Sievers, M., Brown, C. J., Buelow, C. A., Ditria, E. M., Hayes, M. A.,
et al. (2020). Artificial intelligence meets citizen science to supercharge ecological
monitoring. Patterns 1 1 (7), 100109. doi: 10.1016/j.patter.2020.100109
Minka Observations (2024).Minka observations database (Accessed August 6, 2024).
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