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SwinCNet leveraging Swin
Transformer V2 and CNN for
precise color correction and
detail enhancement in
underwater image restoration
Chun Yang, Liwei Shao*, Yi Deng, Jiahang Wang
and Hexiang Zhai

School of Automation, Beijing Institute of Technology (Zhuhai), Zhuhai, Guangdong, China
Underwater image restoration confronts three major challenges: color

distortion, contrast degradation, and detail blurring caused by light absorption

and scattering. Current methods face difficulties in effectively balancing local

detail preservation with global information integration. This study proposes

SwinCNet, an innovative deep learning architecture that incorporates an

enhanced Swin Transformer V2 following primary convolutional layers to

achieve synergistic processing of local details and global dependencies. The

architecture introduces two novel components: a dual-path feature extraction

strategy and an adaptive feature fusion mechanism. These components work in

tandem to preserve local structural information while strengthening cross-

regional feature correlations during the encoding phase and enable precise

multi-scale feature integration during decoding. Experimental results on the

EUVP dataset demonstrate that SwinCNet achieves PSNR values of 24.1075 dB

and 28.1944 dB on the EUVP-UI and EUVP-UD subsets, respectively.

Furthermore, the model demonstrates competitive performance in reference-

free evaluation metrics compared to existing methods while processing 512×512

resolution images in merely 30.32 ms—a significant efficiency improvement over

conventional approaches, confirming its practical applicability in real-world

underwater scenarios.
KEYWORDS

Swin Transformer V2, CNN, underwater image restoration, precise color correction,
deep learning
1 Introduction

With the advancement of marine exploration, underwater imaging technology has

become increasingly critical for scientific research and resource exploration. However,

captured images frequently suffer from quality degradation caused by three primary factors:

light attenuation, water scattering, and color distortion. These degradation effects
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significantly impair image analysis effectiveness, necessitating

robust underwater image enhancement techniques to restore

color fidelity and structural clarity.

Recent developments in deep learning have revolutionized

underwater image restoration. While traditional convolutional

neural networks [CNNs (Lecun et al., 1998)] have achieved

notable success in image processing tasks, their limited receptive

fields constrain their ability to capture long-range dependencies. In

contrast, Transformer-based architectures (Vaswani et al., 2017)

like the Swin Transformer (Liu et al., 2021) leverage advanced

attention mechanisms to effectively model global relationships. This

complementary capability motivates our integration of Swin

Transformer’s global processing strengths with CNN-based local

feature extraction.
1.1 Research motivation

The Swin Transformer (Liu et al., 2021) demonstrates superior

performance in modeling global dependencies but exhibits

limitations in capturing intricate local patterns. Conversely,

conventional CNNs excel at local feature extraction but struggle

with long-range contextual relationships. These mutually exclusive

limitations lead to suboptimal restoration quality when either

architecture operates independently. Our proposed SwinCNet

framework addresses this fundamental challenge through strategic

integration of both architectures, enabling synergistic processing of

local details and global context.
1.2 Main contributions

1.1.1 Hybrid architecture design
SwinCNet implements a novel cascaded structure where

enhanced Swin Transformer V2 modules (Liu et al., 2022b)

follow primary convolutional layers, enabling progressive

refinement from local features to global context.

1.1.2 Dual-mode feature extraction
The architecture develops complementary processing paths-

convolutional streams for spatial detail preservation and

transformer pathways for long-range dependency modeling.

1.1.3 Adaptive fusion mechanism
A hierarchical feature integration framework dynamically

balances local and global information across multiple scales

through learnable attention weights.

Experimental validation on the EUVP (Islam et al., 2020b) and

LSUI (Peng et al., 2023) datasets demonstrates SwinCNet’s superior

performance in underwater image restoration. The framework

achieves significant improvements in both quantitative metrics

and visual quality while maintaining computational efficiency

critical for real-world applications.
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2 Related work

2.1 Traditional image
processing techniques

Early approaches to underwater image enhancement

predominantly employed conventional image processing methods.

Fundamental techniques including histogram equalization

(Zuiderveld, 1994) and white balance adjustment formed the basis

of initial solutions. Subsequent developments introduced Retinex-

based variational models, such as the Bayesian Retinex framework

(Zhuang et al., 2021) and edge-preserving filtering variants (Zhuang

and Ding, 2020), which demonstrated improved handling of color

distortion and non-uniform illumination. Recent advancements in

this area include the Bayesian Retinex approach (Zhuang et al.,

2021) and edge-preserving filtering Retinex algorithm (Zhuang and

Ding, 2020), further enhancing the robustness of these methods.

While effective in controlled scenarios, these methods exhibit

limited adaptability to complex underwater conditions

characterized by severe scattering and chromatic aberration.
2.2 Deep learning approaches

The advent of deep learning has revolutionized underwater

image processing. Convolutional Neural Networks (CNNs) have

shown remarkable success in tasks ranging from denoising to color

correction, leveraging their hierarchical feature extraction

capabilities (Islam et al., 2020b; Li et al., 2021; Islam et al., 2020a).

However, the intrinsic locality of convolutional operations

constrains their ability to model long-range dependencies—a

critical requirement for addressing widespread illumination

variations and scattering effects in underwater environments.
2.3 Transformer-based models

Inspired by breakthroughs in natural language processing,

Vision Transformers have emerged as powerful alternatives for

image restoration tasks. The Swin Transformer (Liu et al., 2021),

with its hierarchical attention mechanism and shifted window

strategy, has demonstrated particular efficacy in capturing global

contextual relationships. Recent applications in image super-

resolution (Chen et al., 2021) and semantic segmentation (Long

et al., 2015) validate its potential, though direct adoption for

underwater image restoration remains underexplored due to the

domain’s unique challenges.
2.4 Hybrid architectures

Recent studies attempt to bridge the complementary strengths

of CNNs and Transformers. Notable examples include dual-stream
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networks for medical imaging (Dai and Gao, 2021) and attention-

guided fusion mechanisms in remote sensing (Qingyun et al., 2022).

In underwater image processing, proposed a CNN-Transformer

cascade for turbidity removal, while developed an adaptive feature

mixing module for color correction. These hybrid approaches

motivate our investigation into more sophisticated integration

strategies that preserve local details while maintaining

global coherence.
2.5 Marine target recognition

Parallel developments in marine target detection demonstrate

CNN’s versatility in underwater applications. Innovations include

dualistic cascade architectures for PolSAR ship detection (Gao et al.,

2023), few-shot learning frameworks for SAR classification (Gao

et al., 2025b), and multimodal fusion techniques for intelligent

target recognition (Gao et al., 2025a). These advancements inform

our network design through insights into multi-scale feature

processing and domain adaptation.
3 Method

The proposed SwinCNet model in this study is a deep learning

framework designed to address key challenges in underwater image

restoration tasks, such as color distortion, reduced contrast, and

blurred details. The model employs an innovative architecture that

combines Convolutional Neural Networks (CNNs) and Swin

Transformer V2 (Liu et al., 2022b) to leverage CNN’s capabilities

in feature extraction and Swin Transformer’s advantages in

handling long-distance dependencies. The framework diagram of

the model we constructed, Figure 1, is shown below.
3.1 Network architecture

3.1.1 Initial convolution layer
The model receives a three-channel RGB underwater image as

input and initially processes it through a convolution layer (Conv1).

This layer uses 32 filters of size 3x3, with a stride of 1 and padding of

1, followed by batch normalization and ReLU (Nair and Hinton,

2010) activation function. This is aimed at extracting preliminary

image features while maintaining the original image dimensions.

3.1.2 Swin Transformer V2 feature extraction
In parallel to the primary convolution processing, the model

uses Swin Transformer V2 (Liu et al., 2022b) to capture global

contextual information from the output of Conv1. Configured to

handle 32-channel feature maps, the Swin Transformer (Liu et al.,

2021) has an embedding dimension of 96 and a window size of 4x4.

This setup allows the model to begin addressing the image’s long-

distance dependencies early on, which is crucial for subsequent

feature fusion.
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3.1.3 Deep convolutional network
The model further extracts features through a series of deep

convolution layers (Conv2 to Conv6). Before each convolution

layer, 2x2 max pooling (LeCun et al., 1989a) is applied to halve

the dimensions of the feature map, while the number of output

channels progressively increases across layers: 64, 128, 256, 512,

1024, and 2048. Each layer uses 3x3 filters, with a stride of 1 and

padding of 1, and is followed by batch normalization and ReLU

(Nair and Hinton, 2010) activation function to enhance the model’s

nonlinear representation capabilities and stability.

3.1.4 Upsampling and feature fusion
After deep feature extraction, the feature maps are concatenated

with the outputs from Swin Transformer V2 (Liu et al., 2022b), and

then progressively restored to their spatial dimensions through a

series of upsampling and convolution layers (upconv1 to upconv5).

Each upsampling stage is accompanied by a feature fusion with

corresponding downsampling layers (using skip connections) to

restore image details and local structure. These upsampling layers

(Shelhamer et al., 2015) utilize bilinear interpolation for resizing,

and the convolution layers adjust the number of channels,

ultimately restoring the dimensions back to that of the original

input. The bilinear interpolation process can be expressed as follows

(see Equation 1):

I(x, y) =
1

(x2 − x1)(y2 − y1)
o
2

i=1
 o

2

j=1
 I(xi, yi) max (0, 1

− x − xij j)max (0, 1 − y − yij j) (1)

Here, I(x, y) represents the interpolated pixel values, and I(xi, yi)

are the original image pixels.

Upsampling and Feature Fusion Diagram (see Equation 2):

upi+1 = Concat (UpConv(upi), xskip) (2)

UpConv represents the upsampling convolution layer. Concat

represents feature fusion.

3.1.5 Output layer
Finally, the model maps the fused feature map back to a three-

channel RGB image through two convolution layers (Final Conv0

and Final Conv1). Final Conv0 uses a 1x1 convolution kernel to

adjust channel numbers and employs a ReLU (Nair and Hinton,

2010) activation function to enhance nonlinearity. Final Conv1 is a

1x1 convolution operation designed to produce the final image

output. The output image is processed through a Tanh (LeCun

et al., 1989b) activation function to ensure pixel values are within

the [0, 1] range, suitable for image display.

Output Mapping (see Equation 3):

output =
Tanh(Conv(xfinal))  +  1

2
(3)

The final mapping ensures pixel values are within the [0, 1]

range, making them suitable for display, preserving image integrity

and visual quality.
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3.2 Feature map visualization

In Figure 2, we perform visualization of feature maps from key

layers to gain deeper insights into the network’s internal

representations and information flow. By analyzing feature maps

from multiple levels within the model, we can reveal the roles each

layer plays in image processing and their contributions to the

generation of the final output image.

3.2.1 Overview of network architecture
The SwinCNet model integrates Convolutional Neural

Networks [CNN (Lecun et al., 1998)] and Swin Transformer V2

(Liu et al., 2022b) to process and enhance underwater images. The

model’s design aims to extract local features through convolution

operations and capture global contextual information using Swin

Transformer V2 (Liu et al., 2022b). The overall architecture

includes multiple convolution layers, Swin Transformer modules

(Liu et al., 2021), and upsampling and feature fusion layers.

Specifically, the model initially processes the input image through

an initial convolution layer (conv1) and simultaneously feeds the

result into subsequent convolution networks and the Swin

Transformer (Liu et al., 2021).

3.2.2 Feature Map extraction and visualization
3.2.2.1 Initial convolution layer feature maps

The feature maps from the conv1 layer display basic edge and

texture information of the input image, which are low-level features

progressively combined and expanded in subsequent layers. Extracting

and visualizing conv1 layer feature maps allow observation of how the

network initially extracts useful features from raw data.

3.2.2.2 Deep convolution layer (feature maps

The feature maps from the conv6 layer show more abstract and

complex patterns, such as advanced features of specific shapes or
Frontiers in Marine Science 04
objects. These feature maps reflect the network ’s deep

understanding of the input image and demonstrate the

effectiveness of feature extraction and combination through layers.

3.2.2.3 Swin transformer feature maps

The feature maps from the Swin Transformer module (Liu et al.,

2021) represent global contextual information. Through its self-

attention mechanism, it is evident how the network captures long-

range dependencies and fuses them with local features. Visualizing

these feature maps helps understand the role of the Transformer in

the model and its grasp of global image information.

3.2.2.4 Feature maps after concatenation of Conv6 and
Swin Transformer

The feature maps resulting from the concatenation of conv6

and Swin Transformer (Liu et al., 2021) outputs showcase the fusion

effects of local and global information. This fusion enhances the

model’s overall understanding of the input image and improves the

details and accuracy of the final output generated.

3.2.2.5 Upsampling process feature maps

The feature maps from the upconv5 layer illustrate how the

network uses previously extracted local and global information to

reconstruct image details as spatial dimensions are progressively

restored. These feature maps provide a visual representation of the

model’s mechanism during the image restoration process.

3.2.2.6 Final output layer feature maps

The feature maps from the final output layer display the

ultimate synthesis results of all processing stages. After

upsampling, feature fusion, and convolution operations, these

feature maps provide a high-resolution three-channel output,

reflecting the model’s global understanding and reconstruction

capabilities of the input image.
FIGURE 1

SwinCNet model. The framework diagram of the model we constructed, Figure 1, is shown below.
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3.2.3 Feature map extraction and analysis
To deeply analyze and understand the feature extraction and

processing mechanisms at different levels in the SwinCNet model,

this study conducted extraction and visualization of feature maps

from several key layers.

During the forward propagation, we utilized the PyTorch deep

learning framework and registered hooks on each layer of interest.

These hooks are used to capture the output activations following each

convolution operation, ensuring that feature maps are obtained from

various levels of the model. Specifically, for an input sample x, the

activations A(l) at layer l, where l denotes the layer index, are recorded.

The formula is expressed as follows (see Equation 4):

A(l) = f (l) A(l−1Þ
� �

(4)

Here, A(l−1) represents the activations from the previous layer,

and f (l) denotes the operation at layer lll, resulting in a high-

dimensional tensor as the extracted feature map. To ensure the

consistency of feature map visualization, we performed min-max

normalization on each feature map, scaling its values to the range

[0,1] for improved visualization display. The normalization is

conducted across the spatial dimensions, specifically as follows

(see Equation 5):

A(L)
norm =

A(l) −min   A(l)
� �

max   A(l)) −min   A(l)
� �� (5)

Here, min (A(l)) and max (A(l)) represent the minimum and

maximum values of the feature map at layer lll, respectively.

In practical applications, we save the feature maps as.npy files

for subsequent analysis. After each feature map is converted into a

NumPy array, it is saved to disk via a specified path. This method

allows us to efficiently manage and analyze feature maps from

different layers. The process of saving feature maps is as follows (see

Equation 6):

save _ feature _maps A(l)
norm

� �
→ npy _ file _ path (6)

Folders are created for different layers, and feature maps for

each layer are saved within these folders. To ensure robustness in

processing, the feature map saving process includes clearing the

cache of previous feature maps before model prediction, saving
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output images, and finally saving the feature maps. For feature map

visualization, we use tools like Matplotlib to generate two-

dimensional heatmaps, which can intuitively display the feature

patterns extracted at different levels of the network. The training

procedure of the SwinCNet framework for underwater image

restoration is detailed in Algorithm 1.
Require: Training dataset (xi ,yi)f gNi=1, learning rate h,

batch size B, number of epochs E, loss weights a, b, g.

Ensure: Trained model parameters q, restored image ŷ.

1: Initialize model parameters q.

2: for epoch c = 1 to E do

3: Shuffle the training dataset.

4: for each batch (xi ,yi)f gBi=1 do
5: Forward propagation:

6: Extract local features through Conv1 to Conv6.

7: Extract global features using Swin Transformer.

8: Fuse local and global features.

9: Progressively upsample and restore

spatial dimensions.

10: Generate output image ŷ using final

convolution layers.

11: Compute loss:

12: L = a ·MSE(ŷ ,y) + b · L1(ŷ ,y) + g · SSIM(ŷ ,y) :

13: Backward propagation:

14: Compute gradients mq L.

15: Update parameters q using Adam optimizer.

16: end for

17: end for

18: return trained model parameters q.
Algorithm 1. Training procedure of the SwinCNet framework for
underwater image restoration.
3.3 Optimization strategy

3.3.1 Loss function
To optimize the performance of the model, we defined a

composite loss function that combines three different loss metrics:
FIGURE 2

Visualization of intermediate layer feature maps in SwinCNet.
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Mean Squared Error (MSE) (Hastie et al., 2001a), L1 loss (Hastie

et al., 2001b), and Structural Similarity Index (SSIM) (Wang et al.,

2004). The composite loss function LLL is defined as follows (see

Equation 7):

L = a*LMSE + b*LL1 − g *LSSIM (7)

Here, LMSE and LL1 represent the mean squared error and L1

distance between the predicted image and the target image,

respectively, while LSSIM measures the structural similarity between

the two. The parameters a, b, and g are weights used to adjust the

relative importance of the components of the loss function. In our

experiments, these parameters are set to 0.3, 0.5, and 0.2 respectively.

3.3.2 Optimization strategy
The model is trained using the Adam optimizer with an initial

learning rate set at 0.001. The reason for choosing Adam is that it

combines the benefits of momentum and adaptive learning rate

adjustments, which helps in achieving faster convergence in

complex loss landscapes.

3.3.3 Training process
The model training involves iteratively performing forward and

backward propagation on the training dataset. Each batch contains

4 images, and after each iteration, model weights are updated using

the backpropagation algorithm to minimize the loss function. The

training process is conducted over 100 epochs, with the model’s

performance evaluated on an independent validation set after each

epoch. Performance is monitored by calculating the composite loss

on the validation set, and the best model weights are saved based on

the lowest validation loss.
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4 Experiment

We conducted experiments to evaluate underwater image

restoration performance. The LSUI dataset (Peng et al., 2023) was

divided into two subsets: LSUI-A (3,979 training images) and LSUI-

B (300 test images). Additional validation was performed on two

EUVP (Islam et al., 2020b) subsets: EUVP-UI (3,700 images) and

EUVP-UD (5,550 images).

Our SwinCNet architecture combines a deep convolutional

network with Swin Transformer V2 (Liu et al., 2022b). The

model was optimized using the Adam optimizer with a learning

rate of 0.001 and a composite loss function combining Mean

Squared Error (MSE) (Hastie et al., 2001a), L1 loss (Hastie et al.,

2001b), and Structural Similarity Index (SSIM) (Wang et al., 2004).

Training lasted 300 epochs, with model weights saved based on

minimum validation loss. All images were resized to 256×256 pixels

using PyTorch’s transforms module, and experiments were

conducted on an NVIDIA GeForce RTX 4070 GPU.
4.1 Single-image metric comparison

Figure 3 compares SSIM (Wang et al., 2004) and PSNR

(Gonzalez, 2009) values across different models. SwinCNet

achieves the best performance with SSIM of 0.8767 and PSNR of

25.4054, indicating superior structural preservation and noise

suppression. The model demonstrates clearer fish-scale details

and rock texture preservation compared to DA-hyper (Zhuang

et al., 2022), UWCNN (Anwar et al., 2018), and other baseline

methods. Notably, SwinCNet effectively reduces green color bias
FIGURE 3

SSIM and PSNR values for single images across different models.
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while avoiding oversaturation issues observed in Dahaze (Wang

et al., 2022) and Ucolor (Li et al., 2021).
4.2 Local feature comparison

Figure 4 shows local comparisons with doubled pixel values.

Traditional methods [UIR (Huang et al., 2023), MLLE (Zhang et al.,

2022)] exhibit amplified noise artifacts, while learning-based

approaches [UWCNN (Anwar et al., 2018), Twin-UIE (Liu et al.,

2022a)] display color distortion. Although U-Transformer (Peng

et al., 2023) maintains low noise levels, it retains residual green hues

in background regions. In contrast, SwinCNet successfully removes

unwanted green tones while preserving fine details in fish

eye structures.
4.3 Full-reference Metrics Evaluation

Table 1 compares nine methods across three datasets.

SwinCNet consistently outperforms competitors, achieving 28.19

dB PSNR on EUVP-UD and 0.893 SSIM on LSUI-B. The model

shows strong generalization capabilities with minimal performance

variance across different datasets compared to other methods.

In this study, we evaluated several mainstream underwater

image enhancement models on three different datasets: EUVP-UI,

EUVP-UD, and LSUI-B, to assess their effectiveness in underwater

image processing applications. These models include traditional

methods (such as DCP, MLLE, and DA-hyper) and deep learning-

based methods (such as Ucolor, UWCNN, U-Transformer, Twin-

UIE, and Semi-UIR). From Table 2, it is evident that our model

achieves the best values on the EUVP-UI and EUVP-UD datasets,

and it shows the best SSIM and second-best PSNR on the LSUI-B

dataset, demonstrating superior performance and strong
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generalization capabilities. Especially on the EUVP-UD dataset,

SwinCNet reaches a PSNR of 28.1944 dB and an SSIM of 0.9538,

significantly outperforming other models. This indicates

SwinCNet’s clear advantages in maintaining image structure

and quality.
4.4 Non-reference metrics evaluation

Table 2 presents the comparison of non-reference metrics

[UCIQE (Yang and Sowmya, 2015), UIQM (Panetta et al., 2016)

and CCF (Drews et al., 2013)] across different models on three

datasets. Higher values of UCIQE and UIQM indicate better image

quality, while lower CCF values represent better color fidelity.

Although SwinCNet shows moderate performance in UCIQE, it

achieves impressive results in UIQM, particularly scoring 3.1139 on

the EUVP-UI dataset, which is second only to U-Transformer (3.121)

and Twin-UIE (3.117). Notably, in terms of color fidelity measured

by CCF, SwinCNet demonstrates superior performance across all

datasets, achieving optimal results of 0.1699, 0.2015, and 0.1804 on

the EUVP-UI, EUVP-UD, and LSUI-B datasets, respectively,

significantly outperforming other comparative methods.

The visual comparison analysis in Figure 5 shows that

SwinCNet excels in overall color restoration, particularly in the

red-boxed regions where it successfully removes blue-green color

casts caused by underwater scattering, presenting clear and natural

colors. In contrast, while U-Transformerr (Peng et al., 2023),

Ucolor (Li et al., 2021), and Twin-UIE (Liu et al., 2022a) show

excellent UIQM scores, they retain green residuals in actual image

processing and fail to fully correct color casts. Meanwhile, UIR

(Huang et al., 2023), DA-hyper (Zhuang et al., 2022), and MLLE

(Zhang et al., 2022) introduce excessive contrast in image

restoration, affecting detail presentation. UWCNNUWCNN

(Anwar et al., 2018) and DCP (He et al., 2009), in pursuit of
FIGURE 4

Local comparison of images with pixel values doubled.
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higher UCIQE scores, result in over-restored colors, causing images

to deviate from their natural state.
4.5 Multi-channel pixel intensity analysis

Figure 6 displays the RGB channel pixel intensity variation

curves across different models. In this experiment, we compared the

pixel intensity variations in the Red, Green, and Blue (RGB)

channels across different underwater image processing methods

to assess their performance in color restoration and detail

enhancement. The graph shows the pixel intensity variation

curves for the input image (Input), the ground truth image

(Truth), and the outputs of eight different underwater image

algorithms. The X-axis represents pixel positions, ranging from

[0, 256], corresponding to the horizontal axis of the image, while the

Y-axis represents the pixel intensity values of each channel, ranging

from [0, 255].

The comparison between the input image and the ground truth

image reveals the challenges of underwater image processing. The

RGB channel intensity curves of the input image are close together

with overall low intensity, reflecting the typical problems of low

contrast and color distortion in underwater images. In contrast, the

RGB channel curves of the ground truth image show significant

differences, especially with the red channel being noticeably higher

than the blue and green channels, displaying the true color

distribution characteristics of real-world scenes. This contrast

highlights that the goal of underwater image processing methods

is to restore color distribution and contrast as close as possible to

that of the ground truth image.

Among the results of different algorithms, our proposed

method, SwinCNet (Ours), performs exceptionally well. It

successfully restores the RGB channel color distribution,

particularly in the red channel, where its curve approaches that of

the ground truth image, indicating strong capabilities in color

restoration. In contrast, methods like U-Transformer and UIR

also perform well in restoring the red channel but still show slight

differences compared to the ground truth image, suggesting room

for improvement in handling certain details. Other methods such as

Ucolor and DA-hyper perf.
TABLE 1 Comparison of PSNR and SSIM values across different models
on three datasets, with the best in red and the second best in blue.

Dataset Method PSNR SSIM

EUVP-UI(3700)

SwinCNet (Ours) 24.1075 0.832

DCP 19.4919 0.7696

MLLE 16.4005 0.6064

DA_hyper 12.7566 0.1646

Ucolor 21.7748 0.8047

UWCNN 17.5361 0.7075

U-Transformer 22.9672 0.7969

Semi-UIR 20.7846 0.7381

Twin-UIE 17.9802 0.5721

EUVP-UD(5550)

SwinCNet (Ours) 28.1944 0.9538

DCP 24.6578 0.9342

MLLE 15.9424 0.6228

DA_hyper 13.4509 0.1707

Ucolor 25.7967 0.9289

UWCNN 22.2811 0.9198

U-Transformer 26.4897 0.9298

Semi-UIR 23.3513 0.8871

Twin-UIE 22.6502 0.8584

LSUI-B(300)

SwinCNet (Ours) 25.6126 0.8927

DCP 19.7424 0.8409

MLLE 18.6469 0.7543

DA_hyper 13.2364 0.2303

Ucolor 22.773 0.8694

UWCNN 19.5133 0.7717

U-Transformer 26.0547 0.8607

Semi-UIR 23.303 0.863

Twin-UIE 22.4047 0.8363
TABLE 2 Comparison of non-reference metrics (UCIQE, UIQM, CCF) across different methods and datasets.

Dataset Method UCIQE UIQM CCF

EUVP-UI(3700)

SwinCNet 0.5908 3.1139 0.1699

DCP 0.5928 2.091 0.4178

MLLE 0.6148 1.7713 0.3442

DA_hyper 0.6178 2.6761 0.5029

Ucolor 0.6787 3.2016 0.2245

UWCNN 0.4996 2.95 0.317

(Continued)
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TABLE 2 Continued

Dataset Method UCIQE UIQM CCF

U-Transformer 0.5739 3.2038 0.1991

Semi-UIR 0.6092 2.9167 0.2382

Twin-UIE 0.62 3.2061 0.3957

EUVP-UD(5550)

SwinCNet 0.5782 3.1586 0.2015

DCP 0.582 2.1515 0.3676

MLLE 0.59 1.2522 0.3837

DA_hyper 0.4973 3.0622 0.4673

Ucolor 0.5497 3.2081 0.2259

UWCNN 0.5208 3.0958 0.2502

U-Transformer 0.5469 3.1888 0.2162

Semi-UIR 0.5994 2.7688 0.2487

Twin-UIE 0.595 3.281 0.2618

LSUI-B(300)

SwinCNet 0.5625 3.1625 0.1804

DCP 0.5633 2.064 0.2896

MLLE 0.606 1.8329 0.3505

DA_hyper 0.6488 3.1722 0.4711

Ucolor 0.5745 3.2043 0.2304

UWCNN 0.5082 3.0492 0.295

U-Transformer 0.5712 3.1735 0.1972

Semi-UIR 0.6092 2.8164 0.2454

Twin-UIE 0.6156 3.172 0.3649
F
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FIGURE 5

Comparison of color restoration in underwater images across different models.
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4.6 Computational efficiency analysis

To evaluate the computational performance and complexity of

SwinCNet, we analyzed several key metrics, including FLOPS, the

number of model parameters, and runtime across different image

sizes. The results are summarized in Tables 3, 4.

4.6.1 FLOPS and model parameters
Table 3 highlights the floating-point operations (FLOPS) and

the total number of parameters for SwinCNet and other

comparative models. SwinCNet’s FLOPS reach 207.99 G, which is

moderate among the models considered. It is higher than UWCNN

(5.68 G) and U-Transformer (26.11 G) but far lower than Ucolor’s

14,025.22 G. This demonstrates that SwinCNet is capable of
Frontiers in Marine Science 10
executing complex image processing tasks without requiring

extremely high computational resources.

In terms of model parameters, SwinCNet has 57.24 million

parameters, significantly exceeding most comparison models, such

as UWCNN (0.04 M) and Semi-UIR (1.68 M). Only U-Transformer

(31.6 M) and Twin-UIE (11.4 M) come relatively close. The higher

number of parameters indicates that SwinCNet incorporates a more

complex network structure, likely with additional layers and intricate

connections, which enhances its ability to process and learn from

underwater images effectively.4.6.2 Runtime Performance.
4.6.2 Runtime performance
Table 4 presents the runtime (in milliseconds) of SwinCNet and

other methods for processing single images at various resolutions
FIGURE 6

RGB channel pixel intensity variation curves across different models.
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(128×128, 256×256, 512×512, and 1024×1024). SwinCNet

demonstrates competitive runtime performance, particularly on

larger images. For instance, SwinCNet requires only 88.2 ms to

process a 1024×1024 image, which is significantly faster than

traditional methods like DCP (30,819.93 ms) and Ucolor (134,832

ms). Among deep learning methods, SwinCNet’s runtime is also

highly competitive, outperforming UWCNN (3,656.88 ms) and U-

Transformer (769.36 ms) at the same resolution.

For smaller image sizes, SwinCNet maintains excellent

efficiency, requiring only 11.83 ms for 128×128 images and 18.73

ms for 256×256 images. This balance between computational

efficiency and restoration quality makes SwinCNet suitable for

real-time applications.
5 Conclusion

The SwinCNet model proposed in this study demonstrates

superior performance in underwater image restoration tasks. By

integrating Convolutional Neural Networks [CNN (Lecun et al.,

1998)] with Swin Transformer V2 (Liu et al., 2022b) architecture,

the model effectively addresses typical underwater image

degradation issues including color distortion, contrast reduction,

and detail blurring. SwinCNet’s innovative feature fusion

architecture enhances both local detail preservation and long-

range dependency modeling.

Comprehensive evaluations across multiple datasets reveal

SwinCNet’s significant advantages in color correction and detail

restoration compared to existing methods. The model achieves state-

of-the-art performance in key metrics [PSNR (Gonzalez, 2009) and

SSIM (Wang et al., 2004)], confirming its exceptional image restoration

quality. Furthermore, the carefully balanced computational efficiency
Frontiers in Marine Science 11
and parameter size demonstrate the model’s rational design, making

SwinCNet suitable for both high-performance computing

environments and resource-constrained applications.

Through rigorous experimental validation, SwinCNet not only

improves underwater image visual quality but also enhances their

analytical utility. These advancements underscore SwinCNet’s

practical value and potential applications in contemporary

underwater image processing. The proposed model therefore

provides an effective solution for advancing underwater image

restoration technology, exemplifying the transformative potential

of deep learning in complex image processing challenges.

While achieving promising results, SwinCNet presents certain

limitations. The model’s computational complexity, particularly in

terms of floating-point operations (FLOPS) and parameter count,

may constrain deployment in resource-limited scenarios. Future

research directions include model efficiency optimization through

pruning and quantization techniques, as well as integration with real-

time underwater imaging systems to enhance practical applicability.
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