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exposed to chlorpyrifos
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Pei Jiang1* and Pei Qu2*

1Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Jining, China, 2Marine
Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources of the
People’s Republic of China, Laoshan District, Qingdao, China
Introduction: Chlorpyrifos (CPF), a widely used organophosphorus insecticide, is

highly toxic to non-target aquatic organisms and has relatively high persistence

in water, posing a serious threat to marine ecosystems. However, little is known

about the toxicological mechanism of CPF on marine microalgae, which is the

main primary producer in the marine ecosystem.

Methods: This study explored the ion changes of microalgae Chlorella vulgaris under

the stress of CPF through Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

Results: Significant disparities in ionomics among control and treatment group

were observed through pattern recognition analysis (principal component

analysis, PCA; orthogonal partial least squares discriminant analysis, OPLS-DA),

indicating that CPF may impede their growth by disrupting the homeostasis of

crucial elements within algal cells.

Discussion: This study elucidated the inhibitory impact of CPF on green algae

growth and its potential mechanism of toxicity through ICP-MS, providing crucial

insights for a comprehensive understanding of the influence of organophosphorus

pesticides on aquatic ecosystems.
KEYWORDS

chlorpyrifos, ionomics, ICP-MS, microalgae, organophosphorus insecticide
1 Introduction

Chlorpyrifos (CPF), a highly effective and broad-spectrum organophosphorus insecticide

with contact, stomach poison and fumigation effects, is widely used globally to control crop

damage from various insects, including borers, scale insects, armyworms, aphids and mites

(Li et al., 2021). The insecticidal effect of CPF primarily involves the inhibition of

acetylcholinesterase (AChE) (Ubaid ur Rahman et al., 2021). This inhibition results in the

overstimulation of neuronal cells and disorders of central nervous system. In severe cases, it

can lead torespiratory failure, paralysis, and even death (Ubaid ur Rahman et al., 2021).
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Excessive utilization and misuse of CPF inevitably impacts the

ecological environment (Li et al., 2021). When applied on farmland,

CPF has an actual biological uptake rate of less than 1% (Bellas et al.,

2023), with the majority being lost during field application. During

its migration, CPF poses potential toxic effects on non-target

organisms and even humans. Studies have demonstrated that CPF

degrades soil fertility by inhibiting nitrogen and phosphorus

metabolism, disrupting the acid-base balance, and contaminating

groundwater (Nandi et al., 2022). In addition, CPF adversely affects

non-target soil organisms such as earthworms, with LC50 values

ranging from 118.5 to 148 mg/kg (Zhou et al., 2008), leading to a

decreases in soil biodiversity and consequently negatively

impacting agroecosystems.

Acute intoxication from short-term exposure to high doses of CPF

can lead to symptoms including dizziness, headache, convulsions,

increased sweating, salivation, nausea, unconsciousness, and even

death (Nandi et al., 2022). Even at the does below the threshold for

systemic toxicity, prolonged CPF exposure over months or years may

result in chronic effects such as impaired neural cell development, birth

defects, reproductive abnormalities, and an increased risk of cancer

(Nandi et al., 2022).

CPF has been detected in freshwater worldwide due to its misuse,

particularly in the water sources near the application area (Affum et al.,

2018; Kar et al., 2024). The CPF content in Ankobra Basin (Ghana)

groundwater ranged from30 to 2000ng/L (Affum et al., 2018), while

those in stream near Paddyfields in Odisha, India)were 81.53 ng/L on

average (Kar et al., 2024). Given its high toxicity to non-target aquatic

organisms and relatively long persistence in water, CPF poses a

significant threat to aquaponic systems (Bellas et al., 2023). Studies

have shown that CPF can inhibit the growth of various freshwater

microalgae, such as Scenedesmus quadricanda, with a 96 h EC50 value

of 708.01 mg/L (Sun et al., 2013). Toxicity of CPF to aquatic fauna

includes disruption in steroid metabolism, hepatic system dysfunction,

behavioral changes, epithelial hyperplasia, respiratory stress, hydropic

degeneration, delayed metamorphosis, renal tubule degeneration and

necrosis, and glomerular shrinkage (Nandi et al., 2022). At a

concentration of 0.0528 mg/L, CPF caused mortality in Daphnia. The

90-hour LC50 values for CPF in carp, crucian carp and silver carp were

3 170, 3 670 and 3 970 mg/L, respectively (Zhao et al., 2008).

The ocean has long been considered the ultimate sink for

pesticides (Bellas et al., 2023). Due to the misuse of CPF, CPF can

be detected in coastal and even polar marine areas worldwide

(Zhong et al., 2012; Smalling et al., 2013; Montuori et al., 2015;

Liu et al., 2018). According to the reported toxicological studies,

CPF is toxic to many marine species. Microalgae, the main primary

producer in the marine ecosystem, are not likely to be very sensitive

to CPF because it does not have the processes, structures, or

functional groups involved in the modes of action of CPF. The

growth of the marine diatoms Skeletonema costatum and

Minutocellus polymorus were affected by CPF at 640 and 240 mg/
L, respectively (Walsh et al., 1988). Crustaceans, as “Marine

insects”, have similar biochemical and physiological traits with

target organisms, therefore it is especially sensitive to CPF.

Palaemonetes pugio showed LC50 values of 0.37 mg/L (Key and

Fulton, 1993), Neomysis integer showed LC50 values of 0.13mg/L
(Roast et al., 1999). In general, Crustaceans is more sensitive to CPF
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than marine fish. Species and life-stage of marine fish depended its

sensitivity to CPF, adults have been found to be more tolerated to

CPF than juveniles and larvae. Acute lethal toxicity of CPF to

Menidia peninsulae larvae and Cyprinodon variegatus has been

reported at 0.42 and 270 mg/L (EPA, 1986), respectively.

To safeguard human health, ecological safety, and ensure food

security globally, various countries, including China, have

comprehensively banned the use of CPF (Huang et al., 2020).

Nevertheless, CPF remains the most extensively employed

organophosphorus insecticide worldwide (Jiang et al., 2021).The CPF

levels now in the ocean has been found in small amounts (8~219.42 pg/

L, Supplementary Table S1) after undergoing processes such as

dilution, photolysis, biodegradation, and adsorption settling in

seawater, which are too low to cause significant acute toxic effects on

marine organisms (Bellas et al., 2023). However, studies have shown

that long-term exposure to low concentrations can result in CPF

accumulation in various tissues of tilapia fish, leading to chronic

toxicity effects over time (Rao et al., 2003). CPF has also been

detected in different groups of marine organisms worldwide,

confirming its ability to accumulate within these organisms

(Supplementary Table S2) (Solé et al., 2000; Smalling et al., 2013; Ros

et al., 2015; Balmer et al., 2019). Given that global marine fisheries

production has reached 91.03 million tons in 2022 (FAO, 2024),

humans who rely on marine organisms as a source of high-quality

protein are also at risk of exposure to CPF. Therefore, it is necessary to

improve the knowledge of the mechanism of CPF toxicity on aquatic

organisms. Microalgae are main primary producer in the marine

ecosystems. They face, absorb, and accumulate CPF from seawater

directly (Morris et al., 2016), but little has been done on the

toxicological mechanism of CPF on marine microalgae.

Ionome includes all the mineral nutrients and trace elements

existing in an organism and represents the inorganic component of

cellular system, which are involved in a wide range of crucial biological

processes, such as signaling, osmoregulation, enzymology,

electrophysiology and transport (Singh et al., 2022). Ion changes in a

process means large changes has happened to related metabolic

pathways. Thus, ionomics, dealing with the changes in ion

production, provides a new perspective to the study toxicological

mechanisms of microalgae under varied external stimulus (Zargar

et al., 2016). This study aims to investigate the impact of CPF on the

biological behavior of microalgae Chlorella vulgaris, and to explore the

toxicological mechanisms of CPF on C. vulgaris using ionomics. This

study aims to provide novel insights into pollution research, focusing

on the effects of bioaccumulation and biomagnification, their impacts

along the trophic chains and the consequent alteration of

marine ecosystems.
2 Methods

2.1 Chemicals and reagents

Chlorpyrifos (Figure 1) (powder, 99.61% purity, CAS#: 2921-

88-2) was obtained from Dr. Ehrenstorfer Co., Ltd (Augsburg,

Germany). For the experiments, stock solutions of CPF was

prepared in dimethyl sulfoxide (DMSO) and diluted into the
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culture media to the desired concentrations. In the culture media

the final concentration of DMSO was < 0.1%. F/2 medium

(Guillard, 1975), and Lugo’s iodine solution were used.
2.2 Culture condition

The First Institute of Oceanography (MNR, Qingdao, China)

provided cultures of the unicellular microalga Chlorella vulgaris.

The strains were used to prepare the stock culture. To obtain a

culture in the early exponential growth phase, it was incubated for 3

days at a temperature of 23 ± 1°C under fluorescent illumination of

4000 lx and a light/dark cycle of 12/12 hours in an illumination

incubator. Manual swirling agitations were performed three times

daily. The microalga strain was inoculated at a concentration of 25%

(Vinoculum/Vmedia) in 150 mL sterile f/2 medium contained in glass

Erlenmeyer flasks with a volume capacity of 250 mL. The culture

medium was supplemented with CPF stock solutions to achieve

nominal concentrations of the active ingredient: 0, 50, 100, 150, and

200 mg/L. A control treatment without any DMSO was also

included in the same sterile f/2 medium. All experiments were

conducted in triplicate without replacing the medium throughout

the study period. To ensure uniform light and temperature

conditions, all flasks containing different treatments were

repositioned three times daily inside the illumination incubator

during the course of the experiment. To assess the impacts of

chlorpyrifos on the population growth, the density of Chlorella in

each treatment was figured by direct counting in Neubauer chamber

every 24 h during the entire experimental period (12 days).
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2.3 Sample collection and preparation

At the end of the bioassay, the DMSO control culture and the

treatment groups exposed to CPF concentrations of 0, 50, 100, 150,

200 mg/L were centrifuged at 4000 rpm for 10 min. The resulting

pellet was refrigerated at -20 °C for subsequent ICP-MS analysis.

The CPF concentrations in the experimental groups were

determined based on previous studies and preliminary

experiments conducted for this study.
2.4 ICP-MS

Prior to the experiment, all experimental materials were soaked

in 6M nitric acid overnight, followed by rinsing and drying with

ultrapure water before use. A digestion tube was utilized to hold 50

mL of serum or 50 mg of tissue, which was then supplemented with

1ml of 65% nitric acid. The mixture underwent digestion on a

heating plate at a temperature of 130 °C for a duration of two hours.

After evaporating the acid, it was diluted using ultrapure water.

Before injection, the sample was cooled down to room temperature.

In this study, detection was conducted using the NexION 1000G

ICP-MS spectrometer (PerkinElmer, USA), which underwent

tuning optimization through mass spectrometry tuning solution

prior to analysis initiation. Calibration involved online internal

standard addition and collision mode employed high-purity helium

gas as the collision gas for interference removal purposes. The

instrument’s operating parameters were set as follows: nebulizer

flow rate at 1.04 L/min, auxiliary gas flow rate at 1.20 L/min, plasma

gas flow rate at15 L/min, ICP RF power at1600 W, simulated

voltage -1862 V, pulse voltage at1250 V, and blank removal

process applied. The chamber was supplied with an internal

standard solution, which consisted of scandium, germanium,

indium, and rhenium at a concentration of 20 mg/L. This solution
was introduced into the chamber using a peristaltic pump. A total of

34 elements were identified in the analysis, including lithium (Li),

beryllium (Be), boron (B), sodium (Na), magnesium (Mg),

aluminum (Al), silicon (Si), phosphorus (P), potassium (K),

calcium(Ga), titanium (Ti), vanadium (V), chromium (Cr),

manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu),

zinc (Zn), arsenic (As), selenium (Se), strontium (Sr), zirconium

(Zr), molybdenum (Mo), silver (Ag), cadmium (Cd), tin(Sn),

antimony (Sb), barium (Ba), thallium (Tl), lead (Pb), bismuth

(Bi), mercury (Hg). After excluding elements that deviated from

the standard curve or had concentrations below the limit of

quantification, a total of 28 elements remained: Li, Na, Mg, Al, P,

K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Zr, Mo, Ag, Cd,

Sn, Sb, Ba, Ir, Pb, Bi. The accuracy, reproducibility, and limit of

quantification for this method were calculated and validated.
2.5 Multivariate statistical analysis

The data was normalized and subjected to pattern recognition

analysis using SIMCA-P 14.0 (Umetrics, Umeå, Sweden),
FIGURE 1

Chlorpyrifos, IUPAC name is O, O-Diethyl-O-(3,5,6-trichloro-2-
pyridyl) phosphorothioate, is a white crystal-like solid with a strong
odor. It does not mix well with water, so it is usually mixed with oily
liquids before it is applied to crops or animals.
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employing principal component analysis (PCA) and orthogonal

partial least squares discriminant analysis (OPLS-DA). Data

analysis involved a two-tailed Student’s t-test. The selection of

differential variables was based on the following criteria: (1) p <

0.05 and (2) Variable Importance in Projection (VIP) value

obtained from OPLS-DA > 1.
3 Results

3.1 Establishment of Chlorella model
treated by CFP

We counted the cells regularly every day during the culture

period, and the density changes of Chlorella were recorded

(Figure 2). Fisher-test was used to compare the mean value of

Chlorella concentration data among the groups (Figure 3).

The Chlorella density map showed that the cell density of each

group had an overall increasing trend, and the density of DMSO

control group and 0 mg/L group was higher than that of CPF

addition group, indicating that CPF had an effect on Chlorella

growth (Figure 2). The result of Fisher-test showed that there were

significant difference between 200 mg/L group and 0 mg/L group (p <
0.05), and nonsignificant differences between other groups, which

means that 200 mg/L CPF could significantly inhibit the growth of

Chlorella population.
3.2 Quality control of ionomics

The Correlation coefficient for the standard samples was

calculated, all of which exhibited values above 0.99. The element

Cd was excluded due to a Trueness/Recovery rate of 71%.
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Additionally, Be, As, Se, Mo, Cd, Sb, Ti and Bi were eliminated as

they had fewer than one instance of detection below the Limit of

quantification. The remaining elements that could be assessed

include Li, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,

Zn, Sr, Zr, Sn, Ba, and Pb. All indicators of QC are shown in Table 1.
3.3 General linear model of ionomics

To better assess inter-group ion differences, we initially

employed a linear model to evaluate disparities between the

Control group and CPF groups. The results, presented in Table 2,

revealed statistically significant variations in ionomics across the

five groups. However, no statistically significant distinctions were

observed when comparing Control with DMSO (Supplementary

Table S3). Subsequent pairwise comparisons between the Control

and CPF groups unveiled notable discrepancies in Li, P, Ca, Ti, and

Mn (Table 3).
3.4 PCA of ionomics

We initially conducted a principal component analysis (PCA)

using the data from the Control group and different doses of CPF

treatment groups. The PCA model identified 2 principal components

(Figure 4A) with main parameters: R2X=0.734, Q2 = 0.615. No

significant outliers were observed in DModX (Figures 4B-D),

indicating that the included indicator data was stable and free from

anomalies. However, this PCA model did not effectively classify the

data from each group (Supplementary Figure S1). Therefore, we will

proceed to perform orthogonal partial least squares discriminant

analysis (OPLS-DA) between Control group and different doses of

CPF treatment groups.
FIGURE 2

Growth of alga among DMSO Control, 0 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 200 mg/L (n=3).
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3.5 OPLS-DA of ionomics

General linear model of ionomics showed that statistically

significant variations in ionomics across the five groups. Further

PCA model of ionomics revealed that no significant outliers in the

data from the Control group and different doses of CPF treatment

groups. But this PCAmodel did not effectively classify the data from

each group, we then established OPLS-DA model of ionomics of

Control vs. CPF 50 mg/L, Control vs. CPF 100 mg/L, Control vs. CPF
150 mg/L, and Control vs. CPF 200 mg/L, which parameters

approaching 1.0 indicate that the models were stable and

predictably reliable. And the significantly different element
Frontiers in Marine Science 05
(OPLS-DA: VIP > 1 and Student’s t-test: p < 0.05) was Mn, P,

Zn, and K in Control vs. CPF 50 mg/L; Zn, Mn, and P in Control vs.

CPF 100 mg/L; Ti and Ca in Control vs. CPF 150 mg/L; Ti, Li and Ca
in Control vs. CPF 200 mg/L.

3.5.1 Control vs. CPF 50 mg/L
The OPLS-DA model of ionomics between Control and CPF 50

mg/L identified 1 + 4 principal components (Figure 5A) with main

parameters: R2X=0.924, R2Y=0.92, Q2 = 0.726. Figure 5B showed

this model classified the data of two groups well. Statistical

validation using OPLS-DA demonstrated no signs of overfitting,

as indicated by the blue regression line intersecting the vertical axis

on the left side below zero. Furthermore, all Q2-values on the left

were found to be lower than the original points (Figure 5C). The

parameters approaching a value of 1.0 suggest that this model

exhibited stability and reliable predictability. Then we calculated the

VIP predictive value of each element with significant changes based

on the Student’s t-test (p < 0.05) and VIP score (VIP > 1,

Supplementary Table S4) screening between Control and CPF 50

mg/L (Figure 5D). As Figure 6 showed, the significantly different

element was Mn, P, Zn, and K.
3.5.2 Control vs. CPF 100 mg/L
The OPLS-DA model of ionomics between Control and CPF

100 mg/L identified 1 + 2 principal components (Figure 7A) with

main parameters: R2X=0.843, R2Y=0.829, Q2 = 0.502. Figure 7B

showed this model also classified the data of two groups well.

Similarly to the OPLS-DA model of ionomics between Control and

CPF 50 mg/L, statistical validation using OPLS-DA model of

ionomics between Control and CPF 100 mg/L revealed no

overfitting; all Q2-values on the left were lower than the original
FIGURE 3

Fisher-test results between the cell density of groups (n=3).
TABLE 1 Quality control of ionomics.

Element Correlation coefficient (r) Limit of quantification Repeatability CV Trueness/Recovery

Li 0.999995 0.052 0.019 96.05%

B 0.999272 2.720 0.128 99.51%

Na 0.993609 91.013 0.092 198.33%

Mg 0.999765 0.601 0.019 101.81%

Al 0.999768 0.980 0.024 100.35%

P 0.999728 6.886 0.037 106.88%

K 0.999773 5.315 0.087 100.67%

Ca 0.993403 6.664 0.058 107.76%

Ti 0.999980 0.065 0.017 92.92%

V 0.999998 0.012 0.017 92.12%

Cr 0.999974 0.065 0.016 91.26%

Mn 0.999830 0.023 0.015 100.63%

Fe 0.999478 0.652 0.027 102.73%

(Continued)
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points (Figure 7C). The parameters approaching 1.0 indicate that

this model was stable and predictably reliable. Then the VIP

predictive value of each element with significant changes based

on the Student’ s t-test (p < 0.05) and VIP score (VIP > 1,

Supplementary Table S5) screening between Control and CPF 100

mg/L (Figure 7D). As Figure 8 showed, the significantly different

element was Zn, Mn, and P.

3.5.3 Control vs. CPF 150 mg/L
The OPLS-DA model of ionomics between Control and CPF

150 mg/L identified 1 + 1 principal components (Figure 9A) with

main parameters: R2X = 0.76, R2Y = 0.713, Q2 = 0.541. Figure 9B

showed this model also classified the data of two groups well. And

statistical validation using OPLS-DA model of ionomics between

Control and CPF 150 mg/L revealed no overfitting; all Q2-values on
Frontiers in Marine Science 06
the left were lower than the original points (Figure 9C). Then the

VIP predictive value of each element with significant changes based

on the Student’s t-test (p < 0.05) and VIP score (VIP > 1,

Supplementary Table S6) screening between Control and CPF 150

mg/L (Figure 9D). As Figure 10 showed, the significantly different

element was Ti and Ca.

3.5.4 Control vs. CPF 200 mg/L
The OPLS-DA model of ionomics between Control and CPF

200 mg/L identified 1 + 1 principal components (Figure 11A) with

main parameters: R2X = 0.759, R2Y = 0.792, Q2 = 0.559.

Figure 11B showed this model also classified the data of two

groups well. And statistical validation using OPLS-DA model of

ionomics between Control and CPF 200 mg/L revealed no

overfitting; all Q2-values on the left were lower than the original

points (Figure 11C). Then the VIP predictive value of each

element with significant changes based on the Student’s t-test

(p < 0.05) and VIP score (VIP > 1, Supplementary Table S7)

screening between Control and CPF 200 mg/L (Figure 11D). As

Figure 12 showed, the significantly different element was Ti,

Li and Ca.
4 Discussion

Microalgae exhibit higher tolerance to the toxic effects of CPF

due to the absence of processes, structures, or functional groups
TABLE 1 Continued

Element Correlation coefficient (r) Limit of quantification Repeatability CV Trueness/Recovery

Co 0.999995 0.004 0.014 91.75%

Ni 0.999968 0.099 0.017 90.35%

Cu 0.999882 0.075 0.015 87.58%

Zn 0.999826 0.456 0.015 101.36%

As 0.999957 0.396 0.017 93.79%

Se 0.999421 0.487 0.029 98.77%

Sr 0.999999 0.033 0.018 89.30%

Zr 0.999961 0.111 0.019 91.71%

Mo 0.999924 0.237 0.018 92.70%

Ag 0.998516 1.959 0.020 71.15%

Cd 0.999779 0.158 0.015 89.59%

Sn 0.998383 0.183 0.018 84.05%

Sb 0.995511 0.110 0.016 85.79%

Ba 0.999995 0.028 0.015 87.32%

Tl 0.999871 0.012 0.016 92.66%

Pb 0.999952 0.015 0.016 92.48%

Bi 0.999833 0.044 0.016 89.98%
The relevant parameters of the ions that meet the quality control criteria outlined in the research design include: correlation coefficient (r), limit of quantification (LOQ), repeatability coefficient
of variation (CV), trueness/recovery rate, with n=6 for each parameter.
TABLE 2 General linear model analysis of ionomic profile across
Control, CPF 50 mg/L, CPF 100 mg/L, CPF 150 mg/L, and CPF 200 mg/
L groups.

Statistic F p-value

Wilks’ lambda 3.594 2.815 0.001*

Pillai’s trace 0.000 3.740 0.001*

Lawley-Hotelling trace 165.588 4.704 0.005*

Roy’s largest root 132.069 42.022 0.000**
(* indicates p<0.05, while ** indicates p<0.01; n=6).
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TABLE 3 The pairwise comparisons between Control and CPF 50 mg/L, CPF 100 mg/L, CPF 150 mg/L, and CPF 200 mg/L.

Element Group Average-variance p-value
95%CI

Lower Upper

Li Control

CPF 50 mg/L 0.004 0.971 -0.201 0.209

CPF 100 mg/L -0.007 0.948 -0.212 0.199

CPF 150 mg/L -0.236 0.026* -0.441 -0.031

CPF 200 mg/L -0.075 0.458 -0.280 0.130

P Control

CPF 50 mg/L 1054.407 0.040* 51.877 2056.937

CPF 100 mg/L 983.920 0.054 -18.610 1986.450

CPF 150 mg/L 126.757 0.797 -875.773 1129.287

CPF 200 mg/L -13.235 0.979 -1015.765 989.294

Ca Control

CPF 50 mg/L 81.074 0.519 -174.054 336.202

CPF 100 mg/L 96.601 0.443 -158.527 351.729

CPF 150 mg/L -317.652 0.017* -572.780 -62.525

CPF 200 mg/L -288.736 0.028* -543.864 -33.608

Ti Control

CPF 50 mg/L -6.863 0.271 -19.411 5.686

CPF 100 mg/L -1.506 0.807 -14.055 11.042

CPF 150 mg/L -24.506 0.000* -37.055 -11.958

CPF 200 mg/L -22.122 0.001* -34.670 -9.573

Mn Control

CPF 50 mg/L 125.105 0.018* 23.257 226.953

CPF 100 mg/L 123.385 0.020* 21.538 225.233

CPF 150 mg/L 57.817 0.253 -44.030 159.665

CPF 200 mg/L 54.414 0.282 -47.434 156.261
F
rontiers in Marine Sc
ience
 07
(* indicates p<0.05; n=6).
FIGURE 4

PCA of ionomics for Control, CPF 50mg/L, CPF 100mg/L, CPF 150mg/L, and CPF 200mg/L treatments. (A) The principal components of the PCA
model. (B) DModX values of the PCA model. (C) Ion parameters contributing to DModX. (D) DModX values for each sample. (n=6).
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FIGURE 6

OPLS-DA (VIP> 1) and Student’s t-test analysis of Mn (A), P (B), Zn (C) and K (D) between Control group and the CPF 50 mg/L group(* p < 0.05; **
p<0.01; n=6).
FIGURE 5

OPLS-DA of ionomics between Control and CPF 50 mg/L groups. (A) Score plot of the OPLS-DA model. (B) Results of 200 permutation tests
validating the OPLS-DA model. (C) The 3D score scatter plot of OPLS-DA. (D) The VIP values for ions in the OPLS-DA model. (n=6).
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involved in insecticidal action (Dupraz et al., 2019). But the certain

concentrations of CPF can also impact physiological characteristics

of marine phytoplankton by potentially altering cell membrane

permeability in marine microalgae, affecting photosynthetic

activity, and increasing reactive oxygen species leading to

oxidative stress that affects their growth (DeLorenzo and Serrano,

2003; Tato and Beiras, 2019). We investigated the impact of 200 mg/
L CPF on the growth of Chlorella vulgaris and found significant

inhibition. Similar toxic responses were observed in Dunaliella

tertiolecta exposed to 600 mg/L CPF (DeLorenzo and Serrano,

2003). The EC50 values for inhibition of growth by CPF were

determined as 132 mg/L for Isochrysis galbana and 746 mg/L for

Phaeodactylum tricornutum (Tato and Beiras, 2019). It appears that

there is a critical concentration of CPF beyond which significant

changes occur in the biological behavior of microalgae.

Generally, trace elements and heavy metal elements primarily

affect algae in terms of their growth metabolism rate,

photosynthesis, changes in cell size and morphology, as well as
Frontiers in Marine Science 09
enzyme activity (Jin-fen et al., 2000). Mn is a necessary element for

physiological and biochemical reactions in microalgae and often

serves as an important factor inducing red tide. Photosynthesis has

an absolute demand for Mn, because it can exist in four oxidation

states, allowing sequential electron transfer from photosystem II-

water oxidizing system (Andresen et al., 2018; Kaur et al., 2023).

Besides, Mn plays an important role in diverse processes (e.g.

chloroplast development, phospholipid biosynthesis, ROS

scavenging, respiration and hormone signaling (Hashimoto et al.,

2012)) and is required as a cofactor in many enzymes such as

decarboxylases and dehydrogenases (Kaur et al., 2023). Zn is an

important component of various dehydrogenases and proteases

within cellular bodies. Some enzymes are highly sensitive to Zn

deficiency, exhibiting strong specificity during metabolic processes.

Studies have found that Eugiena graci is cytoplasmic nucleoids

contain abundant zinc; when experiencing zinc deficiency, these

organelles become unstable (Prask and Plocke, 1971). It is generally

believed that K can stimulate and control the production of acidic
FIGURE 8

OPLS-DA (VIP > 1) and Student’s t-test analysis of Zn (A), Mn (B) and P (C) between Control and CPF 100 mg/L groups(* p < 0.05; n=6).
FIGURE 7

OPLS-DA analysis of ionomics between Control and CPF 100 mg/L. (A) Score plot of the OPLS-DA model. (B) Results of 200 permutation tests for
the OPLS-DA. (C) The 3D score scatter plot of OPLS-DA model. (D) The VIP values of ions from OPLS-DA model. (n=6).
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stimulation by ATPase on the plasma membrane, leading to cell

wall relaxation and hydrolase activation, thereby promoting cell

growth (Oosterhuis et al., 2014; Ameen et al., 2024). Besides, K

performs a critical function in regulating the osmotic pressure,

facilitating the transport of photosynthates, sustaining ion

homeostasis and activating enzymes. In addition, P is also a

common element required for the growth of microalgae. The

content of P in natural seawater is small, but a certain

concentration of P is an essential nutrient for the growth of

microalgae (Biao and Kaijin, 2007). We observed a reduction in

the aforementioned elements in the lower dose groups (50 mg/L and

100 mg/L), which may explain why CPF inhibits their growth.

Interestingly, no changes were observed in these ions when CPF
Frontiers in Marine Science 10
concentration was increased to 150 mg/L and 200 mg/L; instead,
there was an increase in Ti, Li, and Ca ion levels.

External abiotic stresses can disrupt intracellular ion

homeostasis. Under salty stress, activation of potassium channels

by reactive oxygen species (ROS) will low the cytosolic K pool

(Ameen et al., 2024). The photosynthetic activity was shown to

induce increases in oxygen concentrations and pH of the colonial

cells, and those increases were suggested to favor the precipitation

and accumulation of Mn (Schoemann et al., 2001). The exist of

function groups like amine, hydroxyl, carboxyl, and phosphoryl

group (-NH2, -OH, -COO and -PO3
2-, respectively) makes the cell

surface of microalgae constitute a negative charge, which facilitates

the attachment of toxic compounds with positive charge and allows
FIGURE 10

Comparison of elemental concentrations, including Ti (A) and Ca (B), between the Control group and the CPF 150 mg/L group using OPLS-DA (VIP >
1) and Student’s t-test (* p < 0.05; ** p<0.01; n=6).
FIGURE 9

OPLS-DA analysis of ionomics between Control and CPF 150 mg/L groups. (A) OPLS-DA score plot. (B) Results of 200 permutation tests for OPLS-
DA model validation. (C) The 3D scatter plot of OPLS-DA scores. (D) The VIP values for ions in the OPLS-DA model. (n=6).
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their sorption (Fayaz et al., 2024). Previous studies have shown that

exposure to CPF can harm the cellular membranes and

photosystem of microalgae and led to a significant rise in ROS

(Baruah et al., 2024). Reasons led to the changes in ion levels of

Chlorella vulgaris in this study may include the following: (1) CPF

destroys the cell membrane structure, resulting in restricted ion

transport; (2) CPF binds to the functional groups on the cell surface

and saturates the binding sites, which is not conducive to the

adsorption of ions by microalgae; (3) CPF exposure damages the

photosynthesis system of microalgae, affecting the accumulation of

ions (4) CPF stress causes an increase in ROS, resulting in a decrease

in ion levels.

When exposed to different concentrations of CPF, the changes

in the ion levels of Chlorella are different. Changes in individual ion

levels or ratios of multiple ions in microalgae may be used as a

biomarker to identification the degree of CPF contamination.

Compared with other biomarkers (SOD, pigments of microalgae
Frontiers in Marine Science 11
(Shao et al., 2016), etc.), ionomic analysis is more convenient and

quick, and this deserves further exploration and verification.
5 Conclusions

The present study not only elucidates the direct impact of CPF

on green algae growth but also uncovers potential toxic mechanisms

through ionomic analysis, indicating that CPF may impede their

growth by disrupting the homeostasis of crucial elements within

algal cells. This finding is pivotal for comprehending the potential

threat posed by CPF to marine ecosystems and devising effective

environmental protection strategies and provides a valuable insights

and directions for further research into the mechanism of action of

CPF on microalgae. Subsequent investigations should further

explore the effects of CPF on other aquatic organisms and entire

ecosystems, as well as seek efficient pollution mitigation measures.
FIGURE 11

OPLS-DA analysis of ionomics between Control and CPF 200 mg/L groups. (A) OPLS-DA score plot. (B) Results of 200 permutation tests for OPLS-
DA model validation. (C) The 3D score scatter plot of OPLS-DA. (D) The VIP plot for ions in OPLS-DA. (n=6).
FIGURE 12

Comparison of elemental concentrations, including Ti (A), Li (B), and Ca (C), between the Control group and the CPF 200 mg/L group using OPLS-
DA (VIP > 1) and Student’s t-test (* p < 0.05; ** p < 0.01; n = 6).
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