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A novel strategy for fast
liquefaction detection around
marine pipelines: a finite
element-machine
learning approach
Xing Du1,2, Yongfu Sun3, Yupeng Song1*, Wanqing Chi1,
Zongxiang Xiu1, Xiaolong Zhao1 and Dong Wang2*

1First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, China, 2Shandong
Engineering Research Center of Marine Exploration and Conservation, Ocean University of China,
Qingdao, China, 3National Deep Sea Center, Qingdao, China
With the increasing global exploration of marine resources, ensuring the stability of

submarine pipelines under adverse conditions—such as strong ocean waves and

seismic events—remains a significant challenge. This study focuses on buried

pipelines in seabed sediments, which are particularly vulnerable to sediment

liquefaction caused by dynamic loading, posing a serious threat to pipeline safety.

This study proposes an approach that integrates finite element analysis withmachine

learning. The approach begins with finite element methods for comprehensive

simulations, using the high-quality data generated to enable rapid and accurate

prediction of liquefaction under wave-current interactions. The results demonstrate

that submarine pipelines significantly affect the direction and extent of sediment

liquefaction, with the sides of the pipelines being more prone to liquefaction

compared to the tops and bottoms. The pipelines also have a stabilizing effect on

surrounding seabed sediments. Moreover, the integrated model improves

assessment speed without compromising accuracy, effectively addressing the

need for rapid liquefaction analysis over large areas and multiple points. This study

provides valuable theoretical and practical insights for marine engineering by

confirming the stabilizing effect of pipelines on adjacent sediments.
KEYWORDS

submarine pipelines, sediment liquefaction, finite element analysis, machine learning,
wave-current coupling
1 Introduction

Submarine pipelines are critical infrastructure for transporting essential resources such

as crude oil and natural gas, linking terrestrial and marine environments. As offshore

resource exploration expands, submarine pipelines face stability challenges posed by

natural phenomena like extreme ocean waves and seismic activities (Seed and Rahman,
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1978; Ye and Lu, 2022). Seabed sediment liquefaction remains a

major threat to pipeline stability, with numerous historical cases of

pipeline failures attributed to this issue. These events highlight the

urgent need for precise and rapid assessment of the liquefaction

behavior of submarine pipelines and surrounding sediments.

The stability of submarine pipelines is influenced by various

factors including seabed scouring, ocean wave actions, seismic wave

impacts, and human activities. Extensive research has been

conducted to understand the process and mechanism of seabed

scouring near submarine pipelines under the influence of ocean

waves and currents (Cheng and Liu, 1986; Gao and Wu, 2006;

Myrhaug et al., 2009; An et al., 2011; Kiziloz et al., 2013; Larsen

et al., 2016). The mechanism involves the interaction of wave and

current forces with the seabed, which generates pressure gradients

and sediment transport, leading to localized erosion and the

formation of scour pits around the pipeline. Regarding the

dynamics of ocean wave-induced pipeline responses, research

methods have included analytical solutions, numerical simulations,

and laboratory wave flume tests. These studies primarily focused on

wave and current-induced pore pressure, effective stress in seabed

soil, seepage force (Cheng and Liu, 1986) and buoyancy of the

pipeline (Magda, 1997). Beyond the impacts of seabed scouring,

exploring the response of pore pressure and effective stress in the

seabed foundation to ocean waves around marine pipelines has

emerged as a significant research theme.

Initially, seabed soils were predominantly modeled as elastic

bodies. Jeng and Cheng (Jeng and Cheng, 2000) developed an

analytical solution to comprehend wave-induced pore pressure

around pipelines buried in poro-elastic seabed soils. Subsequent

studies by Wang et al. (2000) and Jeng (2001) delved into wave-

induced pore pressure around pipelines buried in anisotropic or

nonhomogeneous seabed. Moreover, the impact of nonlinear waves

and soil-pipeline contact effects on pipeline dynamics were

examined (Gao et al., 2003; Gao and Wu, 2006). Recent

investigations by Zhou et al. (2013) focused on the dynamics of

pipelines buried in single or multi-layer seabed.

Apart from poro-elastic seabed soils, loosely deposited seabed

materials are also prevalent in marine environments. Under ocean

wave loading, pore pressure within such soils can significantly

increase, leading to soil liquefaction. Early research explored

wave-induced liquefaction around pipelines buried in loosely

deposited seabed soils using empirical-based soil models like

those proposed by Seed (Seed and Rahman, 1978; Martin and

Bolton Seed, 1983). Recently, based on the FSSI-CAS model (Ye and

He, 2021; Ye and Lu, 2022), scholars have conducted a detailed

study on the response of submarine pipelines to waves and

earthquakes, explored the differences in the response of different

pipeline types to wave action, and analyzed the wave dynamics

process in detail. Through the above numerical study and model

test validation, the demand for liquefaction problems around

submarine pipelines under wave action is basically satisfied, and

accurate research progress has been achieved.

Traditional numerical simulation methods, such as finite

element analysis, have significantly contributed to accurately
Frontiers in Marine Science 02
simulating wave-induced liquefaction problems and resolving

related challenges (Jeng and Cheng, 2000; Ye et al., 2012, 2015),

demonstrating high accuracy and a clear representation of physical

mechanisms. However, these approaches often suffer from lengthy

computation times and low efficiency, making them unsuitable for

meeting the rapid response requirements of marine engineering

safety protection. These limitations hinder rapid assessments for

marine engineering safety, especially under extreme weather

conditions or emergencies. Recent developments in artificial

intelligence have demonstrated potential for rapid data prediction

and nonlinear analysis across various geoscience domains,

including geological hazards (Mousavi et al., 2020; Stanley et al.,

2020; Zennaro et al., 2021), remote sensing (Pouyan et al., 2021;

Casagli et al., 2023), and geophysical exploration (Du et al., 2023a,

2023b). Among these, geological hazards encompass various

phenomena such as landslides, earthquakes, and floods, and

sediment liquefaction induced by waves is also a common

geological hazard. AI-based methods provide new opportunities

for addressing these challenges, offering capabilities for nonlinear

analysis and rapid data-driven prediction (Du et al., 2023b). Given

machine learning models’ data-driven nature and their capability to

accurately predict by learning data features through training and

backpropagation, exploring rapid prediction of wave-induced

liquefaction risk areas using AI models is feasible.

To address these challenges, this study proposes an innovative

approach that integrates finite element analysis with machine

learning techniques. By generating high-quality datasets through

detailed finite element simulations of liquefaction risks and training

machine learning models on these datasets, this research aims to

achieve rapid and accurate predictions of the liquefaction behavior

of submarine pipelines and surrounding sediments. This approach

significantly reduces assessment time while maintaining high

predictive accuracy, providing an efficient tool for liquefaction

risk assessment in marine engineering. The findings not only

support safety assessments and disaster prevention for submarine

pipelines but also offer new perspectives and methodologies for

research in the field of marine engineering.
2 Methods

In this research, we introduce a cutting-edge method that

combines the strengths of finite element analysis (FEA) and

machine learning (ML) to forecast the liquefaction behavior of

submarine pipelines and the sediments swiftly and precisely around

them, influenced by wave-current dynamics (Figure 1). The

research methodology unfolds through a series of meticulously

designed steps, outlined as follows: (1) Coupled Numerical Model

Selection: We select an advanced finite element software (FSSI-

CAS) that simulates the intricate interplay between the pipelines,

seabed sediments, and hydrodynamic forces accurately; (2) Dataset

Creation: We define a wide array of environmental conditions to

compile an exhaustive dataset that mirrors the liquefaction

responses across all conceivable hydrodynamic settings; (3)
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Machine Learning Model: The dataset is then used to train an ML

model, employing algorithms adept at uncovering patterns that

predict sediment liquefaction; (4) Performance Evaluation: We

assess the ML model’s accuracy with metrics such as Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE),

confirming its reliability for real-world applications.
2.1 Coupled numerical model

In marine environments, the dynamic interaction among

pipelines, seabed foundations, and overlying seawater constitutes a

complex integrated system, significantly influenced by environmental

forces such as oceanic and seismic waves. To decipher the intricate

interactions among fluids, marine structures, and their seabed

foundations, a sophisticated numerical model, FSSI-CAS, has been

developed by Jeng et al. (2013) and Ye et al. (2013). These models

specifically address the challenges associated with fluid-structure-

seabed foundation interactions. Within FSSI-CAS, the VARANS

equation (Hsu et al., 2002) is utilized to simulate wave motion and

porous flow in the seabed, employing the finite difference method

(FDM) for resolution. Concurrently, the dynamic behavior of

offshore structures and their foundations is depicted through the

dynamic Biot’s equation, also known as the ‘u-p’ approximation

(Zienkiewicz et al., 1980), seamlessly integrated into a finite element

method framework. A unique coupling algorithm was formulated to

merge these governing equations, resulting in a cohesive numerical
Frontiers in Marine Science 03
model adept at exploring fluid-structure-seabed interactions (FSSI-

CAS). Ye et al. (2012, 2013) and Zienkiewicz et al. (1999) provide

further elaboration on the methodologies for solving the VARANS

equation and dynamic Biot’s equation. In this study, the generalized

plastic soil model Pastor–Zienkiewicz Mark III (PZIII thereafter),

which was initially established by Zienkiewicz andMróz (1984) based

on the generalized plasticity theory, is used to describe the

complicated behaviors of the surrounding seabed soil of buried

pipelines under the action of waves.

Although FSSI-CAS effectively addresses fluid-structure-seabed

interactions, it has limitations regarding displacement continuity at

the fluid-structure interface. Nonetheless, the model’s validity has

been reinforced through comparisons with analytical solutions,

wave flume tests, and centrifuge experiments (Ye et al., 2015; Ye

and He, 2021; Ye and Lu, 2022). Its applicability has been

demonstrated in assessing the dynamics of breakwaters and their

seabed foundations under different ocean wave scenarios, including

regular and breaking waves (He et al., 2018), tsunamis, and seismic

waves (Zhang et al., 2019), illustrating the model’s relevance in

wave-induced pipeline dynamics research.

Following the validation of its accuracy and robustness, it’s

evident that the FSSI-CAS software is exceptionally suited for

research into the interactions under wave-current-seabed sediment-

pipeline conditions. This suitability underscores the model’s potential

in facilitating a deeper understanding of the complex dynamics at

play in marine environments, particularly in the study of interactions

that involve wave and current forces, seabed sediments, and pipelines.
FIGURE 1

Overview of finite element-machine learning based liquefaction analysis process around wave-induced pipelines. (a) Coupled Numerical Model; (b)
Dataset Creation; (c) Performance evaluation; (d) Machine learning Model.
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2.2 Computational settings

The FSSI-CAS model consists of two main components:

hydrodynamic calculations and sediment response modeling. The

hydrodynamic component simulates water movement and

pressures acting on sediments and submarine structures, while

the sediment response component models seabed behavior under

these dynamic conditions using sophisticated constitutive models.

Foundational studies by Ye et al. (2012, 2013, 2015, 2022) and

Zhang et al. (2019), which provide a solid scientific foundation and

enhance the model’s credibility in simulating fluid-structure-seabed

interactions. In the ensuing computational model setup, we also

focus on two components: sediment constitutive model parameters

and hydrodynamic parameters.

As illustrated in Figure 2, our computational domain covers a

seabed area of 50 m in length and 20 m in depth, with the water

column above extending to 9 m. At the seabed’s center lies a

submarine pipeline with a diameter of 560 mm, elevated 2 m

from the seabed. The domain’s boundaries are defined to mimic

real-world constraints: the left and right boundaries are fixed in the

x direction, the top boundary simulates the hydrodynamic interface,

and the bottom boundary is anchored in the x and z directions,

encapsulating the seabed substrate. This seabed is porous,

maintaining a constant effective stress of zero at its surface,

independent of the water depth.

The model simulates operational conditions by subjecting crude

oil inside the pipeline to a pressure of 10 MPa, and the pipeline itself

is modeled as an impermeable rigid steel ring with a 2 cm wall

thickness. The computational setup employs a mesh grid system

with 21,464 four-node elements, optimized spatially around the

pipeline. The mesh is finely detailed with a thickness of 2 cm near

the pipeline to accurately capture interactions with surrounding

sediments. In regions farther from the pipeline or below its burial

depth, the mesh size increases to 0.3m × 0.2m, while above the

pipeline, it is adjusted to 0.3m x 0.1m, balancing computational
Frontiers in Marine Science 04
efficiency with the need for precision. This approach aligns with

established practices in submarine pipeline simulations (Ye and He,

2021; Ye and Lu, 2022), ensuring reliable and accurate modeling

outcomes as illustrated in Figure 3, which achieved good results,

demonstrating the feasibility of our mesh division approach.

The sediment dynamics around the pipeline are examined at

four strategic points, as shown in Figure 3: Point A, located directly

beneath the pipeline, monitors liquefaction due to the dynamic load

and weight of the pipeline. Point B, positioned away from the

pipeline, assesses the general seabed response to wave-current

interactions. Point C, directly above the pipeline, detects potential

liquefaction from the top, while Point D, situated laterally near the

pipeline, studies the spread of liquefaction around the pipeline. This

configuration provides a comprehensive analysis of localized and

overall sediment dynamics under varying conditions.

Table 1 lists the seabed soil parameters based on the PZIII

model, derived from in-situ sampling and geomechanical testing

conducted by the First Institute of Oceanography, Ministry of

Natural Resources. The constitutive model parameters, established

through statistical analysis across different water depths, reflect

variations in aquatic environments. Setting these parameters in the

PZIII model allows for accurate calculation of the dynamic response

of seafloor sediments in the study area.
2.3 Establishment of machine
learning dataset

2.3.1 Calculation cases setup
The effectiveness of machine learning (ML) relies heavily on the

quality and diversity of the dataset, which allows for precise

predictions within the known data range but may struggle with

extrapolation beyond it. To create a comprehensive dataset for ML,

covering all plausible scenarios of wave-induced liquefaction in the

study area, careful planning of the data composition is essential.
FIGURE 2

Schematic diagram of the pipeline-seabed-wave (current) system used in computation.
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Our focus is on the Yellow River Estuary in China, a region

marked by its significant silt sedimentation on the seabed and

strong hydrodynamic forces, rendering it prone to wave-induced

liquefaction. The configurations for our case studies are detailed in

Table 2. Liquefaction events are predominantly observed within a

seabed depth range of 5 m to 15 m. To address this, our dataset

includes calculation scenarios at 2-meter depth intervals within this

specified range. The hydrodynamic data, including wave heights

and current speeds, are derived from extensive long-term

observational records, incorporating instances exceeding the

centennial extreme values to ensure a robust dataset. For each

depth, wave periods are meticulously aligned with empirical data

through a fitting process. This strategy was designed to ensure that

our dataset for machine learning encompasses a comprehensive and

uniform distribution of wave heights, covering beyond the expected

maximum and minimum conditions observed in the field. The
Frontiers in Marine Science 05
uniform interval of 0.5 m within the usual range of wave heights

allows for systematic coverage and computational efficiency, while

the additional 0.2 m intervals at the extremes ensure that our model

is robust against unusual and extreme conditions. The calculation of

the hydrodynamic conditions in Table 2 allows us to perform an

overlay calculation of the potential conditions in the study area,

which also constitutes the hydrodynamic calculation part of the

FSSI-CAS model. The setup and calculation of this working

condition helps to subsequently build the machine learning

model dataset.

2.3.2 Machine learning dataset structure
Following the completion of finite element simulations, we

obtain critical data such as displacement, stress, pore pressure,

and liquefaction depth for both the pipeline and its adjacent

sediments, articulated as time-dependent functions. The selection
TABLE 1 Model parameters of seabed soil in the Yellow River Estuary for PZIII in analysis.

Depth 5m 5~7m 7~9m >9m

Mf 0.5023 0.4923 0.4745 0.4547

Mg 0.8372 0.8205 0.7908 0.7578

Kev0 (MPa) 4.48 4.13 4.44 4.23

Kes0 (MPa) 4.48 4.13 4.44 4.23

af 0.45 0.45 0.45 0.45

ag 0.45 0.45 0.45 0.45

b0 4.2 4.2 4.2 4.2

b1 0.2 0.2 0.2 0.2

H0 750 750 750 750

HU0 (MPa) 50 50 50 50

gU 2.0 2.0 2.0 2.0

gDM 0.0 0.0 0.0 0.0

p0 (kPa) 10 10 10 10
Kev0, bulk modulus; Ges0, shear modulus; Mf, Slope of critical state line CSL; Mg, Slope of the critical line corresponding to the plastic potential, generally Mg=Mf/Dr; H0, First loading modulus;
HU0, First unloading modulus; af, ag, b0, b1, gU, gU0: model parameters; p0: Reference average perimeter pressure.
FIGURE 3

Generated mesh for the pipeline and seabed foundation in computation.
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of input and output parameters for the machine learning dataset is a

pivotal next step, guided by two principal considerations: (1)

Physical Correlation: A discernible physical relationship must

exist between the chosen input and output parameters, ensuring

the relevance and predictability of the machine learning model;

(2) Marine Engineering Requirements: The output parameters

should directly relate to marine engineering needs, specifically

addressing the consequences of wave-induced liquefaction on

submarine pipelines.

As seen in Table 3, the input parameters consist of water depth

(D), wave height (H), wave period (T), bottom flow velocity (V),

bulk modulus (Kev0), shear modulus (Ges0), slope of the critical state

line CSL (Mf), and slope of the critical line corresponding to plastic

potential (Mg). On the other hand, the output parameters

encompass x-direction displacement beneath the pipeline

(dis_x_b), z-direction displacement beneath the pipeline

(dis_z_b), liquefaction potential beneath the pipeline (Lp_b),

seabed liquefaction depth (Ld), liquefaction depth above the

pipeline (Ld_a), x-direction displacement on the pipeline’s side

(dis_x_s), z-direction displacement on the pipeline’s side (dis_z_s),

and liquefaction potential on the pipeline’s side (Lp_s). The output

dataset primarily focuses on the displacement and liquefaction

conditions near the pipeline’s bottom and at a distance from it.

This approach allows us to capture both the response of the area
Frontiers in Marine Science 06
around the pipeline to wave-induced effects and the impact of wave

action on the seabed unaffected by the pipeline.

Regarding liquefaction potential, earlier studies (Ye et al., 2015;

Ye and Lu, 2022) introduced an effective stress-based equation to

evaluate residual liquefaction in loose seabed soils. A parameter,

residual liquefaction potential (Lp), is defined to describe

liquefaction under cyclic loading (where negative values indicate

compression):

Lp =
szd

sz0 + a*C

where szd is the amount of loss of vertical effective stress due to

waves, sz0 is the initial vertical effective stress, and C is the cohesive

force in consolidated undrained conditions, a is a material coefficient.

Research indicates that Lp does not need to reach exactly 1 for

liquefaction to occur, and liquefaction begins when it approaches 1.

Considering the results of previous studies (Ye, 2012; Ye et al., 2012,

2015) and the liquefaction characteristics of the present study area,

it can be concluded that liquefaction occurs when Lp is greater than

0.86. This threshold facilitates accurate predictions of both

displacement and liquefaction tendencies of a pipeline buried at a

depth of 2 m, under the influence of wave-current interactions.

Liquefaction events are quantitatively distinguished as ‘1’ (for

liquefaction) and ‘0’ (for non-liquefaction), offering a clear binary

representation for model training purposes.
2.4 Machine learning model establishment

2.4.1 Decision tree
Decision trees, introduced by Hunt et al. (1966), are robust non-

parametric supervised learning methods used for classification and

regression. The structure recursively partitions the input space, with

nodes representing decisions based on individual features and

leaves denoting outcomes. This straightforward architecture

makes decision trees intuitive, allowing easy visualization of

decision processes.

In the context of regression, decision trees forecast a continuous

value, adeptly capturing complex, non-linear relationships between

variables. Our research employs decision tree regression to

articulate the dynamics of seabed sediment liquefaction

influenced by wave action - a critical factor affecting underwater

pipeline stability. The method’s strength lies in its versatility with

heterogeneous datasets and its proficiency in delineating complex

interactions among various variables impacting liquefaction. By

segmenting the dataset into smaller, feature-based subsets, the

decision tree regression illuminates the fundamental mechanisms

at play, providing nuanced insights into the sediment behavior

under diverse wave conditions. The minimal need for data

preprocessing, coupled with its capacity to model non-linear

relationships, renders decision tree regression an exemplary

choice for investigating the multifaceted nature of seabed

sediment liquefaction.

In this study, the decision tree model was selected due to its

robustness in handling complex, non-linear data relationships

which are typical in wave-induced liquefaction scenarios.
TABLE 3 Calculation cases of liquefaction of submarine pipeline and
surrounding sediments under wave-current coupling.

Input
parameters

Unit Output
parameters

Unit

D m dis_x_b m

H m dis_z_b m

T s Lp_b –

V m/s Ld m

Kev0 kPa Ld_a m

Ges0 kPa dis_x_s m

Mf – dis_z_s m

Mg – Lp_s –
TABLE 2 Calculation cases of liquefaction of submarine pipeline and
surrounding sediments under wave-current coupling (buried depth=2m,
pipeline diameter=560mm).

D (m) H (m) T (s) V (m/s)

15
3, 3.5, 4, 4.5, 5,

5.5, 5.9
T=1.0018H+4.8207 0, 0.5,1, 1.5

13 3, 3.5, 4, 4.5, 5, 5.3 T = 1.0277H + 4.7074 0, 0.5, 1, 1.4

11 3, 3.5, 4, 4.5, 4.8 T = 1.0473H + 4.6135 0, 0.5, 1, 1.2

9 3, 3.5, 4.1 T= 0.9967H + 4.7565 0, 0.5, 1

7 2, 2.5, 3, 3.2 T = 1.1984H + 4.0086 0, 0.5, 1

5 1.5, 2, 2.2 T = 1.4803H + 3.2931 0, 0.5, 0.8
Where D is water depth; H is wave height; T is wave period; V is bottom velocity of the
ocean current.
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Decision trees provide clear, interpretable decision paths and rules,

which are crucial for understanding the intricate patterns and

influences in seabed dynamics. This model excels in situations

with heterogeneous data and provides intuitive insights into how

different environmental factors impact liquefaction, making it

particularly suitable for our study focused on submarine pipeline

environments under varied marine conditions.
2.4.2 Data normalization
Data normalization is a pivotal preprocessing step designed to

adjust the scale of data features to a uniform range, commonly between

0 to 1 or -1 to 1. This procedure addresses the challenge posed by

machine learning algorithms’ sensitivity to feature scales and units. By

normalizing data, we ensure equitable feature representation,

eliminating biases that could arise from disparate numerical scales.

In our study, we employ the Min-Max Scaling technique for

normalization. This approach rescales the numerical features to a

pre-defined range, often [0, 1] or [-1, 1], facilitating consistent scale

across all features. This uniformity is crucial for both training the

model efficiently and ensuring accurate feature comparison. The

formula for Min-Max Scaling is given by:

For a given original feature X, to normalize it to a specified

range [a, b], you can use the following formula to calculate the

normalized value X’:

X 0 = a +
(X −min (X)) � (b − a)
max (X) −min (X)

where X 0 is the normalized feature value; X is the original

feature value; min(X) is the minimum value of the original feature;

max(X) is the maximum value of the original feature; a and b are the

specified normalization range, typically [0, 1] or [-1, 1].

2.4.3 Dataset splitting
To validate the model’s efficacy on novel data, we partition the

dataset into training and testing subsets, adopting an 80%-20% split

ratio. This division allocates 80% of the dataset for model training,

with the remaining 20% reserved for testing. Based on the

experimental conditions described in Table 2, the dataset comprises

a total of 74 samples. This split allocates 60 samples for training and

14 samples for testing. Such a split is critical to prevent the model

from accessing the test data during training, thus enabling an accurate

assessment of the model’s predictive performance on unseen data.

While we utilize an 80%-20% split based on standard practice, it’s

important to note that this ratio is flexible. Depending on the dataset

size and specific project goals, alternative ratios like 70%-30% or 60%-

40% might also be appropriate.

Due to the limited size of our dataset, to maximize the effective

use of our data, we only divided the data into train and test datasets,

foregoing a separate validation dataset. During the model training

phase, we employed cross-validation techniques to validate the

consistency and robustness of our predictive model. This approach

helped mitigate the risks associated with overfitting and provided a

reliable estimate of model performance. Furthermore, the application

of cross-validation ensures that even with a smaller dataset, the
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assessment of the model is comprehensive and accurate, enhancing

the model’s usability and reliability in practical applications.

2.4.4 Modeling
Upon defining the train and test datasets, our project proceeds

with the decision tree technique formodel development. This method

involves training the decision tree model using 80% of the data,

followed by evaluating its predictive accuracy using the independent

test dataset. In this study, multiple classical machine learning

algorithms, including MLP and SVM, were tested and compared.

Decision tree was ultimately selected due to its superior predictive

accuracy, which met the precision requirements of this research and

outperformed other tested algorithms. As depicted in Figure 4, our

predictive model incorporates eight input parameters and eight

output parameters, enabling it to forecast pipeline displacement,

seabed liquefaction, and liquefaction phenomena adjacent to the

pipeline under the influence of wave-current dynamics.
2.5 Performance evaluation

To assess the precision of the Decision Tree model’s forecasts,

we utilized four evaluation indicators: Mean Squared Error (MSE),

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),

and R-squared (R2). These indicators offer a detailed insight into the

model’s efficacy concerning forecast precision and the extent of

errors. In our research, actual value refers to the outcomes obtained

from finite element model simulations, which are employed as a

benchmark to validate the predictions made by the machine

learning model. These values are derived from detailed

simulations using the FSSI-CAS model, known for its accuracy in

replicating marine sediment behavior under dynamic loading

conditions, thus providing a reliable basis for evaluating our

predictive model’s performance. Here is an explanation of each

evaluation indicator along with their specific formulas:

Mean Squared Error (MSE): MSE evaluates the average of the

squares of the differences between the forecasted and actual values.

It is a common metric in regression analyses for assessing forecast

error. A model is deemed more effective with a lower MSE. The

MSE is calculated as follows:

MSE =
1
no(ypred − ytrue)

2

where y_pred represents the predicted value, y_true denotes the

actual value, and n is the count of data points.

Mean Absolute Error (MAE): MAE computes the average of the

absolute differences between the forecasted and actual values. This

metric offers a straightforward interpretation of the magnitude of

forecast error. A lower MAE suggests a more accurate model. The

MAE formula is:

MAE =
1
nojypred − ytruej

where y_pred is the predicted value, y_true is the actual value,

and n represents the count of data points.
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Root Mean Squared Error (RMSE): RMSE is derived by taking

the square root of the Mean Squared Error, providing a prediction

error estimate in the same units as the actual values. An improved

model performance is indicated by a lower RMSE. The RMSE

formula is:

RMSE =
ffiffiffiffiffiffiffiffiffiffi

MSE
p

R-squared (R2): R2, or the coefficient of determination,

quantifies the fraction of variance in the actual values that the

model’s forecasts can explain. It serves as an indicator of the model’s

fit quality. A R2 value nearing 1 denotes a more effective model. The

R2 is calculated as:

R2 = 1 − o(ypred − ytrue)
2

o(ymean − ytrue)
2

where y_pred is the predicted value, y_true is the actual value,

y_mean is the average of the actual values, and the sums run across

all data points.

The adoption of a diverse set of performance metrics is crucial

for a comprehensive evaluation of our predictive model. These

metrics each play a distinct role: MSE and RMSE provide insights

into the average and the square root of the squared errors

respectively, emphasizing the impact of large errors more

significantly than MAE, which quantifies average errors linearly.

R2 assesses the proportion of variance in the dependent variable that

is predictable from the independent variables, offering a measure of

how well unseen samples are likely to be predicted by the model.

This multi-metric approach ensures robustness in performance

validation, catering to the varied conditions and complexities

involved in wave-induced liquefaction of seabed sediments.
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3 Results and analysis

Our comprehensive analysis, underpinned by a finite element

numerical model and detailed case studies, explores the dynamic

responses of seabed sediments to wave action frommultiple vantage

points. Initial investigations focused on a scenario with a water

depth of 9 m, wave height of 3 m, and a current velocity of 0 m/s,

aimed at assessing time-response characteristics at strategic

locations. This was followed by an examination of a case with a

water depth of 9 m, wave height of 3.5 m, and a current velocity of

0.25 m/s, to understand the temporal distribution patterns of

dynamic seabed parameters. Lastly, we scrutinized the predictive

accuracy of our machine learning model against empirical data.
3.1 Comparison of parameters response at
different positions

As shown in Figure 5, after 400 seconds of wave action,

liquefaction occurred at locations within 18 m of the seabed

depth and on both sides of the pipeline, with a reduced

liquefaction depth near the pipeline, and no liquefaction observed

at positions immediately adjacent to the top and bottom of the

pipeline. The liquefaction depth further from the pipeline, defined

as the Seabed Liquefaction Depth (LD), was notably less than that

above the pipeline (Liquefaction Depth Above, LDA), indicating the

significant influence of the pipeline on nearby seabed sediments.

This suggests that the presence of the seabed pipeline acts to

suppress the imprinting effect on surrounding sediments by

reducing their liquefaction depth. Further analysis was conducted
FIGURE 4

Schematic structure of the liquefaction model for submarine pipelines and surrounding sediments under wave-current coupling effects.
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by examining the time-history curves of four characteristic points

for more detailed insights.

Detailed insights were further gleaned from time-history

analyses at four research points:

Displacement (Figure 6a): Displacement at point C was

significantly larger compared to points A, B, and D, highlighting

the influence of sediment depth and proximity to the pipeline on

displacement magnitude. The pipeline evidently restricts sediment

movement, particularly close to its structure.

Effective Stress (Figure 6b): Initial effective stresses at points A

and B were similar, diverging over time as point A experienced a

rapid stress reduction, indicating its proximity to the liquefaction

zone. Conversely, point B’s stress decreased more gradually,

remaining outside the liquefaction threshold. The rapid stress

decline at point D to zero underscored its immediate liquefaction.

Strain and Porosity Ratio (Figures 6c, e): These parameters

increased over time at point A, reflecting tension in the sediments

around the pipeline. Points B and C, further from the pipeline,

showed a compaction trend due to cyclic wave loading, while point

D exhibited rapid strain and porosity increases, signifying severe

sediment liquefaction.

Pore Pressure and Liquefaction Potential (Figures 6d, f):

Points A and B, sharing the same burial depth, began with

equivalent pore pressures. However, the pipeline’s influence

moderated point A’s pressure increase compared to point B.

Point C reached a higher liquefaction potential indicative of

ongoing sediment liquefaction, while point D demonstrated a

swift pore pressure accumulation and a significant increase in

liquefaction potential, indicating rapid and severe liquefaction.

In summary, our findings confirm the stabilizing effect of

pipelines on surrounding sediments, which reduces displacement

and decreases liquefaction susceptibility. Notably, sediments at the

sides of the pipeline are more prone to liquefaction than those
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directly above or below. This study highlights the complex

interactions between seabed sediment behavior and marine

infrastructure under wave action, providing valuable insights for

submarine pipeline design and maintenance.
3.2 Feature case study

To elucidate the dynamics of seabed sediment behavior and

pipeline stability under specific hydrodynamic conditions, a

detailed case analysis was conducted. The selected scenario—

characterized by a water depth of 9 m, wave height of 3.5 m, and

current velocity of 0.25 m/s over a duration of 500 s—was carefully

chosen to reveal the temporal responses of seabed pipelines and

adjacent sediments to wave action. This analysis aimed to provide a

deeper understanding of the mechanisms driving sediment

displacement, pore pressure variations, and liquefaction processes.

In terms of displacement (Figure 7), our observations revealed a

progressive increase in sediment movement from the initial state,

where only static water column pressure was present, to significant

displacements recorded at various stages of the simulation. Notably,

by 200 seconds, a gradual displacement began manifesting from the

seabed surface to deeper layers, attributed to the synergistic effects of

waves and currents, culminating in a displacement of approximately

0.1 m near the pipeline. This displacement intensified over time,

reaching about 0.2 m by 400 s, and further escalating to 0.6 m at the

surface layer and 0.3 m around the pipeline by the 500-second mark.

These findings underscore the profound impact of prolonged

hydrodynamic forces on seabed sediment displacement,

highlighting the critical role of wave and current interactions in

altering seabed stability.

The analysis of pore pressure within the seabed sediments

unveiled a gradual accumulation over time, a consequence of
FIGURE 5

Liquefaction distribution of seabed pipeline and surrounding sediments when wave height is 3 m, wave period is 7.75 s, and flow velocity is 0 m/s.
Point A is sediment directly beneath the pipeline; Point B is the seabed unaffected by the pipeline (sharing the same seafloor depth as Point A); Point
C is the location directly above the pipeline at a distant location; Point D is located adjacent to the side of the pipeline.
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sustained hydrodynamic action (Figure 8). Intriguingly, an annular

zone exhibiting reduced pore pressure was observed around the

pipeline, contrasting with the adjacent sediments at the same burial

depth. This phenomenon indicates the suppressive effect of the

pipeline’s burial on the dynamic response and liquefaction

susceptibility of seabed sediments, suggesting a stabilizing influence

exerted by the pipeline on the surrounding sedimentary environment.

Observations from Figure 9 indicate that the seabed is in a non-

liquefied state at the initial moment. With the increase in time under

hydrodynamic action, lateral liquefaction around the pipeline occurs

first at 200 s. By 400 s, liquefaction near the seabed extends to nearly

2 m, with the liquefied zones on both sides of the pipeline becoming
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more pronounced. By 500 s, liquefaction exceeds 2 m in depth, but

non-liquefied regions are observed immediately adjacent above and

below the pipeline, demonstrating the stabilizing effect of the seabed

pipeline on the nearby surrounding sediments.
3.3 Machine learning model accuracy

The analysis demonstrates the predictive accuracy of our model

regarding the response of submarine pipelines and their adjacent

sediments to wave-current interactions, as shown in Figure 10. The

alignment of the model’s predictions with actual observations is
FIGURE 6

Variation of dynamic parameters at different characteristic points on the seabed under the action of waves over time. (a) is displacement; (b) is mean
effective stress; (c) is mean strain; (d) is pore pressure; (e) is void ratio; (f) is liquefication potential.
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noteworthy, with several instances of direct correlation, emphasizing

the precision of our liquefaction prediction model.

To conduct a more nuanced analysis of the predictive accuracy,

we employed a suite of evaluation metrics, namely the mean square

error (MSE), root mean square error (RMSE), mean absolute error

(MAE), and the coefficient of determination (R2). When these

metrics are collectively considered, as depicted in Figure 11, the

predictive performance for parameters such as the x-direction

displacement beneath the pipeline, the liquefaction depth above

the pipeline, and the x- and z-direction displacements at the lateral

sides of the pipeline, emerges as notably superior. These parameters

are ranked highest across all four-evaluation metrics, underscoring

the model’s high level of predictive accuracy.
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Conversely, the remaining four output parameters exhibit

marginally lower predictive values, underscoring the variability in

predictive accuracy across different parameters. Despite this, the

error metrics for all outputs remain within acceptable thresholds,

with MSE values below 0.05 and MAE values under 0.1. This

evidences that the model delivers high accuracy across all

evaluated output parameters, albeit with slight variations among

them. Overall, this model adequately meets the accuracy

requirements for assessing the response of submarine pipelines

and the liquefaction of surrounding sediments under the

combined action of waves and currents, providing a robust tool

for understanding and mitigating geohazards in marine

engineering contexts.
FIGURE 8

Distribution of seabed pore pressure at characteristic moments under wave action. (a) is at 0 s; (b) is at 200 s; (c) is at 400 s; (d) is at 500 s.
FIGURE 7

Distribution of seabed displacement at characteristic moments under wave action. (a) is at 0 s; (b) is at 200 s; (c) is at 400 s; (d) is at 500 s.
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4 Discussions

4.1 Analysis of the impact of pipelines on
the liquefaction of sediments

The findings reveal that submarine pipelines markedly

influence the dynamic behavior of adjacent sediments,

particularly in the distribution of liquefaction. As illustrated in

Figure 5, sediments adjacent to the sides of the pipeline (e.g., Point

D in Figure 5) exhibit the greatest liquefaction potential, whereas

sediments directly above (e.g., Point C) and below the pipeline (e.g.,

Point A) are less prone to liquefaction. The adjacent sides of the

pipeline correspond to the regions where stress concentration and

dynamic responses due to wave action are most pronounced. This

trend may be attributed to the wave motion direction assumed in

the analyses and the impact of the submarine pipeline on stress

distribution. The structure of the pipeline acts as a support,

reducing sediment displacement and stress concentration due to

wave-current dynamics, notably around the pipeline’s upper and

lower sections.

Experiments and model predictions corroborate the submarine

pipeline’s stabilizing influence on nearby sediments, which

diminishes pore pressure buildup and, consequently, liquefaction

depth. This effect appears linked to sediment density and the

pipeline’s dimensions and mass, enhancing near-pipeline

sediments’ resistance to liquefaction. Supporting this observation,

prior research (Ye and He, 2021; Ye and Lu, 2022) identified non-

liquefied zones adjacent to submarine pipelines under wave action,

corroborating our findings and extending their reliability and

applicability. These insights underscore the necessity for

submarine pipeline designs to account for their effects on

sediments’ dynamic responses, aiming to bolster both pipeline

and environmental stability and safety.

In summary, submarine pipelines significantly influence the

wave-induced dynamic response of surrounding sediments.
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Through reasonable design and engineering measures, the risk of

liquefaction can be minimized, ensuring the long-term stability and

reliability of the pipeline system. This has important implications

for the planning, design, and maintenance of submarine pipeline

projects, especially in areas with a high potential risk of liquefaction.
4.2 Implications of modeling for rapid
prediction of regional liquefaction hazards

The machine learning model introduced in this study is pivotal

for the swift prediction of regional liquefaction risks, offering a

substantial leap in early warning capabilities and decision-making

support against liquefaction threats. This model enables rapid, precise

forecasts of liquefaction potential and the behavior of submarine

pipelines and their adjacent sediments under specific hydrodynamic

scenarios, markedly improving response times to potential hazards.

For example, as summarized in Table 4, while traditional finite

element numerical methods might take roughly 50 days to analyze

74 calculation points, our machine learning model can deliver

predictions in just 5 seconds, with a mean absolute error (MAE)

below 0.1. This corresponds to a prediction accuracy exceeding 95%,

which is comparable to the accuracy of traditional numerical

methods (typically above 98%), while significantly reducing

computational time. This dramatic improvement in computational

efficiency highlights the model’s practical advantages in time-sensitive

scenarios, such as marine engineering projects in areas prone to

severe weather conditions. Furthermore, Table 4 also demonstrates

the reduced complexity and lower user requirements of our model, as

it only requires eight input parameters for operation, making it more

accessible to non-specialist users.

In addition to computational efficiency, the machine learning

model simplifies the prediction process. Unlike traditional numerical

methods, which require high-level expertise and comprehensive

training, our model only requires eight input parameters,
FIGURE 9

Distribution of seabed liquefaction at characteristic moments under wave action. (a) is at 0 s; (b) is at 200 s; (c) is at 400 s; (d) is at 500 s.
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significantly lowering the complexity and expertise needed for

operation (Table 4). This makes the model more accessible to

engineers without extensive computational modeling backgrounds.

However, the primary limitation of this approach is its reliance on

data-driven models, which lack universally applicable physical laws,

thus confining their prediction accuracy to the scope of the training

data. To mitigate this, the study meticulously crafted numerous

calculation cases for a specific region to ensure comprehensive

coverage of all conceivable hydrodynamic conditions, allowing the

model to be effectively utilized within this specific context.

While traditional numerical methods offer versatility and

applicability to a wide range of physical scenarios, our machine

learning approach demonstrates unique advantages in terms of

computational speed, ease of use, and scalability to new datasets.

The methodology of creating datasets from extensive numerical

analyses, combined with machine learning training for rapid

forecasting, offers a valuable blueprint for addressing similar

geohazard challenges. Future research could focus on enhancing
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the model’s precision, broadening its applicability to other regions,

and developing hybrid models that integrate physical principles

with machine learning. Such advancements could yield a more

robust and accurate decision-support system for submarine pipeline

projects and the management of marine resources.
4.3 Future work

This study has achieved preliminary results in the prediction of

wave-induced liquefaction of submarine pipelines and their

surrounding sediments, demonstrating innovative applications in

this field by integrating finite element methods with machine

learning techniques. Nevertheless, the depth and breadth of the

research still require further expansion. Firstly, the current machine

learning model relies on a limited dataset, which constrains its

predictive generalization capability and accuracy. Future research

could enhance the model’s generalization ability and predictive
FIGURE 10

Comparison of predicted values and actual values for different output parameters. Subplots (a–h) represent, respectively, the x-direction
displacement below the pipeline, z-direction displacement below the pipeline, liquefaction potential below the pipeline, seabed liquefaction depth,
liquefaction depth above the pipeline, x-direction displacement on the side of the pipeline, z-direction displacement on the side of the pipeline, and
lateral liquefaction potential of the pipeline.
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accuracy by collecting more comprehensive experimental data and

numerical simulation results under various hydrodynamic

conditions. Additionally, considering the complexity and

variability of the submarine environment, incorporating more

influencing factors such as seabed soil characteristics, depth

variations, and human activities into the model training will be

key to improving the model’s comprehensive predictive capability.

Moreover, comparing and analyzing the accuracy of the same wave-
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induced liquefaction dataset across different machine learning

models will also be a focus of our subsequent research.

Secondly, the current model primarily focuses on wave-induced

liquefaction phenomena within a specific area. Future research

could explore the applicability of the model under different

geological and hydrodynamic conditions to further validate and

optimize the model’s universality and robustness. Given the black-

box nature of machine learning models, investigating how to

enhance the interoperability of the model is also an important

direction for future work. This would not only ensure accuracy in

predictions but also provide deeper insights and understanding for

engineering decision-making.

Lastly, with the rapid development of artificial intelligence

technology, exploring more advanced machine learning

algorithms, such as deep learning and physical information neural

networks for the application in submarine pipeline liquefaction risk

assessment, could lead to a significant improvement in predictive

performance. These advanced algorithms have the capacity to

process larger datasets and capture more complex nonlinear

relationships, providing more accurate and real-time risk

assessment tools for marine engineering. Besides, future research

will focus on extending our current models to include the prediction

of time series data for wave-induced liquefaction. Recognizing the

importance of not only determining the final state and depth of

liquefaction but also understanding the variation of intermediate

variables over time, our next phase of research will aim to develop a

comprehensive dataset that captures these temporal dynamics. This

advancement will allow for a more detailed exploration of the

changing physical properties and behaviors of seabed sediments
FIGURE 11

Statistical analysis of model prediction results. Where (a–d) represent MSE, RMSE, MAE, and R2 statistical values, respectively.
TABLE 4 Comparison between traditional numerical model and machine
learning model.

Comparison
Dimension

Traditional
Numerical model

Machine Learning
model

Computational
Efficiency

50 days for 74
calculation points

5 seconds for 74
calculation points

User
Requirements

Requires high-level
expertise and

specialized training

Only requires 8 input
parameters; user-friendly
and simple to operate

Prediction
Accuracy

Theoretically high, but
depends on model
discretization and
mesh quality

Accuracy exceeds 95%
within the training data
range, based on MAE

below 0.1

Applicability Highly versatile, applicable
to various

physical scenarios

Limited to the scope of the
training data

Flexibility
and Scalability

Expanding to new
scenarios requires
re-modeling and
recalculations

Easily extended to new
scenarios with additional

training data
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under dynamic wave conditions, thereby enhancing our

understanding of the underlying mechanisms and improving

predictive accuracies.

In summary, future work will focus on expanding and

deepening the application scope of machine learning models,

enhancing model accuracy and interpretability, and exploring

new algorithms and time series datasets in the prediction

of submarine pipeline liquefaction. These efforts will not

only provide more reliable technical support for the safety

management and disaster prevention of marine engineering but

also promote further development and application of machine

learning technology in the field of marine engineering.
5 Conclusions

This study comprehensively applied a combination of finite

element methods and machine learning techniques to investigate

the liquefaction response of submarine pipelines and their

surrounding sediments under the action of wave-current

coupling. The research method combines the accuracy of finite

element methods with the efficiency of machine learning, resulting

in a rapid prediction model for the liquefaction response of

submarine pipelines and surrounding sediments under wave-

current coupling. This model can quickly predict the liquefaction

conditions at multiple regional points, leading to the following

main conclusions:
Fron
1. The impact of submarine pipelines on sediment

liquefaction exhibits significant directionality and

positional differences. The research indicates that

liquefaction is most pronounced on the sides of the

pipeline perpendicular to the direction of wave-current

incidence, while the top and bottom ends of the pipeline

are less likely to liquefy. This phenomenon reveals the

substantial stabilizing effect of submarine pipelines on the

surrounding sediments, which suppresses liquefaction to

some extent by reducing displacement, decreasing pore

pressure accumulation, and mitigating the reduction in

effective stress.

2. This study successfully constructed a machine learning

model trained with datasets established from finite

element results, capable of quickly and accurately

predicting wave-induced liquefaction problems. By

comparing the model’s predictions with the finite element

analysis results, an average absolute error (MAE) of less

than 0.1 was found, demonstrating the high accuracy and

reliability of the machine learning model in predicting

wave-induced liquefaction.

3. This study demonstrates that the machine learning model

achieves favorable prediction performance for wave-

induced liquefaction around submarine pipelines. By

providing predictions within an extremely short

timeframe, the model enables timely risk assessments and

decision support for engineering personnel dealing with

complex hydrodynamic conditions. However, the
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applicability of the model remains constrained to the

range covered by its training data, and its prediction

accuracy may diminish for scenarios beyond this range.
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